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The lung is under constant pressure to protect the body from invading bacteria. An

effective inflammatory immune response must be tightly orchestrated to ensure complete

clearance of any invading bacteria, while simultaneously ensuring that inflammation is

kept under strict control to preserve lung viability. Chronic bacterial lung infections are

seen as a major threat to human life with the treatment of these infections becoming more

arduous as the prevalence of antibiotic resistance becomes increasingly commonplace.

In order to survive within the lung bacteria target the host immune system to prevent

eradication. Many bacteria directly target inflammatory cells and cytokines to impair

inflammatory responses. However, bacteria also have the capacity to take advantage of

and strongly promote anti-inflammatory immune responses in the host lung to inhibit local

pro-inflammatory responses that are critical to bacterial elimination. Host cells such as T

regulatory cells and myeloid-derived suppressor cells are often enhanced in number and

activity during chronic pulmonary infection. By increasing suppressive cell populations

and cytokines, bacteria promote a permissive environment suitable for their prolonged

survival. This review will explore the anti-inflammatory aspects of the lung immune system

that are targeted by bacteria and how bacterial-induced immunosuppression could be

inhibited through the use of host-directed therapies to improve treatment options for

chronic lung infections.
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INTRODUCTION

The respiratory tract is in constant contact with a myriad of bacterial species. To maintain
homeostasis the healthy lung must efficiently and precisely identify friend from foe, and defend
from infection without any long lasting inflammation or immunopathology occurring. The lung
employs a complex network of immunosuppressive responses which are critical for maintaining a
stable tolerogenic microenvironment within the tissue. However, bacterial pathogens have evolved
to establish themselves within the lung by targeting this immunosuppressive arm of the immune
response. In doing so bacterial species prevent appropriate clearance and create a suppressive
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microenvironment, facilitating their long-term survival. A better
understanding of these bacterial-induced responses may aid
in the development of novel host-directed therapies (HDTs)
to target bacterial-induced immunosuppression. Herein we
discuss how bacterial species of the lung have evolved to
manipulate host immunosuppressive responses to their own
advantage, hijacking important tolerogenic mechanisms to create
an environment appropriate for bacterial growth. In addition
we will discuss the ongoing research into HDTs and their
potential for improving current treatments against bacterial
lung infections.

Bacterial-induced respiratory tract infections are a major
global health concern, and represent leading causes of death
worldwide. These infections are of particular concern due to
our dense population living habits and the growing prevalence
of community-acquired pneumonia (1). The discovery and
mass production of antibiotics dramatically reduced the number
of mortalities associated with bacterial infection. However,
with growing resistance and a lack of new discoveries, multi-
drug resistance (MDR) is a huge threat to the success
of antibiotics. The world health organization (WHO) has
drawn up an antibiotic-resistant “priority pathogen” list
classifying MDR bacteria as “critical” and “priority” depending
on the threat to human health and the need for the
development of novel antibiotics against these bacteria. Many
of those in the “critical” group are bacteria associated with
infection of the lung such as Mycobacterium tuberculosis,
Pseudomonas aeruginosa and Klebsiella pneumoniae, with
other species on the “priority” list including Staphylococcus
aureus, Streptococcus pneumonia and Haemophilus influenza,
all important bacterial species associated with invasive lung
infections (2).

Our dependence on antibiotics is not sustainable and
alternative therapies to current antibiotic treatments are
urgently required to combat these increasingly dangerous
pathogens and to prevent chronic and often fatal lung
infections. As the resistance problem grows many researchers
have looked into the modification of existing antibiotics
to improve activity and reduce sensitivity to resistance (3).
This approach has been broadly successful, however, current
methods of targeting the microbe using antibiotics seem
to inevitably end in resistance to the therapy in use. A
potential method to overcome this may be the development of
novel HDTs whereby the local host immune response during
infection is targeted. Targeting host immunity can be done to
either improve the immune response to infection or dampen
down/disarm inappropriate immune responses, this includes
strategies employed by bacteria to exploit immunosuppressive
mechanisms of the host. By dampening local bacterial-induced
immunosuppression it may be possible to promote a more pro-
inflammatory immune response leading to improvements in
bacterial killing and clearance. Achieving this however requires
an in depth understanding of the intricacies of how the
bacteria interact with the host to subvert immunosuppressive
responses. This may reveal potential targets to intercept for the
development of novel treatment modalities against intractable
respiratory infections.

IMMUNE RESPONSE IN THE LUNG
DURING BACTERIAL INFECTION

Pulmonary immune homeostasis is critical in maintaining a
healthy lung environment and is tightly regulated by a network
of tissue-resident and infiltrating immune cells that monitor
the external environment continuously (4). The lung immune
system has evolved to ward off pathogenic invasion while
simultaneously preventing inflammation-mediated damage. An
effective pro-inflammatory immune response is vital for the
successful and complete elimination of bacterial pathogens. This
involves a complex network of resident and infiltrating innate
and adaptive inflammatory immune cells in addition to the
epithelial cells lining the conducting airways and alveolar surface,
which come together to orchestrate the efficient clearance of
invading bacteria from the lung. These essential inflammatory
immune cell responses are summarized in Table 1.

Once the bacterial pathogen is cleared from the respiratory
tract it is vital the inflammatory immune response is
quickly subdued to prevent any further tissue damage or
immunopathology from occurring. The resolution of the
inflammatory pulmonary immune response is an integral part of
the physiological response to tissue injury and infection in the
lungs. Inappropriate acute or long-term chronic inflammatory
responses lead to damage of the thin-walled organ and result in
impaired gas exchange and possibly life-threatening lung failure
(35, 36). The termination of inflammatory immune responses
is tightly regulated by a network of immunosuppressive cells
including: alternatively activated alveolar macrophages (AM),
myeloid-derived suppressor cells (MDSCs), tolerogenic dendritic
cell (DC) subsets, IL-10-producing CD4+ T cells, regulatory T
cells (Tregs), regulatory B cells (Bregs), and lung epithelial cells
(37–42), and through the release of key immunosuppressive
cytokines. Immunoregulatory cells and cytokines act to prevent
excessive inflammation by abrogating signaling pathways needed
for inflammatory cytokine production, depleting populations
of inflammatory effector cells and altering the phenotypes of
leukocytes to an anti-inflammatory state (4, 43–47). In doing so,
there is a return to homeostasis after a bacterial infection of the
lung with minimal damage to the tissue.

MANIPULATION OF THE
ANTI-INFLAMMATORY IMMUNE
RESPONSES OF THE HOST LUNG

The resolution of inflammation is vital to ensure lung health,
however many pulmonary bacterial pathogens have evolved to
undermine these regulatory immune responses and use them
against the host for their own survival.

Manipulation of Immunoregulatory Cells
Alveolar Macrophages
The plasticity of the alveolar macrophage (AM) response is
critical to their role in the clearance of bacteria from the lung
and the resolution of inflammation post-infection, but also
makes these cells ideal targets for hijacking by many bacteria.
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TABLE 1 | Important inflammatory immune responses of the lung vital for bacterial

clearance.

Cell type Function References

Alveolar macrophage

(AM)

1st line defense. Phagocytosis of

infiltrating pathogens

Production of inflammatory cytokines;

IL-12, TNF, IL-1β, IL-8

(5–7)

Dendritic cell (DC) Phagocytosis of pathogens & upregulation

of MHC-II, presentation of bacterial

antigens, and directing T effector cell

differentiation.

Production of inflammatory cytokines;

IL-12, TNF, IL-1β

(6, 8, 9)

Neutrophil Facilitate bacterial clearance via

phagocytosis, enzymatic degradation of

bacteria and NETosis

(7, 10, 11)

Natural Killer (NK) cell Early contribution to high IFN-γ levels and

promotion of Th1 responses, promote

inflammatory macrophage responses

(12–14)

Innate lymphoid (ILC)

cell

Contribute to the production of IL-17 and

IFN-γ in the lung, leading to enhanced

pro-inflammatory innate responses.

Produce IL-22 promoting antimicrobial

peptide production

(15–17)

Natural Killer T (NKT)

cell

Contribute to high IFN-γ levels and

promotion of Th1 responses, IL-17

production leading to neutrophil

recruitment

(18–21)

Mucosal-associated

invariant T (MAIT) cell

Contribute to IFN-γ and promotion of Th1

responses, IL-17 production resulting in

neutrophil recruitment and aid in

recruitment of CD4+ and CD8+ T cells

(22–24)

γδ T cell Major producers of IL-17 leading to

neutrophil-mediated responses.

Contribute to IFN-γ production

(25, 26)

CD4+ T cell Critical contributors to the production of

IL-17, IL-22 and IFN-γ, leading to

enhanced innate cell activity, antimicrobial

peptide production, and improved

bacterial clearance

(27–31)

CD8+ T cell Contribute to IFN-γ and TNF production.

