
fimmu-11-00781 May 4, 2020 Time: 17:33 # 1

MINI REVIEW
published: 06 May 2020

doi: 10.3389/fimmu.2020.00781

Edited by:
William Camu,

Hôpital Gui De Chauliac, France

Reviewed by:
Trygve Holmøy,

Akershus University Hospital, Norway
Pavan Bhargava,

Johns Hopkins University,
United States

*Correspondence:
Andrei Miclea

andrei.miclea@insel.ch

Specialty section:
This article was submitted to

Multiple Sclerosis
and Neuroimmunology,
a section of the journal

Frontiers in Immunology

Received: 22 January 2020
Accepted: 06 April 2020
Published: 06 May 2020

Citation:
Miclea A, Bagnoud M, Chan A

and Hoepner R (2020) A Brief Review
of the Effects of Vitamin D on Multiple

Sclerosis. Front. Immunol. 11:781.
doi: 10.3389/fimmu.2020.00781

A Brief Review of the Effects of
Vitamin D on Multiple Sclerosis
Andrei Miclea* , Maud Bagnoud, Andrew Chan and Robert Hoepner

Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland

Multiple sclerosis (MS) is characterized as an autoimmune disease affecting the central
nervous system. It is one of the most common neurological disorders in young adults.
Over the past decades, increasing evidence suggested that hypovitaminosis D is a
contributing factor to the risk of developing MS. From different risk factors contributing
to the development of MS, vitamin D status is of particular interest since it is not only
a modifiable risk factor but is also associated with MS disease activity. MS patients
with lower serum vitamin D concentrations were shown to have higher disease activity.
However, this finding does not demonstrate causality. In this regard, prospective vitamin
D supplementation studies missed statistical significance in its primary endpoints but
showed promising results in secondary outcome measures or post hoc analyses. An
explanation for missed primary endpoints may be underpowered trials. Besides vitamin
D supplementation as a potential add-on to long-term immunotherapeutic treatment, a
recent laboratory study of our group pointed toward a beneficial effect of vitamin D to
improve the efficacy of glucocorticoids in relapse therapy. In the following article, we will
briefly review the effects of vitamin D on MS by outlining its effects on the immune and
nervous system and by reviewing the association between vitamin D and MS risk as well
as MS disease activity. We will also review the effects of vitamin D supplementation on
MS risk and MS disease activity.

Keywords: metabolism, guidelines, nervous system, MS risk, disease activity, innate adaptive immune system,
calcitriol, cholecalciferol

INTRODUCTION

The exact pathophysiological mechanisms leading to the development of multiple sclerosis (MS)
are not fully understood (1, 2). Nonetheless, certain genetic and environmental factors influencing
not only MS risk but also MS disease activity have been identified (1, 3–6). One of the identified
factors is vitamin D status (1, 4). In this article, we will briefly review the effects of vitamin D on MS.
First, we will review the metabolism (summarized in Figure 1), the biological and safety features,
and the intake guidelines of vitamin D. Second, we will outline the effects of vitamin D on cells of
the innate and adaptive immune system and cells of the nervous system (summarized in Figure 1).
Third, the association of vitamin D and MS risk as well as MS disease activity will be laid out
(summarized in Table 1). Lastly, the evidence of the effects of vitamin D supplementation on MS
risk, MS disease activity, and as a potential add-on for relapse therapy will be outlined (summarized
in Table 1).
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FIGURE 1 | Vitamin D3 metabolism and its effects on cells of the immune and nervous system. 80–90% of the body’s vitamin D supply is produced by the skin’s
exposure to UVB radiation and 10–20% is acquired through diet (7). Fatty fish contain high amounts of vitamin D3 (cholecalciferol) (8). In the skin, the vitamin D3

