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Defensins are a major family of host defense peptides expressed predominantly in
neutrophils and epithelial cells. Their broad antimicrobial activities and multifaceted
immunomodulatory functions have been extensively studied, cementing their role in
innate immunity as a core host-protective component against bacterial, viral and
fungal infections. More recent studies, however, paint defensins in a bad light such
that they are “alleged” to promote viral and bacterial infections in certain biological
settings. This mini review summarizes the latest findings on the potential pathogenic
properties of defensins against the backdrop of their protective roles in antiviral
and antibacterial immunity. Further, a succinct description of both tumor-proliferative
and -suppressive activities of defensins is also given to highlight their functional
and mechanistic complexity in antitumor immunity. We posit that given an enabling
environment defensins, widely heralded as the “Swiss army knife,” can function as a
“double−edged sword” in host immunity.

Keywords: antimicrobial peptide, host defense peptide, defensin, innate immunity, Shigella, host–pathogen
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INTRODUCTION TO HUMAN DEFENSINS

Defensins are a family of small (2–5 kDa), cationic host defense peptides with a β-sheet core
structure stabilized by three conserved intramolecular disulfide bonds. The first mammalian
defensin, also termed microbicidal cationic protein, was isolated in 1980 by Lehrer and colleagues
from rabbit lung macrophages (1, 2). It was not until 1985 when the same lab discovered
homologous peptides in human neutrophils did Lehrer coin the term defensin (3, 4) to describe
disulfide-stabilized cationic peptides of mammalian origins with broad antimicrobial activity
against bacteria, viruses and fungi. Based on disulfide topology, mammalian defensins are classified
into three subfamilies, α, β, and θ-defensins (5–8). In humans, there exist only α and β-defensins.
θ-defensins, with a unique circular structure stabilized by three parallel disulfide bonds in a
ladder pattern, are only found in leukocytes of rhesus macaques (9). Although RNA transcripts
homologous to the rhesus θ-defensin gene are found in humans, they contain a premature stop
codon in the upstream signal sequence that abolishes their subsequent translation (10).

To date, six human α-defensins have been identified, which are further divided into two
major classes according to their expression patterns and gene structures: myeloid defensins or
human neutrophil peptides (HNPs) 1 to 4 and human (enteric) defensins (HDs) 5 and 6 (11–
13). HNPs are stored in the azurophilic granules of human neutrophils, of which HNPs 1–3
and their much less abundant fourth cousin HNP4 account, collectively, for 5–7% of the total
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neutrophil protein (4, 14, 15). HNPs-containing granules
normally undergo restricted secretion and are commonly
directed for fusion with phagolysosomes, where high
concentrations of HNPs directly kill phagocytosed microbes (16,
17). Upon holocrine secretion and neutrophil infiltration during
inflammation, HNPs are released into the extracellular milieu
through degranulation of activated neutrophils (17–19). HD5
and HD6 are constitutively expressed in and secreted by Paneth
cells at the bottom of the small intestinal crypt (12, 13, 20, 21).
While the concentration of HD5 at the luminal surface of the
small intestine is estimated to be as high as 50–250 µg/ml, it
is significantly lower at the colonic mucosal surface due to the
distance from secretion (21). HD5 ranging from 1 to 50 µg/ml is
also found in vaginal fluid from healthy women (22) and induced
in the male and female reproductive tract in response to sexually
transmitted infections (STIs) (23–25). Although more than 30
β-defensin genes exist in the human genome, only a few have
been extensively characterized at the genomic and functional
levels (26). Unlike α-defensin expression, which is commonly
regulated at the level of secretion, β-defensin expression is
transcriptionally regulated and restricted to keratinocytes of the
skin and epithelial cells. For instance, while human β-defensin
1 (HBD1) is constitutively expressed, HBD2 and HBD3 are
induced by microbial insults and pro-inflammatory cytokines in
various epithelial and mucosal tissues (27, 28).