Cytotoxic effects help clear infected cells

and remove bacteria from the lung

(32–34)

While the prevalence of the “tissue repair” M2 phenotype is
needed for resolution of inflammation, these cells represent
a niche for the prolonged survival of many intracellular
pathogens (48). In murine studies M. tuberculosis increases
the expression of peroxisome proliferator-activated receptor-γ
(PPAR-γ) in infected macrophages leading to an increase in anti-
inflammatory “M2”-associated markers alongside reductions
in respiratory burst, allowing enhanced intracellular bacterial
survival (49). Mycobacterium tuberculosis has also been shown
to induce arginase1 (Arg1) expression in infected macrophages
which is associated with reduced production of reactive nitrogen
intermediates and therefore enhanced survival of the bacterium
(50). AMs are also polarized to an M2 phenotype during
Bordetella pertussis intracellular infection to facilitate survival
of the bacteria within these cells (51). In vitro studies using

a THP-1 cell line demonstrated that B. pertussis can persist
in macrophages and promote the expression of suppressor of
cytokine signaling 1(SOCS1) protein, an M2-associated protein
(52). The upregulation of SOCS1 promotes Arginase-1 (Arg1)
activity and inhibits IFN-γ induced JAK2/STAT1 signaling
and TLR/NF-kB signaling leading to reduced pro-inflammatory
responses (53, 54). Similarly the bacterial toxins Pertussis
toxin (Ptx) and adenylate cyclase toxin (ACT) were implicated
in this macrophage phenotype switch. In vitro studies have
demonstrated that THP-1 cells infected with strains lacking either
of these toxins had lower SOCS1 expression and a decreased
ability of the bacterium to survive intracellularly (51).

Dendritic Cells
Dendritic cells (DCs) have a decisive role in initiating an
appropriate adaptive immune response to invading pathogens in
the lung (55), while also being central to tolerogenic responses
and inflammatory resolution. The induction of tolerogenic DCs
is an effectivemethod of manipulating the lung immune response
employed by a number of bacterial species in order to allow the
pathogen to multiply without restraint. Yersinia pestis promotes
the expansion of tolerogenic DCs via its LcrV protein (56). In
vitro studies using bone marrow-derived DCs (BMDCs) have
shown LcrV binds TLR2/6 leading to the induction of high levels
of IL-10 production by these cells which in turn promotes type 1
regulatory (Tr1) T cells and further enhanced IL-10 production
(56). Similarly the induction of tolerogenic DCs were also seen
during Mycobacterium avium subspecies hominissuis (MAH)
co-infection (57). MAH infections are strongly associated with
opportunistic co-infections by common pulmonary pathogens
such as Haemophilus influenzae, Staphylococcus aureus, and
Pseudomonas aeruginosa (57, 58). Studies using MAH-infected
BMDCs stimulated with LPS, which mimicked co-infection
conditions, lead to the production of high levels of TLR-
mediated IL-10 alongside reduced IL-12 levels (57). In vitro
studies of a MAH/P. aeruginosa co-infection showed a marked
increase in IL-10-producing tolerogenic DCs. The enhanced
IL-10 led to reduced MHC class II expression and antigen
presentation, which eventually led to the inhibition of CD4+

T cell proliferation (57). By promoting tolerogenic phenotypes
of AMs and DCs in the lung bacteria can promote early IL-
10 production and reduced antigen-presentation resulting in
the prevention of effective protective pro-inflammatory adaptive
responses leading to undisturbed bacterial growth.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) are emerging as key
specialized suppressive cells capable of dampening inflammation
to prevent tissue damage after infection (59). These cells are
powerful modulators of both the innate and adaptive immune
responses and in particular have potent immunosuppressive
effects on T cell responses (60). These immunosuppressive innate
cells have been targeted by a number of pulmonary bacteria
which lead to the progression of chronic infections and these cells
may be particularly important in facilitating the transition from
acute to chronic infection (61–63).
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MDSC are increased in the peripheral blood of patients
with active tuberculosis infection (63). In vitro studies using
a granuloma model demonstrate how MDSCs exposed to M.
tuberculosis secrete IL-10 in abundance and upregulate their
expression of PD-L1, which led to the suppression of protective
T cell proliferation and promoted bacterial replication (64). The
bacterium Streptococcus pneumoniae also has the capacity to
hijack MDSCs to facilitate its persistence in the airways. Studies
in mice have demonstrated a robust monocytic response in the
lung following intranasal challenge with S. pneumoniae which
was dominated by the presence of MDSCs. These cells expressed
IL-10, arginase and importantly lacked phagocytic capabilities
(65). This early anti-inflammatory response terminated pro-
inflammatory signaling needed for clearance of the bacteria and
promoted persistence in the lung. Similarly the expansion of a
large population of regulatory immature myeloid cells has been
described following intranasal Francisella tularensis infection
(66). A lethal F. tularensis infection with a highly virulent strain,
led to the recruitment of a large number of MDSC to the lungs
which allowed bacterial survival and eventually resulted in host
death. Interestingly, during sub-lethal infection of F. tularensis
there was a greater recruitment of mature pro-inflammatory
myeloid cells that were effective at controlling infection and
clearing the bacterium (66). The depletion of the immature
myeloid cells partially ameliorated mortality following lethal
infection. These results indicate the lethality of F. tularensis
infection may be through excessive MDSC recruitment which
enables prolific bacterial growth within the lungs. Other bacterial
species which colonize and infect the respiratory tract may
also have the potential to similarly subvert the activities of
MDSCs. In a systemic infection model of S. aureus infection,
persistence of the bacterium has been shown to be associated with
increased expansion of MDSCs which inhibit T cell responses
(67). Similarly in a localized skin infection model S. aureus
promotes the expansion of MDSCs leading to the upregulation
of IL-10 production, which was associated with the persistence of
the bacteria within the skin (68).

Treg Cells
Treg cells play a particularly important role in maintaining lung
homeostasis and resolving pro-inflammatory responses promptly
after pathogens have been cleared. Many pathogens that invade
the lungs have the capacity to exploit the immunoregulatory
function of Tregs and promote the expansion of these anti-
inflammatory cells. This strategy is a direct attempt to
counterbalance the pro-inflammatory effects mediated by innate
cells and adaptive T cells such as Th17 cells and Th1 cells which
play a particularly important role in the protective immune
response to bacteria in the lung (27, 69–71). Tregs can carry
out their function through the production of immunoregulatory
cytokines such as IL-10 and TGF-β, via direct cell-cell contact
through their immunosuppressive surface markers such as
CTLA-4 or by their enhanced consumption of IL-2 which reduces
effector T cell activation (72).

Peripheral blood mononuclear cells (PBMCs) from patients
with active tuberculosis were shown to have raised levels of Tregs
in comparison to healthy controls (73).The ex vivo depletion of

these CD25+ FoxP3+ cells from PBMCs of patients led to an
increased expansion of antigen-specific IFN-γ+ T cells indicating
that M. tuberculosis–induced Tregs were capable of suppressing
these protective T cell responses. In a guinea pig model of
tuberculosis it was shown that highly virulent strains induce high
levels of FoxP3, IL-10, and TGF-β mRNA expression in lung
tissue (74, 75). After an initial increase inmRNA expression levels
of the Th1-associated cytokine IFN-γ, there was a rapid decrease
in these levels and subsequent surge in Treg-associated markers
and cytokines (74). It was hypothesized that highly virulent
strains act as potent inducers of Tregs and that this increase
in these suppressive cells enhances bacterial survival. A similar
result was seen in a murine model of severe tuberculosis infection
using a hyper-virulent strain HN878. An initial Th1 response was
followed by a rapid increase in IL-10+ Tregs in the lungs (76).
This increase in suppressive cells enabled progression of infection
which may explain the relatively short time of survival of these
infected mice.

Other bacterial species such as B. pertussis and S. pneumoniae
also promote Treg expansion as a means to facilitate their
survival. B. pertussis can expand Tregs by upregulating IL-
10 production by innate cells such as macrophages and DCs,
which in turn directs T cell differentiation toward a regulatory
phenotype (77–80). In a murine model of S. pneumoniae
nasopharyngeal colonization it was demonstrated that Treg
expansion was due to the high levels of TGF-β being produced
by nasopharyngeal cells in response to the bacterium. The high
levels of Treg cells promote prolonged survival of the bacteria
within the host lungs while causing no damage to the host
(81). The bacterium essentially goes undetected by the pro-
inflammatory arm of the pulmonary immune response as it
remains suppressed by the presence of high levels of TGF-β. This
lack of inflammatory responses via Treg-mediated TGF-β allows
bacterial survival and may lead to invasive disease.