precursor 7-dehydrocholesterol converts to previtamin D3 after UVB exposure (10, 11). Previtamin D3 then isomerizes to cholecalciferol (10, 11). This physiologically
inactive form of vitamin D3 is hydroxylated in the liver to 25(OH)D3 by CYP2R1 (13). It is then hydroxylated by the enzyme CYP27B1 in the kidneys or at inflammatory
sites by immune cells such as DCs and macrophages, resulting in the fully-active metabolite 1,25(OH)2D3 (12, 14). In target cells, 1,25(OH)2D3 binds to the VDR,
thereafter forming a complex with the RXR-γ (15, 16). The 1,25(OH)2D3-VDR-RXR-γ complex binds certain DNA sequences (VDREs), thereby modulating gene
transcription (15–17). 1,25(OH)2D3 increases the production of antimicrobial peptides from macrophages, while in the DC line it inhibits (I) monocyte differentiation
into DCs, (II) DC maturation, (III) production of pro-inflammatory cytokine IL-12, (IV) MHC class II expression, (V) and antigen presentation (46, 47, 52–55). DCs are
induced to undergo apoptosis (55). 1,25(OH)2D3 increases (I) T cell apoptosis, (II) anti-inflammatory cytokine production, (III) Treg cell differentiation, and (IV) the
proportion of central memory CD4 + T cells (55–58, 67, 77, 78). In addition, it decreases (I) pro-inflammatory cytokine production, (II) T cell proliferation, (III) Th1, Th2,
and Th17 cell differentiation, (IV) the proportion of effector memory CD4 + T cells, and (V) T cell trafficking into the CNS (55–57, 67, 78, 88). In B cells, 1,25(OH)2D3

increases apoptosis and reduces proliferation, differentiation and antibody production (44, 59–61). 1,25(OH)2D3 increases regulation of calcium uptake in neurons
and phagocytic activity in microglia but reduces iNOS expression in microglia (97, 98). Lastly, 1,25(OH)2D3 stimulates oligodendrocyte maturation and astrocyte
activation (99). Abbreviations: CYP2R1, vitamin D3 25-hydroxylase; CYP27B1, 25(OH)D3-1α-hydroxylase; DC, dendritic cell; iNOS, inducible nitric acid synthase;
MHC, major histocompatibility complex; RXR, retinoid x receptor; UVB, ultraviolet B; VDR, vitamin D receptor; VDREs, vitamin D response elements; 1,25(OH)2D3,
1,25-dihydroxyvitamin D3; 25(OH)D3, 25-hydroxyvitamin D3. This figure was created using Servier Medical Art templates licensed under a Creative Commons
License (https://creativecommons.org/licenses/by/3.0/).

VITAMIN D AND ITS METABOLISM, ITS
BIOLOGICAL FEATURES, ITS INTAKE
GUIDELINES, AND ITS SAFETY
CONSIDERATIONS

In humans, between 80 and 90% of the body’s vitamin D
supply is produced by the skin’s exposure to ultraviolet B (UVB)
radiation and only 10–20% is acquired through diet (7). Fatty
fish, e.g., salmon, sardines, and tuna, contain relatively high
amounts of vitamin D3 (cholecalciferol), while plants provide
vitamin D2 (ergocalciferol) (8, 9). In the skin, the vitamin
D3 precursor 7-dehydrocholesterol converts to previtamin D3
after UVB exposure (10, 11). Previtamin D3 then isomerizes
to cholecalciferol (10, 11). Ergocalciferol and cholecalciferol
are physiologically inactive forms of vitamin D, which are
hydroxylated in the liver to 25-hydroxyvitamin D2 [25(OH)D2]
and 25-hydroxyvitamin D3 [25(OH)D3], respectively (12, 13).
Because the human body’s vitamin D supply is largely provided
by the skin’s production of cholecalciferol, the major circulatory