Since their first discovery in the early 1980s, defensins
have been intensively investigated for their broad antimicrobial
activities and multifaceted immunomodulatory functions under
both physiological and pathogenic conditions. Many excellent
reviews have shed light on a multitude of sophisticated
molecular and cellular mechanisms by which defensins act
against bacteria, viruses and fungi and function as pleiotropic
immune effectors in inflammation, development and cancer
(5, 11, 26, 29–34). By and large, defensins are heralded as
the “Swiss army knife” in innate immunity against microbial
pathogens. Nevertheless, accumulating recent evidence has
unveiled a potential pathogenic role defensins play in host-
pathogen interactions and tumorigenesis, indicating that the
mechanisms of action of defensins are far more complex than
previously thought. The growing recognition that defensins
can be both advantageous and detrimental, depending on their
spatial-temporal settings, gives us the impetus to review the
recent literature on their protective and pathogenic roles in
health and disease.

DEFENSINS IN VIRAL INFECTION

Defensins directly inactivate and inhibit the replication of a
variety of viruses, and their multifaceted mechanisms of action
have been elucidated (30, 31); the underlying mechanisms of the
role of defensins in host-virus interactions are more complex as
evidenced with HIV-1 (Figure 1). Early studies demonstrated
that defensins are able to target multiple steps of host-virus
interactions to reduce the infectivity of both enveloped and
non-enveloped viruses. HNP1–3, HD5 and retrocyclins 1 and 3
deduced from human θ-defensin pseudogenes effectively block

adhesion of enveloped herpes simplex virus 2 (HSV-2) to host
cells by preventing HSV-2 gB interactions with its receptor
HSPGs (35–37). Defensins also inhibit fusion of virions of
several enveloped viruses with their host cells. Retrocyclin 2
and HBD3 interfere with viral fusion mediated by influenza
virus hemagglutinin (HA) and other viral proteins such as
baculovirus gp64 and Sindbis virus E1 protein (38). While HNP1
is well recognized for its direct anti-HIV activity (39, 40), it also
restrains HIV-1 uptake by inhibiting Env-mediated viral fusion
and downregulating host cell surface expression of CD4 and
coreceptor CXCR4 (41), a controversial mechanism for HBD2
and HBD3 inhibition of HIV-1 infection (42–44).

Post-entry inhibition of viral infection by defensins has been
observed with several families of non-enveloped viruses, notably
HPV (45). Without affecting the binding and entry steps, α-
defensins effectively block intracellular uncoating of HPV and
its escape from cytoplasmic vesicles by stabilizing its viral capsid
structure to prevent interactions of viral proteins and genome
with host factors essential for productive infection (45–49). This
general inhibitory mechanism has been verified for other non-
enveloped viruses such as human adenovirus (HAdV) and JC
polyomavirus where α-defensins stabilize viral capsid proteins,
thus diminishing subsequent intracellular infection (50–54). Of
note, post-entry inhibition of enveloped viruses such as HIV-
1 and influenza by HNP1 is mediated through interfering with
cell signaling pathways such as PKC that are required for viral
replication (39, 55).

More recent studies, mostly by the same research groups
who demonstrated the beneficial role of defensins in controlling
viral infection, unveil infection-promoting effects of defensins
in HIV-1 and certain serotypes of HAdV infections (25, 51,
56–60). Chang and colleagues reported that HD5 and HD6,
induced by Neisseria gonorrhoeae infection in a cervicovaginal
tissue culture system, increase HIV infectivity in a CD4- and
HIV coreceptor-independent manner (25). HD5 and HD6
promote HIV infection by acting on the virion to enhance viral
attachment to its target cells (57). These defensins antagonize
anti-HIV activity of polyanion microbicide candidates that block
HIV entry (56). HNP1, the prototypic α-defensin extensively
studied for its multifaceted anti-HIV activity, is also capable
of disrupting epithelial integrity to promote HIV traversal
across epithelial barriers, thus facilitating viral infection and
dissemination (60). These findings by the Chang group are of
particular interest since increased HNP1 and HD5 expression
in the genitourinary tract upon STIs could potentially generate
sufficiently high concentrations of defensins to enhance HIV-
1 infection under physiological conditions. Other examples
regarding the enhancing effect of defensins on enveloped virus
infection have been reported. For example, cryptdin 3, one of
several mouse α-defensins expressed in the small intestine (61)
also enhances HIV infection in vitro presumably by facilitating
viral entry (58). A recent study shows that an alphaherpesvirus,
equine herpesvirus type 1, is resistant to equine β-defensins 2–3,
which inhibit bacteria and viruses, and exploits these defensins to
invade the host for viral spread (62).