Breg Cells
In addition to the well-characterized role of Tregs in maintaining
immune homeostasis, Bregs have been shown to contribute to
immune tolerance (82, 83). Their suppressive effect is mainly
through IL-10 production, leading to the inhibition of Th1 and
Th17 responses and the conversion of CD4+ T cells into Treg
cells (82, 84). The role of Bregs during pulmonary infection
is not well defined, however PBMCs from patients suffering
with tuberculosis were shown to contain higher numbers of
Bregs compared to healthy controls (85). In vitro co-cultures
using T cell and B cell populations isolated from patient PBMCs
demonstrated that these Bregs could dampen Th17 responses
(85). Bregs were also shown to have inhibitory effects on IL-22
production (86), a cytokine implicated in limitingM. tuberculosis
intracellular survival (87, 88). More recent studies have
demonstrated how circulating Bregs of active M. tuberculosis-
infected patients were producing the immunoregulatory cytokine
IL-35 (89), a potent immunosuppressive cytokine capable of
suppressing effector T cell responses, promoting the expansion
of Tregs and their production of IL-10 (90). Additionally,
stimulating purified B cells from healthy controls with M.
tuberculosis lysate, increased expansion of IL-35+ Bregs (89),
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suggesting M. tuberculosis may be inducing the production
of IL-35 by Bregs to enhance IL-10 production to regulate
inflammatory responses. More in depth study is needed to
definitively identify the function of IL-35-producing B cells inM.
tuberculosis infection. In a murine model of S. aureus systemic
infection a population of Bregs were expanded and acted as major
producers of IL-10 (68). It is conceivable therefore that these cells
also play a role in the pathology of S. aureus lung infection.

There are still major gaps in our understanding of how
Bregs and their immunosuppressive effects are being hijacked
by pulmonary bacteria, however, it seems likely that these cells
are important in suppressing inflammatory immune responses
in the lung through their production of the anti-inflammatory
cytokines IL-10 and potentially IL-35.

Regulatory cell populations of the local respiratory immune
response are key targets of bacterial pathogens. Immune cells
usually central to the resolution of harmful inflammation are
heavily exploited to improve bacterial survival. Bacterial-induced
expansion and activation of these regulatory innate and adaptive
immune cells allows the suppression of vital inflammatory
responses needed for complete bacterial clearance. These cells
could potentially be targeted to reduce their anti-inflammatory
effects and improve infection outcome.

Manipulation of Immunosuppressive
Cytokines
One of the most common survival strategies employed by
bacterial species to facilitate their survival is to promote the
production of various anti-inflammatory cytokines from a
variety of cell types. These anti-inflammatory mediators then
suppress pro-inflammatory cell populations such as innate
cells and effector T cells, and reduce the production of pro-
inflammatory cytokines.

IL-10
IL-10 is a key cytokine required for maintaining the steady-
state within the healthy lung during infection where it inhibits
the activity of many pro-inflammatory cells and prevents
immunopathology. However, excessive or miss-timed IL-10
production can inhibit a protective pro-inflammatory response
leading to chronic and often fatal infection (91). In a murine
model ofMycobacterium avium infection, BALB/c mice respond
with very early IL-10 production. This reduces their ability to
control the pathogen compared to their C57BL/6 counterparts,
which have lower IL-10 activity (92). The ablation of IL-
10 signaling improved pathogen control in the BALB/c mice,
highlighting the causal relationship between IL-10 and a lack of
pathogen control. By limiting pro-inflammatory cell functions
IL-10 can reduce immunopathology, benefitting the host.
However, if produced in excess or if inappropriately timed, it
can potentially dampen the protective effector immune response
required for bacterial clearance.

The induction of IL-10 is a key strategy employed by
M. tuberculosis to facilitate pathogenesis (93). The pathogen
infiltrates the lung and can reside within host macrophages,
here, it suppresses their pro-inflammatory function through
enhanced IL-10 production via a number of mechanisms (94).

The M. tuberculosis heat shock protein 60 (Mtbhsp60) can
target TLR2 and TLR4 on macrophages leading to p30 MAPK
activation and enhanced IL-10 production (95). By targeting
TLR signalingM. tuberculosis can polarizemacrophage responses
to be more immunosuppressive. Das et al. identified a novel
mechanism of CCR5–mediated altered cellular signaling in
M. tuberculosis infected macrophages, leading to downstream
activation of the Src kinase Lyn and the mitogen-activated
protein (MAP) kinase ERK-1/2, resulting in IL-10, and also
TGF-β production. The elevated IL-10 production was shown
to attenuate the expression of MHC-II in the infected
macrophages (94), reducing the ability of these cells to
orchestrate an appropriate adaptive response. Enhanced IL-10
production from M. tuberculosis-infected macrophages has also
been shown to inhibit phagosomal maturation which enables
phagosomal escape and intracellular survival within the host
lung, further contributing to impaired bacterial clearance (96–
98). Furthermore, this arrest of maturation prevents appropriate
presentation of antigenic peptides and subsequent induction of
the adaptive immune response (99). Blocking IL-10 production
in vitro in AMs, by pre-treating them with an anti-IL-10
antibody in advance of M. tuberculosis infection, was shown
to improve phagosome maturation and increase killing of the
internalizedmycobacterium (98). Alveolar epithelial cells are also
targeted byM. tuberculosis for IL-10 production.Mycobacterium
bovis Bacillus Calmette Guerin (BCG) activates TLR2 and
TLR4 on alveolar epithelial cells causing phosphorylation of
glycogen synthase kinase-3 (GSK3) via a PI3K/Akt pathway
which induces the production of IL-10 (100). M. tuberculosis
can also manipulate IL-10 regulation at the RNA level. M.
tuberculosis drives the anti-inflammatory microRNA (miRNA)
miR-21 (101), which is one of the most highly expressed miRNAs
in myeloid cells. This miRNA is induced by TLR4 signaling and
limits the activity of the pro-inflammatory PDCD4 protein to
promote IL-10 production (102). M. tuberculosis also has the
capacity to activate IL-10-expressing T cells (103). T cells are the
predominant producers of IL-10 later inM. tuberculosis infection,
at ∼21 days post-infection, where they contribute to impaired
clearance (103).

Other bacterial species, such as B. pertussis, utilize a number
of virulence factors to drive IL-10 production (78, 79, 104, 105).
Filamentous haemaglutinin (FHA) activates TLR4 signaling in
DCs and macrophages within the lung to induce IL-10 (78,
104). This increase in innate IL-10 leads to the expansion of
T regulatory type 1 (Tr1) cells (78). FHA-induced IL-10 also
dampens IL-12 production by DCs and leads to downregulation
of protective Th17 and Th1 responses (79). However, it must
be noted that more recent research has cast a question mark
over the immunoregulatory role of FHA (106). The authors
state that the upregulation of IL-10 may be caused by endotoxin
contamination or co-purification of bacterial lipoproteins, which
may contribute to FHA’s cytokine inducing activity (106, 107).
Adenylate cyclase toxin (ACT) of B. pertussis also drives IL-10
production by APCs such as DCs and macrophages (77, 108),
which then further induces IL-10-secreting Treg cells (109).

Klebsiella pneumoniae can induce IL-10 production by
macrophages in the lung (110), which enables the bacterium
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to inhibit inflammasome activation and pyroptotis, facilitating
its’ dissemination (111). Upon infection with K. pneumoniae
strain A54970, no IL-1β production was induced in infected
macrophages, suggesting a lack of inflammasome activation
and associated pyroptosis (111, 112). When BMDMs from
IL-10 knock-out (KO) mice were infected with the A54970
strain, these macrophages produced high levels of IL-1β and
released LDH which is associated with the induction of
pyroptosis, indicating that this strain was capable of inhibiting
inflammasome activation and function through high induction
of IL-10 (111, 113). However, the authors noted that different
clinical strains investigated showed dissimilar methods of
evading the host immune response. Other strains such as A28006
induced high IL-1β production and increased pyroptotic cell
death in macrophages recruited to the lung (111). In a murine
model of K. pneumoniae infection, intra-tracheal challenge
with K. pneumoniae enhanced IL-10 mRNA expression in
lung homogenates. Administration of IL-10-blocking antibodies
prior to challenge was associated with an enhanced pro-
inflammatory immune response, improved bacterial clearance
and prolonged survival (114). It has been postulated that
the capsular polysaccharide (CPS) of K. pneumoniae may be
particularly important for the induction of IL-10 (110, 115).
When mice were intranasally inoculated with a capsulated or
a non-capsulated strain of K. pneumoniae. IL-10 levels in the
bronchiolar lavage fluid (BALF) and serum of mice infected with
the capsulated strain were significantly higher than those infected
with the non-capsulated strain, and these mice died within 3 days
of infection (110). These results suggest that the presence of CPS
is inducing IL-10 production at the site of infection and may
down-regulate the expression of pro-inflammatory cytokines
such as TNF and IFN-γ. The multiple cellular sources of IL-10
in vivo and the specific signaling pathways controlling Klebsiella-
induced IL-10 production are areas of research warranting future
investigation (116).