form of 25(OH)D is 25(OH)D3 being produced in the liver
by the key enzyme vitamin D3 25-hydroxylase (CYP2R1) (7,
13). 25(OH)D3 is then hydroxylated by the enzyme 25(OH)D3-
1α-hydroxylase (CYP27B1) in the kidneys or at inflammatory
sites by immune cells such as dendritic cells and macrophages,
resulting in the fully-active metabolite 1,25-dihydroxyvitamin D3
[1,25(OH)2D3] (calcitriol) (12, 14). In target cells, 1,25(OH)2D3
binds to the vitamin D receptor (VDR), thereafter forming a
complex with the retinoid x receptor γ (RXR-γ) (15, 16). The
1,25(OH)2D3-VDR-RXR-γ complex then binds certain DNA
sequences called vitamin D response elements (15–17). In
consequence, transcription rates of genes involved in a whole
array of different functions of the human body are modified,
including regulation of the immune system as well as cellular
proliferation and differentiation (18). The VDR genotype is
associated with different autoimmune disorders such as type
1 diabetes mellitus, Grave’s disease, Addison’s disease, and
rheumatoid arthritis (19–23). 1,25(OH)2D3 is inactivated via a
third hydroxylation by the enzyme CYP24A1 to 1,24,25(OH)3D3,
which is present in target cells expressing the VDR (12, 24).
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TABLE 1 | Vitamin D and its association with MS.

Vitamin D and its association with MS risk
MS susceptibility gene HLA-DRB1*1501 regulated by a vitamin D dependent promoter (54)
Higher risk of MS at higher latitudes (100, 101)
Higher risk of MS in people with a genetic predisposition to vitamin D deficiency (103–105)
Higher risk of MS in offspring of mothers with vitamin D deficiency during early pregnancy (106)
Higher risk of MS in neonates with low serum 25(OH)D concentration (107)
Higher risk of MS/CIS in adults with lower serum 25(OH)D concentration (6, 108)
Gradual decrease in serum 25(OH)D concentration in the 24-month period prior to onset of CIS (108)
Vitamin D supplementation associated with a 40% lower MS risk (123)
Vitamin D status and its association with MS disease activity
Serum 25(OH)D concentration inversely correlated with relapse risk (117, 118, 121)
Serum 25(OH)D concentration inversely correlated with CNS lesions (120)
Serum 25(OH)D concentration inversely correlated with disability progression (121)
BENEFIT: 50 nmol/L higher serum 25(OH)D concentration subsequently associated with 57% lower relapse rate, 57% lower rate of new active lesions, and lower
disability progression (116)
BEYOND: 50 nmol/L higher serum 25(OH)D concentration subsequently associated with 31% lower risk of new lesions, but no significant differences in relapse risk and
disability progression (119)
Vitamin D supplementation and MS disease activity
SOLAR: Number of new gadolinium-enhancing or new/enlarging T2 lesions significantly reduced through cholecalciferol, yet no significant difference in ARR and
disability progression (36)
CHOLINE: ITT population: No significant ARR reduction through cholecalciferol, yet in study completers significant reduction in ARR, new T1 lesions, and disability
progression (125)
No significant improvement in depression scores through supplementation with cholecalciferol (131)
Significant reduction of fatigue scores through supplementation with alfacalcidol but not with cholecalciferol (131, 132)
Vitamin D supplementation and MS relapse therapy
1,25(OH)2D3 increases glucocorticoid induced effects both in vitro and in vivo (138)

ARR, annualized relapse rate; CIS, clinically isolated syndrome; CNS, central nervous system; ITT, intention to treat; MS, multiple sclerosis; 1,25(OH)2D3,
1,25-dihydroxyvitamin D3; 25(OH)D, 25-hydroxyvitamin D.

The VDR is present in many human tissues explaining the
various effects of 1,25(OH)2D3 on the human body, yet it is
predominantly expressed in the intestines, the pancreas, the
kidneys, and osteoblasts (25). In addition to 1,25(OH)2D3, also
25(OH)D3 binds to the VDR (26). However, 1,25(OH)2D3 has
a higher affinity to the VDR and is, therefore, the more active
metabolite (26).