HNP1- and HD5-promoted viral infection has also been
observed with certain serotypes of HAdV as reported by
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FIGURE 1 | Opposing effects of human α-defensins on HIV-1 infection. Infection-inhibiting mechanisms include: (1) direct inactivation of the virus (39, 40), (2)
blockade of gp120-CD4 interactions (164, 165), (3) coreceptor downregulation (41, 166), (4) inhibition of gp41- and Env-mediated viral fusion (41), (5) inhibition of
nuclear import of viral RNA (30, 39), and (6) suppression of HIV transcription (30, 39, 167). Infection-promoting mechanisms include: (7) enhancing viral
adhesion/attachment (25, 56, 57, 59), and (8, 9) disrupting tight junction to promote trans-epithelial transmission of HIV (60).

the Smith group (51), who previously deciphered the capsid-
stabilizing mechanism of defensins against HPV and HAdV and
delineated their structural determinants of antiviral activity (46–
54, 63). As is the case with HIV-1, HNP1- and HD5-dependent
enhancement in infection by HAdV-D and -F correlates with
increased viral attachment to target cells independently of
receptor binding (51). To address the physiological relevance of
defensin-enhanced adenovirus infection, Smith and colleagues
utilized a murine enteric organoid (enteroid) to examine the
impact of naturally secreted cryptdins on the infectivity of
an enteric mouse pathogen, mouse adenovirus 2 (MAdV-2).
MAdV-2 infection increases in the enteroids expressing mouse
α-defensins but not in the ones devoid of them (64). This ex vivo
study demonstrates that α-defensin-enhanced viral infection
occurs not only in traditional cell cultures, but also under
physiologic conditions.

DEFENSINS IN BACTERIAL INFECTION

Defensins are capable of killing bacteria or inhibiting bacterial
growth through a multiplicity of antimicrobial mechanisms
such as direct membrane disruption (11, 65, 66) and inhibition
of bacterial cell wall synthesis (67–69). Defensins can also
reduce bacterial infection by neutralizing secreted toxins (70–
73). In general, human α-defensins are less cationic but
more hydrophobic than β-defensins, and they can differ

mechanistically in the killing of bacteria (11). While HBD1 and
HBD2 are active preferably against Gram-negative bacteria (74),
their significantly more cationic counterpart HBD3 is potently
bactericidal against both Gram-positive and -negative strains
(75). Due to its heavily cationic nature, HBD3 broadly kills
bacteria in a structure-independent manner (76, 77). Notably,
disulfide reduction of the weakly bactericidal HBD1 turns it into
a potent antimicrobial peptide against opportunistic pathogenic
fungi and Gram-positive commensal bacteria (78). Excellent
reviews on the antifungal activity of defensins are also available
(79, 80). Our review focuses on the role of human α-defensins
in host-bacteria interactions to contrast their protective and
pathogenic functions.

Bevins and colleagues demonstrated that HD5-transgenic
mice are markedly resistant to oral challenge with virulent
Salmonella typhimurium, consistent with the antibacterial
activity of HD5 in vitro, whereas wild-type mice are susceptible
to infection (81). An in vivo protective role against Salmonella
infection is also illustrated for mouse intestinal α-defensins or
cryptdins (82). Of note, enteric HD6, while exhibiting little
bactericidal and membranolytic activity in vitro, protects mice
from Salmonella infection by entrapping bacteria with a unique
self-assembled “nanonets” structure to preclude the pathogen’s
direct contact with the intestinal epithelium (83).

HNP1–3 secreted by infiltrating neutrophils in Staphylococcus
aureus infection induce TNF-α and IFN-γ release from
macrophages, which, in turn, increase phagocytosis of pathogens
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FIGURE 2 | Proposed model for HD5-promoted Shigella infection of the colonic epithelium. HD5 in the lumen of the small intestine encounters poorly adhesive
Shigella in transit, binds to Shigella surface, and promotes Shigella adhesion to the colonic epithelium by bridging single bacterium and host cell and/or clustering
multiple bacteria for multivalent attachment to host cell, leading to increased bacterial infection from the apical surface (89, 91).

TABLE 1 | Suppressive and proliferative properties of human defensins in tumorigenesis.