Bacteria of the lung can also promote TLR-driven IL-10
production to facilitate their survival. Species of Yersinia and
S. aureus drive IL-10 production through the exploitation
of TLR2 signaling. Studies have demonstrated that Yersinia
species upregulate host macrophage-derived IL-10 production
in a TLR-2-mediated manner, resulting in suppression of
pro-inflammatory cytokine production by macrophages and
increased bacterial survival (117, 118). Virulence factor LcrV-
induced IL-10 was shown to induce hypo-responsiveness
against TLR2- or TLR4-agonists in macrophages. This hypo-
responsiveness was not present in cells isolated from IL-10
KO mice (119). This result demonstrates how the bacterium
is exploiting an IL-10-induced TLR tolerance mechanism of
the host. Likewise, the Gram-positive bacterium S. aureus can
drive IL-10 via TLR signaling. In addition to conventional
pro-inflammatory signaling induced through TLR2 recognition
of S. aureus, the bacteria is also capable of inducing a
robust anti-inflammatory response (120). Staphylococcus aureus-
induced TLR2 signaling in monocytes has been shown to
result in PI3K/Akt signaling leading to IL-10 production, as
opposed to conventional NFκB-driven TLR2 signaling which
leads to pro-inflammatory cytokine production (121). The

anti-inflammatory signaling response is induced independently
of the pro-inflammatory response, and can be “uncoupled” from
these inflammatory responses (120). It has previously been shown
that S. aureus can induce IL-10 production in a skin infection
model to promote its persistence by inhibiting effector T cells
(68), suggesting that a similar mechanism may occur during S.
aureus infection and/or colonization of the respiratory tract. S.
aureus is a common cause of secondary pneumonia following
influenza infection and Robinson et al. demonstrated a potential
role for both IL-27 and IL-10 in impairing bacterial clearance
in a murine model of secondary S. aureus-induced pneumonia
(122). IL-10 KO mice cleared the bacteria from the lung more
efficiently than WT mice. IL-27RA KO mice had decreased
levels of IL-10 which was associated with improved bacterial
clearance compared to WT counterparts (122). These results
indicate that IL-10 is facilitating S. aureus persistence in the lung
post influenza infection, and that IL-27 may have a role to play in
regulating the production of IL-10 in this instance.

TGF-β
Although the induction of IL-10 represents one of the most
heavily exploited immunosuppressive strategies used by bacteria
to facilitate their persistence in the lung, other regulatory
cytokines have also been implicated in bacterial-induced
immunosuppression. Upregulation of TGF-β is commonly
associated with S. pneumoniae carriage and lung infection.
Adenoidal mononuclear cells isolated from children undergoing
adenoidectomies who also tested positive for S. pneumoniae
carriage had higher levels of TGF-β and upregulated populations
of FoxP3+ Tregs compared to children who tested negative
for the bacterium (123). It is thought that these increased
immunosuppressive responses within the adenoid tissue may
be facilitating chronic carriage, which is a risk factor for
pneumococcal disease. It was demonstrated that the virulence
factor enzyme neuraminidase A (NanA) of S. pneumoniae can
directly activate latent TGF-β to its biologically active form by
removal of sialic acids from the latency associated peptide (LAP)
(124). TGF-β is associated with prolonged colonization of the
nasopharynx and enhanced translocation of S. pneumoniae to
the lower respiratory tract (125). Furthermore, S. pneumoniae
infection of Vβ6 integrin KOmice resulted in enhanced clearance
of the bacterium compared to WT mice. This was also true in
the case of co-infections of influenza and S. pneumoniae (126).
The αVβ6 integrin is expressed at low levels in healthy tissue
but is upregulated in response to inflammation and injury and
is the main method of activation of endogenous TGF-β in the
lung (127). The complete ablation of β6 integrin from the system
led to a loss of activated TGF-β which was accompanied by
increased activation of AMs and type I IFN production, resulting
in improved protection (126). However, other studies have shown
that reduction of TGF-β during S. pneumoniae infection can be
fatal and that the cytokine is vital in the prevention of hyper-
inflammation against S. pneumoniae in the lung. Here, blockade
of TGF-β led to the dissemination of the bacterium from the
lung (128). A caveat of the β6 integrin KO model is that the β6
integrin may also regulate factors other than TGF-β1 that cause
the downstream effects facilitating bacterial clearance. TGF-β is
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clearly critical for limiting infection-associated inflammation, but
the powerful immunosuppressive effects TGF-β exerts can be
exploited by pulmonary pathogens, with the timing and extent
of TGF-β inhibition impacting infection outcome.

Active tuberculosis infection is also associated with the
excessive production and activation of TGF-β. TGF-β has been
found at high levels in the granuloma of infected patients
(129). In vitro stimulation of human blood monocytes, with M.
tuberculosis led to an increase in production of bioactive TGF-
β (130). These cells are a likely early source of the cytokine,
recruited to the lung upon infection. In a murine model of
M. bovis pulmonary infection the inhibition of TGF-β by the
administration of latency associated peptide (LAP) inhibited
TGF-β activity in the lung, enhanced IFN-γ production and
improved antigen-specific effector T cell responses in cells
isolated from mediastinal lymph nodes of mice administered
with LAP compared to PBS-treatedmice. LAP treatment was also
shown to reduce mycobacterium growth in the lung parenchyma
and bronchiolar spaces (131).

IL-27
More recently the cytokine IL-27 has been implicated in
regulation of the pulmonary immune response during infection.
Insights into the function of IL-27 in the lung have primarily
come from studies of viral respiratory infections where it
appears to play an important role in controlling excessive
inflammation. In a murine influenza model, IL-27 suppressed
IL-17 production in an IL-10-dependent manner suggesting
that IL-27 acts upstream of IL-10 (132). Furthermore, IL-27-
mediated activation of STAT1, STAT3, or BLIMP-1 promotes
IL-10 production and the generation of T regulatory type 1
(Tr1) cells, leading to the suppression of IL-17 production by
CD4+ T cells (133–136). Others have demonstrated a direct role
for IL-27 in promoting maturation of Tregs during Respiratory
syncytial virus (RSV) infection, which was independent of IL-
10 (137). In the case of respiratory bacterial infections, IL-27
was identified as an important immune factor underlying the
impaired clearance of the bacterium P. aeruginosa. In a murine
model of P. aeruginosa infection this cytokine was shown to
suppress the antibacterial activities of AMs (41, 138). Studies
demonstrated that a secondary infection with P. aeruginosa in
the lungs following caecal ligation and puncture (CLP)-induced
sepsis in IL-27R KOmice, was associated with enhanced bacterial
clearance from the lungs and improved survival rates compared
to wild-type counterparts. A more rapid clearance of bacteria
from the lungs of the IL-27R KO mice was associated with
increased recruitment of inflammatory neutrophils to the airways
(138). IL-27 seems to be directly influencing AM responses, as
macrophages isolated from IL27R KO mice had enhanced co-
stimulatory molecule expression and better bacterial uptake and
killing compared to macrophages from wild-type mice (138).
Neutralization of IL-27 was also shown to improve bacterial
clearance in the lungs of septic mice infected with P. aeruginosa
(138). Patients suffering from pulmonary infections caused by
Burkholderia pseudomallei show elevated levels of IL-27 and in
vitro studies demonstrated that stimulation of whole blood from
healthy individuals with B. pseudomallei resulted in significantly

increased production of IL-27 (139). The major sources of
IL-27 were macrophages and neutrophils. The production of
IL-27 led to enhanced bacterial survival in neutrophils which
was reduced by blockade of neutrophil-derived IL-27 prior to
infection (139). Taken together these results suggest that IL-27
has the potential to play an important immunosuppressive role
in the lung during bacterial infection and that further studies
will reveal the potential for multiple bacterial species to exploit
its suppressive effects for their own advantage. One caveat to
these studies is, however, the fact that mice have been shown
to be capable of producing IL-27p28 in the absence of EBI3. As
the subunit may be expressed on its own it is not yet clear if
the reported effects of IL-27 are due to the full heterodimeric
cytokine or merely to its alpha subunit. However, it has recently
been reported that a transgenic mouse that can only produce IL-
27p28 in the presence of EBI3 has been developed (140), which
will allow for the distinct functions of IL-27 or IL-27p28 to
be elucidated.