1,25(OH)2D has a relatively short half-life (4 h) compared
to 25(OH)D (2–3 weeks) (27, 28). Due to its relatively stable
properties, serum 25(OH)D concentration serves as the common
surrogate of the body’s vitamin D status (29). In the general
population, the Endocrine Society considers serum 25(OH)D
concentrations <20 ng/mL (50 nmol/L) to signal vitamin D
deficiency, concentrations between ≥20 ng/mL and <30 ng/mL
(75 nmol/L) to be insufficient, ≥30 ng/mL to be sufficient,
and concentrations ≤100 ng/mL (250 nmol/L) to be safe
(conversion factor: 1 ng/mL = 2.5 nmol/L) (30–32). However,
recommendations on optimal serum 25(OH)D concentrations
differ between medical societies (31, 33, 34). Since 40% of
adults have 25(OH)D concentrations of <20 ng/mL (50 nmol/L),
it is evident that the “western” lifestyle and diet are not
sufficient for an adequate vitamin D supply (35). In vitamin D
deficient adults, the Endocrine Society suggests to supplement
with 6,000 IU/d for 8 weeks and afterward to maintain serum
25(OH)D concentrations >30 ng/mL by prescribing 1,500 –
2,000 IU/d of cholecalciferol or ergocalciferol, which is the
required maintenance dose of desirable 25(OH)D concentrations
(>30 ng/mL) (31). The upper tolerable intake limit is set at
10,000 IU/d (31). Nonetheless, in a randomized clinical trial

(N = 229) comparing placebo and 14,007 IU/d of cholecalciferol
over 48 weeks in MS patients receiving beta interferons, the
occurrence of adverse events was similar in the cholecalciferol
plus interferons group and in the placebo plus interferons group
(36). However, since patient numbers are low, the occurrence of
side effects caused by such a vitamin D dose cannot be ruled out
(36). Vitamin D intoxication might become clinically relevant in
persons using very high doses (mostly >50,000 IU/d), resulting
in serum 25(OH)D concentrations ≥150 ng/mL (375 nmol/L)
(37). These doses and serum concentrations can lead to
hypercalcemia, hypercalciuria, and hyperphosphatemia, which
can manifest as nausea and emesis, muscle weakness, polyuria,
calcification of the kidneys, and in extreme cases kidney failure
(37). Therefore, ultra-high-dose vitamin D regimens such as
the “Coimbra-protocol” in MS with suggested doses of up to
400,000 IU/d pose a considerable safety hazard for patients
(38). In this regard, Häusler et al. demonstrated in a rodent
animal model of MS, experimental autoimmune encephalitis
(EAE), that prolonged high-dose vitamin D supplementation can
lead to disease exacerbation if serum 25(OH)D concentrations
>80 ng/mL (200 nmol/L) were reached (39). However, disease
exacerbation seemed to be mediated primarily by vitamin D
induced hypercalcemia rather than 1,25(OH)2D3 itself because
hypercalcemia induced the activation of T cells leading to
the migration of activated myeloid, Th1, and Th17 cells into
the central nervous system (CNS) (39). Similar 25(OH)D
concentrations in humans (>64 ng/mL, or 160 nmol/L) lead
only in approximately 10% of patients to hypercalcemia (40).
Therefore, the translational significance of autoimmune disease
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exacerbation through high-dose vitamin D supplementation
remains unclear.

THE EFFECTS OF VITAMIN D ON THE
INNATE AND THE ADAPTIVE IMMUNE
SYSTEM

Not only MS but also several other autoimmune disorders are
associated with vitamin D deficiency (1, 41–43). Accordingly,
studies performed in vitro and in vivo have shown that
1,25(OH)2D3 has anti-inflammatory effects by suppressing the
innate as well as the adaptive immune system (44).