Beneficial (tumor-suppressing) Detrimental (tumor-promoting)

Defensins Cancers Mechanisms Refs Defensins Cancers Mechanisms Refs

HBD1 Bladder Inhibiting growth (110, 119) HBD3 Oral Stimulating growth (122, 123, 126–

Renal promoting apoptosis (110) neck and head promoting migration 128)

prostate inhibiting migration (120) cervical trafficking TAM (127, 128)

oral resisting apoptosis (127)

HBD2 Oral Inhibiting growth and
invasion

(136) HBD2 Esophageal Stimulating growth (131, 132, 139)

Lung promoting angiogenesis (137)

Cervical

HNP1–3 Colorectal Direct cytolysis (high
concentration)

(157) HNP1–3 Renal Stimulating growth (low
concentration)

(150)

lung inducing apoptosis (158–160) bladder promoting invasiveness (152, 153)

bladder inhibiting angiogenesis (160–162) oral

renal reversing immune alteration (163)

neck and head

oral

by macrophages – an essential step in bacterial clearance (84,
85). HNP1 also inhibits phagosomal escape and intracellular
multiplication of Listeria monocytogenes and Mycobacterium
tuberculosis in macrophages (86, 87), suggesting that the
defensin, although not being expressed by macrophages,
contributes to their antimicrobial function. Notably, HNP1
acts in the aftermath of Salmonella infection as a “molecular
brake” on macrophage-driven inflammation by preventing
protein translation to ensure both pathogen clearance and
the resolution of inflammation with minimal bystander tissue
damage (88).

While the protective roles of defensins in bacterial infection
are widely reported in the field, we have made a surprising recent

discovery that α-defensins can contribute to the pathogenicity
of Shigella (89–92). Unlike other enteropathogenic bacteria,
Shigella lacks general adhesion machinery such as fimbriae due
presumably to pervasive genome reduction during the course of
adaptation to the intracellular environment (93–95). As a result,
Shigella is much less adhesive and invasive in vitro than other
fimbriated enteropathogenic bacteria despite its extraordinary
infectivity in humans. Further, although highly infectious in
humans, Shigella hardly infects any other animals including mice
with abundant enteric α-defensins (cryptdins) (96, 97). This
seemingly paradoxical phenomenon or conundrum in Shigella
pathogenesis has remained largely obscure mechanistically at
the molecular and cellular levels (97–99). We found that the
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lack of fimbriae in Shigella affords the pathogen a unique
bacterial surface, onto which HD5 forms multimeric structures to
mediate Shigella adhesion to host epithelium; enhanced bacterial
adhesion in turn strongly promotes Shigella invasion of host
cells, ensuing dramatically augmented infection in vivo and
ex vivo (Figure 2). These studies support the premise that
Shigella exploits HD5 for virulence (89, 91), thereby explaining
not only its extraordinary pathogenicity but also its restricted
host selectivity.

HNP1 is also active in promoting Shigella infection of
epithelial cells (90), consistent with an earlier finding that
human neutrophil granular proteins (containing HNPs) enhance
Shigella adhesion in vitro at sub-lethal concentrations (100).
Although HNP1 is weaker than HD5 with respect to their
ability to promote Shigella adhesion, its strong activity in
disrupting the epithelial barrier contributes additionally to
Shigella infection (90). It is worth noting that HD5 exacerbates
the pathogenicity of Shigella in macrophages. Despite that HD5
boosts phagocytosis of Shigella by macrophages, an antimicrobial
event generally unfavorable to invading pathogens, it fails
to prevent subsequent phagosomal escape and intracellular
multiplication of Shigella, resulting in necrosis of infected
macrophages induced by multiplying Shigella and massive release
of intracellular bacteria (92).

For human α-defensins, their hydrophobicity and selective
cationicity segregated on a dimeric structure stabilized by
intramolecular disulfides are critical for antimicrobial activity
(11). Several mutational studies have identified the functional
determinants of α-defensins in promoting viral and bacterial
infections (25, 56, 57, 59, 60, 90–92). Briefly, disulfide bonding
in defensins is absolutely required for their ability to enhance
HIV-1 infection (25, 60) and to promote Shigella adhesion and
invasion (91, 92); hydrophobic residues in α-defensins, i.e., Trp26
and Phe28 in HNP1, Leu16, Leu26, Tyr27 and Leu29 in HD5,
and Phe2 and Phe29 in HD6, play a pivotal functional role
(59, 90, 91); dimerization and/or oligomerization of α-defensins
are functionally indispensable (59, 83, 91, 101, 102); selective
cationicity, as exemplified by Arg28 in HD5, can be critical for
promoting HIV and Shigella infection (59, 91, 92). Obviously,
although α-defensins are highly variable in amino acid sequence,
their functional determinants are rather conserved, irrespective
of their pathogenic and protective roles in host immunity.