It is clear that many bacterial pathogens of the lung
are profiteering from the induction of immunosuppressive
cytokines. By taking advantage of their anti-inflammatory effects
on the surrounding inflammatory immune response, many
bacteria can survive undisturbed. There is an inextricable
link between the immunoregulatory cell populations and
cytokines being induced by these pathogens. By promoting the
expansion of immunoregulatory cells and enhanced production
of immunoregulatory cytokines bacteria can undermine the
host’s local inflammatory immune responses to survive within
the lung (Figure 1).

Manipulation of Immunometabolism
Altering cell phenotype from pro- to anti-inflammatory is
one of the key strategies employed by bacteria invading the
lung. Metabolic re-programming is crucial for controlling the
switching of cell phenotypes and their pro-inflammatory or
anti-inflammatory functions (141). During infection metabolic
reprogramming has implications for the production of pro-
inflammatory and anti-inflammatory immune cell phenotypes
and cytokines which control the ability of the host to clear the
pathogen. There is emerging evidence that multiple bacteria have
the potential to promote immunosuppressive cell phenotypes
and cytokine production by targeting the metabolic pathways of
these immune cells.

Glycolytic Reprogramming
An increase in glycolysis can be seen as a hallmark of metabolic
change in immune cells undergoing activation and is associated
with pro-inflammatory responses, with macrophages and DCs
increasing their glycolytic metabolism when stimulated with
LPS (142, 143). In DCs, this metabolic shift from oxidative
phosphorylation to glycolysis upon TLR-mediated activation is
antagonized by the metabolic regulator AMP kinase (AMPK),
and IL-10 production was also shown to prevent this switch by
partially preventing TLR-mediated AMPK hypophosphorylation
(142). Bacterial-induced IL-10 production during chronic lung
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FIGURE 1 | Invading bacteria induce an immunosuppressive microenvironment in the lung resulting in bacterial persistence. To facilitate persistence during infection

invading bacteria can promote immunosuppressive immune responses in the lung by targeting the anti-inflammatory arm of the host immune system. This leads to the

increased production of anti-inflammatory cytokines and enhanced recruitment of anti-inflammatory cells, which together reduce pro-inflammatory cytokine

production and cell populations in the airways. The bacteria can manipulate alveolar macrophages and DCs to produce high levels of regulatory cytokines such as

IL-10 and IL-27. This leads to reduced recruitment and activation of inflammatory innate cells such as neutrophils, NK cells, γδ T cells, NKT cells, and MAIT cells.

Impaired DC MHC-II expression and higher IL-10 production leads to reduced activation of adaptive effector T cell responses such as Th1, Th17 and cytotoxic CD8+

T cells. Enhanced IL-10 production also leads to increases in Treg cell activation and recruitment. Other anti-inflammatory cell populations also undergo enhanced

recruitment to the lung, such as Bregs and MDSCs. Together these anti-inflammatory cells contribute to the creation of an immunosuppressive microenvironment that

is permissive to bacterial growth enabling prolonged bacterial survival within the lung without effective clearance.

infection therefore has the potential to antagonize the TLR-
mediated shift to glycolysis in DCs and thus reduce pro-
inflammatory adaptive responses and promote bacterial survival.

LPS-induced glucose uptake and glycolysis in macrophages is
also impeded by IL-10. IL-10 inhibits glycolysis by suppressing
mechanistic target of rapamycin (mTOR) activity through
the induction of DDIT4, an mTOR inhibitor (113). Bone
marrow-derived macrophages (BMDMs) from IL-10 KO mice
stimulated with LPS were shown to have prolonged activation
of mTOR complex 1 (mTORC1), of which mTOR is the
catalytic subunit, while mTORC1 was quickly suppressed in
macrophages of wild-type mice. The addition of exogenous
IL-10 restored mTORC1 regulation in IL-10 KO macrophages
(113). DDIT4 was shown to be strongly upregulated by IL-10
during LPS stimulation, indicating it was the likely candidate

causing IL-10-induced mTOR suppression (113). BMDMs from
Ddit4−/− KO mice also showed prolonged mTORC1 activity
upon LPS stimulation, similar to IL-10 KO macrophages,
however, treatment with exogenous IL-10 failed to inhibit
mTORC1 activation suggesting that the inhibition of mTOR
signaling by IL-10 is DDIT4-dependent (113). This study
revealed a key role of IL-10 in controlling cellular metabolism
in macrophages via inhibition of mTORC1 and suggest that
high concentrations of IL-10 induced during chronic pulmonary
infection could impede macrophage metabolic switching from
oxidative phosphorylation to glycolysis. During active M.
tuberculosis infection the mTOR signaling pathway is suppressed
which promotes the proliferation and activation of FoxP3+ Tregs
cells. PBMCs isolated from patients with active tuberculosis
infection showed decreased numbers of CD3+ mTOR+ cells and
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increased expression of FoxP3 compared to healthy controls. The
enhanced number of Tregs in infected patients was associated
with high levels of IL-10 and TGF-β (144).

Glycolytic reprogramming of macrophages is an important
step in the early pulmonary defense against M. tuberculosis
infection (145). Infection of macrophages induces a shift
from oxidative phosphorylation to glycolysis which promotes
phagocytosis and enhances production of protective pro-
inflammatory cytokines such as IL-1β (145). However, M.
tuberculosis induced production of IL-10 has been linked
to the negative regulation of glycolysis in macrophages
(113). PPAR-γ is highly upregulated in human and mouse
macrophages upon mycobacterial infection (49, 146). PPAR-
γ acts to regulate glucose metabolism and fatty acid storage.
Increases in PPAR-γ expression leads to enhanced lipid droplet
formation within macrophages, used for intracellular growth
by the mycobacterium (147), increased expression of IL-10
and the downregulation of pro-inflammatory immune responses
against the mycobacterium (148). M. tuberculosis can rewire
macrophage energy metabolism to support bacterial survival by
limiting ATP availability and decelerating flux through glycolysis
and the tricarboxylic (TCA) cycle, increasing mitochondrial
dependency on fatty acids. The deceleration of glycolysis may
be via citrate, a derivative of the TCA cycle which has been
seen to accumulate in monocyte-derived macrophages infected
with M. tuberculosis (147). At high concentrations citrate can
inhibit phosphofructokinase which acts as a key enzyme in
glycolysis (149). One of the caveats to this work is that different
metabolic outcomes occurred depending on whether BCG,
heat-killed M. tuberculosis or live virulent M. tuberculosis was
used during studies (147). In the case of live virulent M.
tuberculosis, it was shown to decrease reliance on both glycolysis
and oxidative phosphorylation in infected macrophages causing
them to enter a state of metabolic quiescence, while also
increasing mitochondrial dependency on fatty acids for survival
in infected macrophages, while heat killed M. tuberculosis and
BCG led to increases in glycolysis (147). The reduced glycolytic
rate in live M. tuberculosis-infected macrophages indicates
the mycobacterium is subverting appropriate innate immune
responses. Collectively, glycolysis, and fatty acid metabolism
could be potential targets for metabolic restoration during M.
tuberculosis infection which would promote a pro-inflammatory
phenotype in infectedmacrophages. B. pertussis can also promote
dysregulated glucose metabolism in the host (150). A murine
model of B. pertussis infection demonstrated insulin resistance
as the bacterium negatively regulated blood glucose homeostasis
(150, 151). Host immune cells depend on circulating blood
glucose for their metabolic requirements, which are particularly
important in responding to infection to ensure swift activation
and expansion (150). The hypoglycemic state induced during B.
pertussis infection deprives the immune system of energy needed
to create an effective immune response against the bacterium.

Effects of Metabolites on Immunometabolism
Cellular metabolites which may be induced by pulmonary
pathogens during infection have the potential to regulate
immune cell activity. LPS-stimulated macrophages were shown
to increase their production of itaconate, a cellular metabolite

created by diverting aconitate from the TCA cycle during
inflammatory activation ofmacrophages (152, 153). Itaconate has
been shown to have anti-inflammatory effects onmacrophages by
activating the anti-inflammatory transcription factor Nrf2, and
acting as a succinate dehydrogenase (SDH) inhibitor leading to
reduced reactive oxygen species (ROS) production and reduced
IL-12, IL-1β, and IL-6 levels (153, 154). Given that gram-negative
pulmonary bacteria express high levels of LPS the induction
of itaconate could be a novel method used by these bacteria
during chronic infection to reduce inflammatory responses
of macrophages. However, itaconate itself has been shown
to have antimicrobial effects by inhibiting bacterial isocitrate
lyases (ICLs), enzymes involved in bacterial metabolism of fatty
acids, needed for intracellular survival for many bacteria (155).
Yersinia pestis and Pseudomonas aeruginosa carry genes encoding
enzymes which degrade itaconate (156). This indicates that there
is a complex relationship between itaconate and bacteria, and
this metabolite may play different roles during acute and chronic
infection. Significant work is still needed to dissect the pathways
involved in itaconate’s impact during pulmonary infection.