Regarding the innate immune system, after phagocytosis
of microbes through macrophages, Toll-like receptors
are activated, resulting in an up-regulation of VDR and
CYP27B1 expression in macrophages and monocytes (45). In
macrophages, 1,25(OH)2D3 then activates cathelicidins, which
are antimicrobial peptides (46, 47). Another anti-inflammatory
mechanism of action of 1,25(OH)2D3 is exerted through its
various effects on glucocorticoids, including an increased
stimulation of monocytes by glucocorticoids to produce
mitogen-activated kinase phosphatase 1, which reduces the
pro-inflammatory activity of mitogen-activated protein kinases
(48, 49).

Addressing immune cells, which are part of the innate
and the adaptive immune system, 1,25(OH)2D3 increases the
differentiation of hematopoietic stem cells into natural killer
cells and inhibits the function of the dendritic cell line (50,
51). Regarding the dendritic cell line, 1,25(OH)2D3 inhibits
(I) the differentiation of monocytes into dendritic cells, (II)
the maturation of dendritic cells, (III) the production of pro-
inflammatory cytokine IL-12, (IV) the expression of the major
histocompatibility complex class II, and (V) the presentation of
antigens (52–55). Furthermore, dendritic cells are induced to
undergo apoptosis (55).

Mediated by its effects on dendritic cells, 1,25(OH)2D3’s
influence on the adaptive immune system has been attributed
to its various effects on T cells, including the altered production
of cytokines and selective induction of T cells into apoptosis
(55–58). Thus far, the effect of 1,25(OH)2D3 on B cells
remains inconclusive as some of the in vitro experiments could
not be replicated in vivo (59). In vitro, B cell proliferation
and B cell differentiation into plasma cells are inhibited
and B cell apoptosis is induced, resulting in the reduced
production of antibodies (44, 60, 61). Accordingly, higher serum
immunoglobulin G concentrations were associated with lower
serum 25(OH)D concentrations in patients with cystic fibrosis
(62). In a study of 40 MS patients, however, immunoglobulin
G (IgG) concentrations and 25(OH)D concentrations did not
significantly correlate in CSF or serum (63). This could be
another indicator that the response of MS patients to vitamin D
is reduced as shown by Bhargava et al. (64).

Furthermore, in the presence of 1,25(OH)2D3, the stimulation
of T cells by B cells is impaired in vitro (65). In reverse,
1,25(OH)2D3 is produced by T cells as these express CYP27B1
(66). Most experimental studies found that 1,25(OH)2D3 acts
on CD4 + T cells (Th1, Th2, Th17, Treg cells) by inhibiting

their proliferation and their secretion of pro-inflammatory
cytokines (IL-2, IL-17, IFN-γ) and by stimulating their secretion
of anti-inflammatory cytokines (IL-4, IL-10) (57, 67–76). In
consequence, the cytokine profile is skewed from a Th1 (decrease
of IFN-γ) to a Th2 mediated profile (increase of IL-4) (75,
76). Furthermore, the differentiation of Th1, Th2, and Th17
cells is inhibited and Treg cell differentiation is induced by
1,25(OH)2D3 (67, 77). A double-blind prospective study in MS
patients confirmed the finding that vitamin D supplementation
reduces IL-17 production by CD4 + T cells (78). Additionally,
it demonstrated an increased proportion of central memory
CD4 + T cells and naive CD4 + T cells but a decrease in the
proportion of effector memory CD4+ T cells (78).