DEFENSINS IN TUMORIGENESIS

Most cancers develop from epithelial cells and tissues
(carcinomas) where β-defensins are expressed for mucosal
surface protection against microbial infection (26, 27, 103,
104). Since β-defensins are differentially expressed in normal
tissues and tumors, their role in tumor development and
progression has attracted considerable interest (32, 105–107).
HBD1 is downregulated in most carcinomas (108–118), and
the stimuli of this downregulation are yet to be identified.
Growing evidence suggests that HBD1 functions as a tumor
suppressor in most carcinomas (110, 119, 120). By contrast,
HBD3 is frequently overexpressed in various carcinomas

(121–124), and its upregulation has been ascribed to LPS-
stimulated EGFR activation (121) or HPV co-infection-induced
p53 degradation (125), among others. Importantly, HBD3
stimulates tumor growth and migration (122, 123, 126), confers
resistance of tumor cells to apoptosis (127), and helps the
recruitment of tumor-associated macrophages that promote
tumor progression (127, 128). Consistent with the oncogenic
role of upregulated HBD3, mouse β-defensin 14, the ortholog
of HBD3, acts as a chemoattractant to enhance angiogenesis
and tumor development in vivo (129). The regulation of HBD2
and its influence in tumorigenesis vary from cancer to cancer
(106) and can be controversial at times (130, 131). HBD2 is
upregulated in esophageal, lung and skin cancers (108, 109,
118, 132), but downregulated in oral and colon cancers (112,
114, 133). While the mechanisms of HBD2 regulation are only
partially understood (132, 134, 135), HBD2 appears to play a
suppressive role in tumor development and progression when it
is downregulated (136), but a proliferative role when upregulated
(131, 132, 137–139), in agreement with HBD1 and HBD3.
The suppressive and proliferative properties of defensins in
tumorigenesis are tabulated in Table 1.

The role of α-defensins in tumorigenesis has also been
extensively examined (140, 141). Elevated levels of myeloid α-
defensins, HNP1–3, are frequently detected in many different
types of tumor tissues and in biological fluids from cancer
patients (142–155). While tumor-infiltrating immune cells, and
neutrophils in particular, are likely a major contributor to
increased HNP1–3 in tumors (151), several studies also suggest
that tumor cells themselves may produce HNP1–3 through
a yet-to-be-identified mechanism (142, 150). HNP1–3 have
been shown to promote tumor cell proliferation (150, 156),
contributing to tumor progression and invasiveness (152, 153).
Due to their membranolytic activity toward bacteria and limited
sites of expression, much of the early studies of α-defensins
have focused on their ability to lyse tumor cells at high
concentrations (157). More recent work, however, has shed
light on the mechanistic complexity of the antitumor activity
of HNP1–3, including inducing apoptosis (158–160), inhibiting
angiogenesis (160–162), and altering immune milieu in HPV-
associated neoplasia by recruiting immature dendritic cells (163).

CONCLUDING REMARKS

Long recognized as a class of host defense peptides and
immunomodulators important for innate immune responses
to viral, bacterial and fungal infections, human defensins
are widely thought to be host protective. Growing recent
evidence suggests, however, that they can also be pathogenic
under certain biological conditions by promoting viral and
bacterial infections. The interchangeable roles between a “Swiss
army knife” and a “double-edged sword” played by human
α-defensins in host immunity are under-appreciated in the
field, despite the well-recognized fact that defensins can be
both suppressors and promotors in tumorigenesis, depending
on which defensin and cancer type are studied. While the
mechanisms of host protection by human defensins are
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well-understood, much remain obscure with respect to the
molecular and cellular events dictating defensins’ pro-infective
activity. A better understanding of how human defensins
promote infection may ultimately lead to new therapeutic
interventions of infectious diseases.
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