Considering the metabolic pathways that pathogens are
targeting to promote immunosuppression in the host lung could
potentially reveal novel targets which would improve our ability
to understand and treat a wide range of infections.

It is evident the targeting of key metabolic pathways,
the expansion of regulatory immune cell populations and
enhanced production of associated cytokines is an advantageous
method of promoting bacterial survival within the lung. Many
bacterial species which invade the lung possess a multitude
of methods to skew local host immune responses toward an
immunosuppressive state, enabling unperturbed survival within
this tissue.

TARGETING IMMUNOSUPPRESSIVE
MANIPULATION: A POTENTIAL
THERAPEUTIC OPTION TO TREAT
PULMONARY INFECTIONS

An improved understanding of the strategies employed by
bacteria to subvert immunosuppression in the lung could open
up new avenues for much needed therapeutic development.
The development of HDTs represents an attractive approach
that could be used as adjunct therapies to complement current
antibiotics (157). By targeting the immunosuppressive responses
hijacked by many pulmonary bacteria, key evasion methods are
removed, allowing a more appropriate inflammatory immune
response to ensue and effectively clear the infection.

Small Molecule Inhibitors-Targeting
Anti-Inflammatory Responses
IL-10 Signaling
Targeting the signaling pathways of immunosuppressive
cytokines using small molecule inhibitors is an effective way
to dampen down their excessive inhibitory effects. In a murine
model of chronic M. tuberculosis infection, targeting the IL-
10-STAT3 signaling pathway using an aerosolized peptide
inhibitor of STAT3 led to enhanced nitric oxide synthase (NOS)
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and NADPH oxidase activity in conjunction with reduced
arginase activity in lung homogenates, resulting in improved
bacterial clearance (158). In previous studies it was shown that
STAT3 signaling not only increases IL-10 production but also
represses NOS in human macrophages during M. tuberculosis
infection leading to impaired T cell responses (159, 160). This
study demonstrated that even without the use of antibiotics
the bacterial load in the lungs could be significantly reduced
using small molecule inhibitors directed against the host
immune response. Similarly, the use of a selective small molecule
inhibitor of IL-10Ra in a chronic M. tuberculosis model led to
increases in lysozyme activity in the lung resulting in reduced
CFUs (158). The enhanced pro-inflammatory response seen
upon IL-10 blockade is likely to be partially caused by the
return of normal phagosomal maturation in innate cells such
as AMs. Preventing phagosomal maturation within AMs that
had engulfedM. tuberculosis was central to bacterial intracellular
survival and IL-10 blocking allowed normal maturation to occur
leading to bacterial degradation and enhanced clearance of the
mycobacterium (96).

Bruton’s tyrosine kinase (BTK) inhibitors which are approved
for treatment of B cell lymphomas have the capacity to block
both BCR signaling and STAT3 activation and are capable of
reducing IL-10 production and PD-L1 expression in B cells (161).
The use of these inhibitors to specifically target Breg cells could
potentially be used to treat infections such as M. tuberculosis
which has been shown to subvert Breg responses (85, 89).

TGF-β Signaling
Targeting TGF-β signaling using small molecule inhibitors
also holds promise for improving outcomes during pulmonary
invasion. S. pneumoniae colonization of the nasopharynx is
a major pre-requisite for invasive infection and is associated
with high TGF-β levels. The administration of a small molecule
inhibitor of TGF-β to mice during S. pneumoniae colonization
enhanced neutrophil influx into the nasopharynx aiding in a
profound reduction in the levels of bacterial carriage compared
to control mice (81).

The regulatory cytokines IL-10 and TGF-β are both required
for Treg maintenance and function (162, 163), consequently
targeting these cytokines can result in the depletion of Treg
cells. During M. tuberculosis infection inhibition of TGF-β
signaling using a small molecule inhibitor which targets the
TGFβ type I receptor kinase, ALK5, prevented Smad3 activation
leading to reduced Treg cells and enhanced Th1 responses which
promoted bacterial clearance (164). These studies demonstrate
the potential for transient regulation of Tregs and their associated
cytokines in improving mycobacterial clearance. In in vitro
studies, a synthetic small peptide inhibitor of TGF-β, P17,
was shown to inhibit the suppressive activities of Treg cells
on effector T cells (165), indicating the potential for P17
to be used to enhance protective effector T cell responses
in vivo during infection. Interestingly P17 was developed
using a phage-displayed random peptide library. It is a useful
method for high-throughput screening of protein interactions
and helps in identifying bioactive peptides with high affinity
ligand-binding (166, 167), a similar approach may lead to

the development of small peptide inhibitors against other
immunosuppressive cytokines.

Monoclonal Antibodies
Monoclonal antibodies have been in use for over four decades
to treat a wide variety of human pathologies, and have
revolutionized anti-cancer therapeutics (168), where these
antibodies are used to target the anti-inflammatory arm of the
host immune system in an attempt to promote anti-tumor
immune responses. The use of monoclonal antibodies has also
been investigated as method to treat infectious disease.

Blocking Immunosuppressive Cytokine Activities
In an experimental model of chronic tuberculosis infection,
a monoclonal antibody targeting IL-10R was administered 90
days into the infection, as this time point was before loss
of control of infection and when IL-10 levels peaked in this
model, and weekly thereafter. Administration of the anti-IL-
10Ra antibody led to increased numbers of CD4+ and CD8+

T cells infiltrating the lung and enhanced production of IFN-
γ which was associated with a large reduction in bacterial
burden (169). Similarly targeting TGF-β during chronic M.
tuberculosis infection may improve effector T cell responses. In
vitro studies using PBMCs from tuberculosis patients treated
with an anti-TGF-β antibody led to reduced bacterial growth
and increased IFN-γ production by these cells (170, 171).
There may be a potential treatment benefit from blocking
the biological functions of IL-27 in the lung post-sepsis. Cao
et al. found that IL-27 regulated the increased susceptibility
to secondary P. aeruginosa pneumonia in septic mice and
promoted bacterial survival (138). During sepsis patients mount
a massive inflammatory response initially. However, most
patients survive the initial hyper-inflammatory period and enter
into an immunosuppressed state where the individual is likely
to contract and succumb to a secondary pulmonary infection
(172). The inhibition of IL-27 alongside antibiotic treatment may
improve survival rates. In a murine model of post-influenza
secondary pneumococcal pneumonia the neutralization of IL-
27 using an anti-IL-27 antibody was protective. The absence of
IL-27 led to a restoration of IL-17 production from protective
γδ T cells which were critical for orchestrating bacterial
clearance (173).

Blocking Immunosuppressive Cells
Monoclonal antibodies have of course been used with much
success to deplete specific immunosuppressive cell populations.
One of the biggest success stories of monoclonal therapy is
the development of immune checkpoint inhibitors for cancer
immunotherapy. These antibodies target key immune regulating
surface molecules on cells such as Tregs and MDSCs to impede
their anti-inflammatory effects allowing for enhanced pro-
inflammatory responses (174). Checkpoint inhibitor therapies in
the context of treatment for pulmonary bacterial infections will
be discussed in more detail below.
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Checkpoint Inhibitors—Targeting
Immunosuppressive Cells
Checkpoint inhibitors (CPIs) which restore pro-inflammatory
T cell function have been shown to prolong survival in
cancer patients with various malignancies (175, 176). CTLA-
4 is constitutively expressed on Treg cells and was the
first immune checkpoint protein shown to inhibit T cell
proliferation (177). Following on from this other immune
checkpoint mechanisms such as PDL1-PD1 interactions
were identified as potential targets (176). As of 2018
six immune checkpoint inhibitors have been approved
for the treatment of advanced and metastatic cancers
such as advanced gastric adenocarcinoma and metastatic
melanoma (178).

During an infection pathogens wish to evade detection just
like cancer cells and evidence suggests that these immune
checkpoint pathways may also play an important role during
infection to promote regulatory immune responses (175). During
active tuberculosis infection there is an increase in both CTLA-
4 and PD-1 on the surface of T cells and an increase in
PDL-1 expression on APCs from these patients, leading to the
reduced activation of an appropriate adaptive response (179).
It was shown in vitro that blocking PD-1 using a checkpoint
inhibitor led to improved M. tuberculosis-specific IFN-γ+ T
cell responses (180). The blocking restored effector T cell
function and reduced rates of apoptosis in these T cells (179,
180). Conflicting results were seen in PD-1 knockout mice,
which had reduced survival when infected with M. tuberculosis
(181), suggesting a possible protective role. However, it is likely
complete ablation of PD-1 from the system results in an excessive
inflammatory response which limits survival. During the course
of M. tuberculosis infection there is an upregulation of PD-1. It
is possible that long-term disease results in its overexpression
causing the dampening of protective inflammatory immune
responses (179). The short term inhibition of PD-1 during
infection could improve pro-inflammatory responses while
reducing the likelihood of hyper-inflammation seen in the PD-
1 knockout mice. Clinical trials have been carried out using
CPIs in the treatment of viral infections such as Human
immunodeficiency virus (HIV) infection (182). A phase II
clinical trial using anti-PD-L1 alongside anti-retroviral therapy
(ART) in HIV patients was stopped early due to retinal
toxicity observed in a simultaneous macaque study (183).
However, two of the six patients involved in the trial showed
increased antigen-specific CD4+ and CD8+ T cells indicating
the potential for CPIs to enhance effector T cell responses
during infection.