THE EFFECTS OF VITAMIN D ON THE
NERVOUS SYSTEM AND ON EAE

Neural cells express the VDR, 1,25(OH)2D3 is synthesized
by neurons and microglia, and cerebrospinal fluid (CSF)
25(OH)D concentration significantly correlates with its
concentration in the plasma (79–83). In contrast to a study
performed by Balabanova et al. in the 1980s, a more recent
(2009) study by Holmøy et al. found a substantially lower
ratio of CSF to serum 25(OH)D concentration (0.57:1 vs.
0.006:1) (83). Nonetheless, both studies showed a correlation
between 25(OH)D concentrations in CSF and serum (82, 83).
1,25(OH)2D3 modulates neurotrophic factors and regulates the
influx of calcium into neurons through the interaction with
L-type calcium channels (84–87). The ability of 1,25(OH)2D3 to
suppress the progression of EAE is attributed to its modulation
of T cell trafficking into the CNS, its inhibition of Th1
cells, and its stimulation of IL-10 production (79, 88–95).
1,25(OH)2D3 induces Indoleamine 2,3-dioxygenase-positive
(IDO+) tolerogenic dendrocytes and Treg in the periphery and
concomitantly reduces the number of autoreactive T cells in the
CNS, thereby reducing the severity of guinea pig MBP73−86 EAE
in lewis rats (96). Demyelination is reduced via 1,25(OH)2D3’s
activation of microglia resulting in the clearance of myelin
debris, phagocytosis of pathological proteins such as amyloid-β
peptides, and the reduced expression of inducible nitric acid
synthase, which is a pro-inflammatory enzyme (97, 98). Lastly,
1,25(OH)2D3 might induce remyelination by stimulating the
maturation of oligodendrocytes and the activation of astrocytes
in female C57Bl/6 mice demyelinated with cuprizone (99).

VITAMIN D STATUS AND ITS
ASSOCIATION WITH MS RISK

An important clinical association between MS and vitamin D is
that populations located farther from the equator and, therefore,
receiving less exposure to UVB radiation face more frequently
vitamin D deficiency and simultaneously a higher risk of MS
(100, 101). In observational studies, the distinction of the effects
of UVB radiation and the effects of vitamin D on MS risk is
only insufficiently adjusted for as also UVB radiation is able to
suppress the development of MOG35−55 EAE (102). However,
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since Ramagopalan et al. found the MS susceptibility gene
HLA-DRB1∗1501 to be regulated by a vitamin D dependent
promotor, a clinically relevant UVB independent effect of vitamin
D on MS risk appears feasible (54). To attempt to answer
the question whether low 25(OH)D causes MS or MS causes
low 25(OH)D, different research groups performed Mendelian
randomization studies (103–105). Concordantly, these studies
found a higher likelihood of developing MS if patients’ genes
predetermined them to have lower 25(OH)D concentrations
leading to the conclusion that 25(OH)D concentrations indeed
influence MS risk (103–105). A Scandinavian study reported an
almost two-fold risk of developing MS in the offspring of mothers
with 25(OH)D concentrations <12.02 ng/mL (30.05 nmol/L)
during early pregnancy (106). Accordingly, neonates with serum
25(OH)D concentrations in the bottom quintile (<8.28 ng/mL,
or 20.7 nmol/L) had the highest likelihood of developing MS and
neonates in the upper quintile (≥19.56 ng/mL, or 48.9 nmol/L)
the lowest likelihood (107). In the 24-month period prior to
the development of clinically isolated syndrome (CIS), our
research group demonstrated that patients not only showed
significantly lower 25(OH)D concentrations in comparison to
healthy controls but that they also showed a gradual decrease
in 25(OH)D concentrations as the incident of the first clinical
manifestation of MS approached (108). 1,25(OH)2D3 and the
vitamin D receptor were also shown to interact with Epstein-Barr
virus (EBV) nuclear antigens (EBNA), which are thought of as key
contributors to MS pathogenesis (3, 109–111). It is hypothesized
that hypovitaminosis D increases the autoimmune effects of EBV
infection, thereby increasing the risk of developing MS because of
the following reasons (111). First, in young MS patients, antibody
reactivity against EBNA-1 increases with lower 25(OH)D levels
(109). Second, anti-EBNA 1 protein and fragment antibody
concentrations decrease after vitamin D supplementation in
comparison to placebo (112, 113). Third, EBNA 2 and the VDR
have common DNA binding sites associated with MS (114).
Lastly, the activation of VDR target genes is blocked by EBNA
3 binding to the VDR (115).

VITAMIN D STATUS AND ITS
ASSOCIATION WITH DISEASE ACTIVITY

Not only is MS risk associated with low 25(OH)D concentration
but also certain parameters of MS disease activity (116–121). In
a post hoc analysis of patients with CIS included in a randomized
placebo-controlled clinical trial originally designed to investigate
the effects of early versus delayed treatment with interferon
beta-1b (BENEFIT), patients with a 20 ng/mL (50 nmol/L)
higher serum 25(OH)D concentration had subsequently a
57% lower relapse rate and a 57% lower rate of new active
lesions (116). Conflictingly, in an analysis of MS patients,
included in a randomized placebo-controlled clinical trial to
investigate two different doses of interferon beta-1b (BEYOND),
serum 25(OH)D concentrations were not significantly associated
with subsequent relapse rates (119). Regarding CNS lesions,
however, the analysis of BEYOND patients showed that a
20 ng/mL (50 nmol/L) higher serum 25(OH)D concentration was

associated with a 31% lower risk of new lesions (119). Next to
relapse rate, conflicting evidence also exists regarding disability
progression as the post hoc analysis of BENEFIT reported
an inverse correlation between 25(OH)D concentration and
subsequent disability progression, yet the analysis of BEYOND
patients could not confirm this finding (116, 119). In populations
with MS, initial findings of an inverse correlation between serum
25(OH)D concentration and depression as well as fatigue were
non-significant after adjusting for UVB exposure as a confounder
(122). The authors concluded that sunlight exposure was more
robustly associated with depression scores and fatigue than
25(OH)D concentrations (122).

VITAMIN D SUPPLEMENTATION AND ITS
ASSOCIATION WITH MS RISK AND
DISEASE ACTIVITY

In a large observational study including >187,000 women,
173 of whom developed MS, Munger et al. demonstrated that
women using vitamin D supplements had a 40% reduced risk of
developing MS in the follow-up period (1980–2001) compared to
non-users (123). However, because of the observational character,
it is possible that relevant confounding factors existed even
though the authors adjusted for known MS risk factors such as
age, smoking, and latitude of residence at birth (123).

The largest study investigating the effects of vitamin D
supplementation on MS disease activity is the SOLAR trial,
which was a randomized, double-blind, placebo-controlled trial
investigating supplementation with 14,007 IU/d of cholecalciferol
for 48 weeks in 229 relapsing-remitting MS patients treated
with interferon beta-1a (36). The number of new gadolinium-
enhancing or new/enlarging T2 lesions was significantly reduced
by 32% in patients supplemented with cholecalciferol in
comparison to supplementation with placebo (p = 0.0045), yet
no significant results were reported regarding annualized relapse
rate (ARR) and disability progression (36). Nonetheless, a non-
significant trend toward a lower ARR in patients treated with
cholecalciferol became evident (0.28 vs. 0.41, p = 0.17) (36).
Significant results in radiological but non-significant results in
clinical disease parameters could be due to higher incidence
rates of new/enlarging lesions than relapses or sustained
disability progression (124). However, the main reason for
missed significance may have been the violation of the power
calculation (36). Due to difficulties in patient recruitment, the
study duration was shortened from 96 weeks to 48 weeks and
the randomized total patient number was reduced by a third
from 348 to 232 (36). Furthermore, the primary endpoint was
changed from the mean number of active T2 lesions and the
patient proportion with no relapses to the patient proportion
with no evidence of disease activity (NEDA) 3 defined as no
relapses, no disability progression, and no new gadolinium-
enhancing or new/enlarging T2 lesions, which was nonetheless
missed (36). Camu et al. also investigated in a randomized
clinical trial the effects of vitamin D supplementation in patients
receiving interferons (125). In comparison to the SOLAR trial,
this study was performed over a longer duration (96 weeks) but
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with fewer patients (N = 129) and an overall smaller dose of
cholecalciferol (equivalent of 7,143 IU/d) (125). In the intention
to treat population (N = 129), vitamin D supplementation
did not show a significant reduction in the ARR [rate ratio
(rR) = 0.799, p = 0.38], which was the primary outcome
measure. In patients who completed the study (N = 90), however,
vitamin D supplementation led after 96 weeks to a significant
reduction in the ARR (rR = 0.395, p = 0.01), in new T1
lesions (rR = 0.494, p = 0.03), and in disability progression as
measured by the EDSS (−0.06 vs. 0.32, respectively, p = 0.03)
in comparison to placebo (125). Since in both studies, SOLAR
and CHOLINE, cholecalciferol was used as an add-on to
interferon-beta, it is important to mention that in patients
being treated with interferon-beta who received repeated MRI
scans and measurements of serum 25(OH)D concentration, an
inverse correlation between 25(OH)D and MRI activity was
found before but not during treatment with interferon-beta
(126). Other vitamin D supplementation studies investigating
relapse risk, CNS lesions, and/or disability progression were
either substantially smaller, or of shorter duration, or were
not prospectively randomized and are therefore only listed in
the reference section [see (127–130)]. Regarding the effects of
vitamin D supplementation on fatigue and depression scores,
Rolf et al. showed in a prospectively studied cohort of 40 MS
patients that patients receiving cholecalciferol for 48 weeks did
not improve significantly in fatigue or depression scores in
comparison to placebo (131). In contrast, Achiron et al. found
in a larger (N = 158), yet shorter (24 weeks of supplementation)
prospective study a significant reduction of fatigue scores
through the supplementation with alfacalcidol (132). Therefore,
the effect of vitamin D supplementation on fatigue remains
uncertain. To conclude, the vitamin D supplementation studies
published so far were mostly insufficiently powered to detect
significant differences in clinical disease parameters, especially
since MS patients show a reduced serological and metabolic
response to vitamin D supplementation and, therefore, may
need higher doses to demonstrate clinically relevant effects
(64, 133). Ongoing trials such as VIDAMS, PrevANZ, and
D-Lay-MS, might shed new light on the efficacy of vitamin D
supplementation in MS and CIS (134–137).