The blockade of checkpoint molecules can lead to
immune-related adverse effects as these molecules are
also involved in regulating immune tolerance to prevent
immunopathology and autoimmunity (175). These
monoclonal antibodies are used in severe cases of cancer,
therefore concerns still remain over their use for infection.
Further research is critical into the efficacy of CPIs as
potential therapies for improving various pulmonary
infection outcomes.

Targeting Metabolic Changes Induced
During Infection
Metabolic reprogramming is recognized as a hallmark of cancer
(184, 185) and targeting metabolic pathways has been used
for the treatment of various cancers to interfere with tumor
progression (184, 186). During bacterial infections of the lung the
metabolic pathways of many immune cells are re-programmed to
a more immunosuppressive phenotype, benefitting the bacteria
and leading to chronic infection. Targeting these pathways to
reverse this reprogramming has the potential to promote more
pro-inflammatory responses and improve bacterial clearance.

Targeting Fatty Acid Oxidation
Inmurine tumormodels it has been shown that tumor infiltrating
MDSCs increased their fatty acid uptake and increased fatty
acid oxidation (FAO) (187). Blocking FAO using the inhibitor
Etomoxir, a carnitine palmitoyltransferase-1 (CPT-1) inhibitor
which prevents fatty acid transport into the mitochondria for
further metabolism, reduced the immunosuppressive effects of
these cells leading to reductions in Treg numbers, enhanced
effector T cell proliferation, and IFN-γ production which delayed
tumor growth (187). FAO inhibition could also be used to
directly reduce the number of Treg cells as FAO has been
shown to be central to the differentiation of Treg cells (188).
FAO inhibition could be an innovative approach to reduce the
anti-inflammatory effects of both MDSCs and Tregs during
pulmonary infection to improve bacterial clearance and current
antibiotic treatments. However, it should be noted that CD8+

memory T cell also use FAO as an energy source (189), the
inhibition of FAO could have implications for these cells resulting
in defective memory responses which could have negative
impacts on infection responses.

Skewing Macrophage Phenotypes
The targeting of metabolic pathways in macrophages could
also be potentially used as a therapeutic approach during
pulmonary bacterial infection to skew macrophages toward a
more protective M1 phenotype. Itaconate promotes macrophage
switching from a pro- to an anti-inflammatory state and the
metabolite is emerging as a crucial determinant in macrophage
activity (190). The inhibition of itaconate may be of benefit in
chronic bacterial lung infection where enhanced M1 responses
could improve bacterial clearance. Irg1 signaling regulates
itaconate production, the blocking of Irg1 may be a method of
reducing itaconate to promote succinate dehydrogenase (SDH)
activity enabling M1 responses against invading bacteria and
impairing their ability to alter macrophage phenotypes to an M2
state. In a murine model of M. tuberculosis using Irg1−/− mice
that do not produce itaconate, the mice exhibited an increase
in neutrophil influx and pro-inflammatory cytokine production
compared to WT mice (191). However, these mice succumbed
due to immunopathology of excessive inflammation. It needs
to be established if targeting Irg1/itaconate in a specific cell
population only could prevent immunopathology.
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Targeting Immunosuppressive Responses
Using RNA Interference
RNA interference is a method of gene silencing mediated
through the use of small interfering RNA (siRNA) or
microRNA (miRNA). Studies using siRNA demonstrate
how the immune response can be modified into a more
pro-inflammatory phenotype during chronic M. tuberculosis
infection (192). In mice chronically infected withM. tuberculosis
the intrapulmonary administration of siRNA that specifically
targets TGF-β leads to reduced bacterial load in the lungs and
increased production of pro-inflammatory cytokines such as
TNF (192). The silencing of the tgfb1 gene directly in the lungs
improves the antimicrobial capacity of the host.

Another promising method of RNA interference during
bacterial infection is the use of miRNAs. The silencing of
certain regulatory miRNA have the potential to improve
bacterial clearance by promoting pro-inflammatory immune cell
responses. The inhibition of miR-328 could improve bacterial
clearance during a non-typeable H. influenzae (NTHi) infection
(193). In vitro studies usingmurinemacrophages and neutrophils
demonstrated miR-328 inhibition using an antagomir of miR-
328 prior to NTHi infection promoted enhanced phagocytosis,
increased ROS production and improved bacterial killing
in both cell types. Further in vivo studies found boosting
miR-328 downregulation by intra-tracheal administration of
the miR-328 inhibitor enhanced bacterial killing rates (193).
This method of miR-328 inhibition could potentially be used
during chronic pulmonary infection to remove bacterial-induced
immunosuppression in innate cells such asmacrophages. The use
of RNA interference in the treatment of infection is an area of
ongoing research.

Repurposing Chemotherapeutic Drugs to
Target Immunosuppressive Responses
The repurposing of chemotherapeutic drugs developed for other
diseases is an avenue of research being investigated to target
regulatory immune cells induced locally during lung infection.

Targeting MDSCs
Chemotherapeutic drugs that target MDSCs could potentially
be used in combination with standard antibiotic treatments
to improve the immune response against chronic pulmonary
bacterial infections. All-trans retinoic acid (ATRA) is an
approved anti-cancer treatment, which leads to the maturation-
induced ablation of MDSCs that often infiltrate tumors (194,
195). Ablation of MDSCs in a murine model of tuberculosis
was carried out using ATRA treatment (196). Mice that were
administered ATRA after tuberculosis infection had reduced
numbers of MDSCs in their lungs, lower bacterial loads
and improved effector T cell numbers (196). Sorafenib is an
immunotherapeutic anti-tumor drug used against hepatocellular
carcinoma (197). Sorafenib downregulates the MDSC population
to promote a more pro-inflammatory anti-tumor environment
(197). Drugs such as Sorafenib could potentially be used to reduce
MDSCs during pulmonary infections.

Targeting Tregs
Elevated Treg levels have been associated with poor prognosis
in certain types of cancer (177). Many anti-cancer therapies,
such as checkpoint inhibitors mentioned earlier target Treg cells
to improve outcomes in advanced cancers (178). A common
chemotherapeutic used against glioblastoma is temozolimide
(TMZ). In a rat glioma model, low doses of TMZ selectively
inhibited the activity of Treg cells (198). In humans with
advanced chemotherapy resistant cancers low iterative oral
doses of cyclophosphamide resulted in a selective reduction of
circulating Treg cells (199) while other T cell subset numbers and
functions were preserved. It would be interesting to determine if
low doses of TMZ administered to the airways during pulmonary
infection could have a similar effect, selectively depleting
Tregs thus promoting more pro-inflammatory responses and
potentially improving rates of bacterial clearance.

The anti-cancer drug denileukin diftitox (DD) is used to
treat cutaneous T cell lymphomas (200, 201). The drug is a
synthetic protein that combines IL-2 andDiphtheria toxin, which
acts by binding the IL-2R and delivering the diphtheria toxin
to the cell resulting in cell death (201). In a murine model of
tuberculosis, DD treatment during infection depleted both Treg
cells and MDSCs from the lung of infected mice leading to
improved bacterial clearance compared to an untreated group
(202). Further investigation into the use of DD in the treatment
of other chronic pulmonary bacterial infections is needed to test
its efficacy. However, DD treatment is associated with adverse
effects such as capillary leak syndrome, hypoalbuminemia, and
visual changes which have obvious implications for the use of this
treatment for infection.

The repurposing of cancer chemotherapeutics is advantageous
as many of these drugs have already gone through testing,
have known pharmacological properties and have reduced
costs and development times compared with the production
of novel antimicrobial drugs. However, because the use
of chemotherapeutics to deplete immunosuppressive cell
populations have the risk of promoting excessive inflammation
and autoimmunity, these treatments should be approached with
great caution and intensive safety testing is needed to investigate
the off-target effects they may have during infection.

The ability of many lung-associated bacterial pathogens
to induce immunosuppression to promote their survival can
potentially be ablated by a number of HDTs targeting various
aspects of the local regulatory host immune response such as
regulatory cell populations, anti-inflammatory cytokines and
associated metabolic signaling pathways (Figure 2). Combining
various methods could potentially be used to improve pulmonary
infection outcomes without relying on antibiotic use. The
use of drugs targeting key metabolic pathways such as
FAO and cellular interactions such as checkpoint molecules
could drastically reduce the ability of bacterial pathogens to
promote local immunosuppressive responses thus boosting
protective inflammatory responses and associated bacterial
elimination. The repurposing of drugs such as anti-cancer
chemotherapeutics could therefore open up novel treatment
options for bacterial clearance from the lung and improve
MDR infections.
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FIGURE 2 | Host-directed therapies targeting immunosuppressive responses in the lung lead to bacterial clearance. Host-directed therapies (HDTs) that target

anti-inflammatory immune responses in the host lung can improve bacterial clearance and reduce chronic infection. Small molecule inhibitors of cytokine signaling

pathways, monoclonal antibodies or siRNA could be used to reduce the levels of anti-inflammatory cytokines such as IL-10, TGF-β and IL-27, allowing higher

pro-inflammatory cytokine production and reduced activation and expansion of anti-inflammatory cell populations. HDTs targeting specific anti-inflammatory cells

could also improve infection outcome by depleting these cell populations.

TARGETING IMMUNOSUPPRESSIVE
RESPONSES TO IMPROVE VACCINE
EFFICACY

HDTs that specifically target the immunosuppressive arm of the
pulmonary immune system during bacterial infection have the
potential to undo the detrimental anti-inflammatory responses
induced by bacteria, and “re-inform” the local immune response
to react in amore inflammatorymanner. It is possible that similar
strategies could be implemented to potentially improve vaccine
function by altering the immune microenvironment in which the
vaccine is administered.

The BCG vaccine is currently the only available prophylactic
vaccine against M. tuberculosis. In response to BCG vaccination
there is an expansion of Treg cells and an increase in the
production of IL-10 alongside the expansion of Th1 responses
(203). This is likely contributing to the lack of efficacy of the
BCG vaccine against pulmonary TB. In vaccination studies using

IL-10 KOmice it was demonstrated that KOmice vaccinated with
the BCG vaccine had enhanced DC activation and Th1 responses
compared to vaccinated wild-type mice (204). DCs isolated from
vaccinated IL-10 KOmice co-cultured with CD4+ T cells induced
significantly higher levels of IFN-γ production compared to

when DCs from vaccinatedWTmice were used, indicating IL-10
was suppressing these protective inflammatory responses (204).

This demonstrated that IL-10 signaling was contributing to the
DC dysfunction in BCG vaccination impairing these cells abilities
to promote inflammatory T cell responses. Other studies showed
that mice treated with IL-10R neutralizing antibodies during
BCG vaccination were better protected against subsequent M.
tuberculosis infection compared tomice whowere not pre-treated
with the antibody. This was due to enhanced antigen-specific
IFN-γ and IL-17A responses (205, 206). These studies illustrate
the potential for controlled short-term regulation of IL-10 during
vaccination to establish better T cell-mediated immunity and
improve vaccine efficacy.
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Wu et al. demonstrated that the BCG strain of mycobacterium
used in the vaccine can actually induce transcription of the
immunoregulatory microRNA miR-21 in murine lungs, which
may also contribute to vaccine inefficacy (207). miR-21 led
to reduced IL-12 expression in macrophages, enhanced DC
apoptosis, and suppressed Th1 responses. The temporal and
specific blocking of miR-21 during immunization therefore could
potentially improve anti-M. tuberculosis vaccines. There is now
a growing interest in using anti-miR compounds to improve
disease outcomes (208). In anti-cancer vaccine studies the use
of small molecule PI3K inhibitors during vaccination was shown
to improve vaccine efficacy and promote pro-inflammatory Th1-
skewed responses by preventing IL-10 production (209). In
a murine cancer model mice with solid tumors were given
a DC vaccine consisting of DCs that had been pre-treated
with a PI3K inhibitor, TLR5 agonist, and tumor antigen. The
PI3K inhibitor prevented anti-inflammatory signaling from TLR
activation which reduced IL-10 production and enhanced IL-
12 production from the DCs. PI3K inhibition heightened the
antitumor properties of the DC vaccine by relieving suppressive
signals that restrict DCs abilities to induce potent antitumor
T-cell responses.

The administration of an anti-TGF-βR1 signaling inhibitor,
D4476, 24 h post-vaccination with BCG improved protective Th1
immune responses against subsequent pulmonaryM. tuberculosis
infection (210). This inhibitor was given in conjunction
with a Th2 cell inhibitor. Vaccinated mice that received the
immunomodulatory inhibitors had reduced bacterial load and
better IFN-γ+ Tmemory cell responses upon infection compared
to mice that did not receive the inhibitors (210).

These studies indicate the inhibition of the anti-inflammatory
arm of the immune response during vaccination may have the
potential to improve vaccine efficacy. This method of inhibition
could be used to improve current vaccines against pulmonary
bacteria that exploit the anti-inflammatory immune response
during infection, ensuring more pro-inflammatory responses
upon exposure. Further research is needed into methods of
suppressing particular cells and cytokines of the regulatory
pulmonary immune response to improve vaccine outcomes
against infectious disease.

CONCLUSION AND FUTURE
PERSPECTIVES

The increasing incidence of multidrug resistance in pathogenic
bacteria and the slow pace of novel antibiotic development
threatens our ability to treat these bacterial infections effectively.
Bacterial lung infections are a major concern as any damage to
the lung dramatically impacts the overall health and survival
of a patient. Host-directed therapeutic strategies targeting
bacterial-induced anti-inflammatory immune responses must
be considered as viable adjuncts to standard antimicrobial
treatment. Additionally, there is the potential for targeting
immunosuppression to improve vaccine efficacy for current
and next-generation vaccines targeting bacterial species.
However, there are challenges in bringing these new approaches
to the clinic. A better understanding of the host-bacterial

interaction during pulmonary infection is needed, in order
to identify how these immunoregulatory responses are
being induced and the impacts dampening these responses
could have.

Any therapeutic intervention that promotes the pro-
inflammatory immune response has a high risk of inducing
excessive inflammation which has the potential to lead to
cytokine storm and be detrimental to the host (157). The
promotion and recruitment of enhanced pro-inflammatory cell
populations, such as neutrophils, have been linked to increased
incidence of tissue injury (211). The production of reactive
oxygen species (ROS) by phagocytic cells plays a fundamental
role in the removal of pathogens from the host. However,
the dampening of regulatory responses through the use of
HDTs discussed here have the potential to result in excessive
and uncontrolled oxidative stress and ROS production at the
site of infection (211). Excessive production of ROS has been
linked to reduced CD8+ T cell function during viral infection
(212), and impaired immune responses in the lungs of cystic
fibrosis patients where the free radicals generated during
chronic inflammation cause oxidative damage of pulmonary
proteins, likely contributing to the decline of lung function
in CF patients (213). Unrestricted oxidative stress has been
associated with infection complications and the induction
of diseases such as neurodegenerative and cardiovascular
disorders, and cancer (214). Serious consideration of potential
immunopathological side effects must be taken into account
when considering these HDTs as possible treatment options for
MDR lung infections.

The inhibition of the anti-inflammatory response must be
temporal and precise to prevent these hyper-inflammatory
responses and off-target effects. By gaining a greater
understanding of the immunoregulatory mechanisms being
hijacked by pulmonary bacteria we may be able to better tailor
antibacterial therapies to avoid off-target consequences. The
optimal timing of when to administer these HDTs needs to be
elucidated, meaning we need further investigation into how and
when pulmonary bacteria are inducing these anti-inflammatory
responses in order to target them at the correct point of infection.
Improving delivery of anti-inflammatory inhibitors may reduce
their off-target effects and could limit inhibition to certain
target cells. The use of β-glucan nanoparticles, for example
could be used to specifically target macrophages (215). These
nanoparticles can encapsulate small molecule inhibitors or
siRNA to improve their delivery into cells. The β-glucan outer
shell promotes receptor-mediated uptake by phagocytic cells that
express β-glucan receptors (215). This approach could be used to
specifically deliver HDTs into macrophages in the lung to inhibit
early immunosuppressive responses.

The study and development of novel HDTs against
pathogen-induced anti-inflammatory immune responses
during pulmonary infection represents a method of strategically
modifying the immune response to improve current treatments
and vaccine efficacy against many multidrug-resistant bacteria.
In this era of re-emerging infectious diseases as a consequence
of increases in antimicrobial resistance, the development of
alternative antimicrobial strategies is imperative to tackle this
major healthcare challenge.
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