VITAMIN D SUPPLEMENTATION AND MS
RELAPSE THERAPY

The immunological mechanism by which 1,25(OH)2D3 increases
the effect of corticosteroids have led us to investigate whether

1,25(OH)2D3 increases the efficacy of methylprednisolone pulse
therapy for the treatment of MS relapses (138). We demonstrated
in human and murine CD3+ T cells that 1,25(OH)2D3 increases
glucocorticoid receptor protein expression and consequently
upregulates methylprednisolone induced apoptosis (138). In vivo,
the combination therapy led to a significant decrease in active
MOG35−55 EAE disease severity (138). Effects appear to be
mediated via the glucocorticoid receptor because no difference
was observed in animals specifically lacking glucocorticoid
receptor expression in CD3 + T cells (138). Furthermore, in two
different independent cohorts, patients with a steroid-resistant
MS relapse had significantly lower 25(OH)D concentrations
(138). The cellular pathway most plausible to explain this
finding is the inhibition of mTOR because in mTORc1-
deficient animals no synergistic effects were found, whereas
treatment of wild type animals with mTOR inhibitors led to
synergistic glucocorticoid effects. These findings may lead to a
prospective clinical evaluation of 1,25(OH)2D3 in MS relapses
because so far sufficient evidence for its use in this specific
setting is lacking.

CONCLUSION

Although certain parameters of radiological MS disease activity
were significantly reduced by vitamin D supplementation as
shown in randomized double-blind placebo-controlled trials,
the evidence accumulated so far is not sufficient to allow
drawing a definite conclusion on the effects of vitamin
D supplementation on clinical parameters. The VIDAMS
trial may provide further insights as it aims to investigate
vitamin D supplementation in the yet largest (N = 172)
prospectively randomized MS patient population followed up
over ≥96 weeks (134). In addition, basic scientific research
may increase our knowledge about the effects of vitamin D
on the immune system. Considering the interactions between
vitamin D and glucocorticosteroids, this knowledge may
provide us with new therapeutic strategies for vitamin D
administration in MS.
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