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Research on CAR T cells has achieved enormous progress in recent years. After

the impressive results obtained in relapsed and refractory B-cell acute lymphoblastic

leukemia and aggressive B-cell lymphomas, two constructs, tisagenlecleucel and

axicabtagene ciloleucel, were approved by FDA. The role of CAR T cells in the treatment

of B-cell disorders, however, is rapidly evolving. Ongoing clinical trials aim at comparing

CAR T cells with standard treatment options and at evaluating their efficacy earlier in the

disease course. The use of CAR T cells is still limited by the risk of relevant toxicities,

most commonly cytokine release syndrome and neurotoxicity, whose management

has nonetheless significantly improved. Some patients do not respond or relapse after

treatment, either because of poor CAR T-cell expansion, lack of anti-tumor effects or

after the loss of the target antigen on tumor cells. Investigators are trying to overcome

these hurdles in many ways: by testing constructs which target different and/or multiple

antigens or by improving CAR T-cell structure with additional functions and synergistic

molecules. Alternative cell sources including allogeneic products (off-the-shelf CAR T

cells), NK cells, and T cells obtained from induced pluripotent stem cells are also

considered. Several trials are exploring the curative potential of CAR T cells in other

malignancies, and recent data on multiple myeloma and chronic lymphocytic leukemia

are encouraging. Given the likely expansion of CAR T-cell indications and their wider

availability over time, more and more highly specialized clinical centers, with dedicated

clinical units, will be required. Overall, the costs of these cell therapies will also play a

role in the sustainability of many health care systems. This review will focus on the major

clinical trials of CAR T cells in B-cell malignancies, including those leading to the first
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FDA approvals, and on the new settings in which these constructs are being tested.

Besides, the most promising approaches to improve CAR T-cell efficacy and early data

on alternative cell sources will be reviewed. Finally, we will discuss the challenges and

the opportunities that are emerging with the advent of CAR T cells into clinical routine.

Keywords: CAR T cells, adoptive immunotherapy, cellular therapy, lymphoma, leukemia

INTRODUCTION

Chimeric antigen receptors (CARs) are artificial proteins
whose basic structure is composed of an antigen recognition
ectodomain and an activation endodomain, linked by a spacer
and a transmembrane domain (1). The ectodomain is a
fusion protein encompassing single VH and VL regions of an
immunoglobulin, joined by a linker peptide, i.e., a single-chain
variable fragment (scFv), capable of non-MHC restricted surface
antigen recognition (2–4). The endodomain is responsible for the
intracellular signal transduction which follows T-cell activation
and for the functional cytotoxic properties of the transduced
cell, and its basic structure includes a CD3-derived component
critical for transduction of activating signals triggered by a
native T-cell receptor (TCR), predominantly a CD3ζ moiety
containing immunoreceptor tyrosine-based activation motifs
(ITAMs) (5).

CAR-based cellular immunotherapy was initially tested in
patients with hematologic malignancies, and CD19 was selected
as a preferential target antigen, based on its selective expression
on B cells, therefore limiting on-target off-tumor side effects to B-
cell aplasia, which may also protect against the risk of developing
CAR-directed antibodies. Initial studies on autologous T cells
engineered with anti-CD19 first-generation CARs demonstrated
short effector persistence in vivo, despite multiple infusions (6).
These suboptimal clinical outcomes were later circumvented
by using autologous T cells engineered with upgraded CAR
constructs, incorporating a co-stimulatory endodomain, typically
CD28 or 4-1BB. These second-generation CAR constructs were
intended to provide T cells with a supplementary activation
signal upon ligand engagement, thus mimicking the physiologic
second signal generated by CD28 independent binding to
CD80/86 ligands following TCR antigen recognition. Alternative
signaling from 4-1BB or CD28 in the context of second-
generation CARs elicits non-overlapping pathways, resulting in
T cells with remarkably distinct qualities. Specifically, CD28
generates a more rapid and intense co-stimulatory signal,
compared to 4-1BB, in spite of a less durable cytotoxic
activity and a shorter in vivo persistence of CAR T cells
(7, 8).

Currently, two different second-generation anti-CD19 CAR
T-cell products have been approved by US Food and Drug
Administration (FDA) and by European Medicine Agency
(EMA) for clinical use, but certainly further advancements are
needed, in order to improve efficacy, broaden the spectrum of
target diseases, and mitigate side effects. In addition, efforts are
required to translate pre-clinical and early stage clinical research
innovations into clinical practice.

MAJOR CLINICAL STUDIES INVOLVING
ANTI-CD19 CAR T CELLS

Early Studies of CAR T Cells in Lymphoid
Neoplasms
After the seminal studies of this unique form of adoptive T-cell
therapy led by Eshhar and Goverman (9, 10), the breakthrough
of CAR-based strategy emerged with the treatment of B-cell
malignancies in the first decade of 2000s. Following the initial
preclinical observations from Seattle Children’s Hospital on the
activity of first and second-generation constructs (11, 12), in
2010 Rosenberg and colleagues from National Cancer Institute
(NCI) reported the first clinical response to an anti-CD19 CAR
T-cell product in a patient with advanced follicular lymphoma
(FL) (13). Shortly after, several early-phase studies confirmed the
impressive anti-tumor effect of second-generation CAR T cells
in heavily pretreated patients with B-cell malignancies, but also
outlined the significant toxicities associated with this treatment,
the most frequent being cytokine release syndrome (CRS) and
neurotoxicity (NTX) (see below) (14–16).

The Memorial Sloan Kettering Cancer Center (MSKCC)
group reported significant activity of their CD28 construct in
B-cell acute lymphoblastic leukemia (B-ALL) in 5 R/R patients,
all achieving a measurable residual disease (MRD) negative
complete remission (CR) (17), although CRS was significant.
Indeed, in keeping with observations in animal studies (12),
T cells engineered with a CD19-specific second-generation
CD28/CD3ζ dual-signaling CAR (CD19-28z) displayed superior
in vivo persistence than first-generation ones, and resulted in
favorable clinical responses in ALL and in patients with advanced
B-cell Non-Hodgkin lymphomas (B-NHL) (18, 19). Another
CD28 construct, KTE-C19 – now developed as axi-cel – designed
at the NCI, was successfully employed in patients with refractory
diffuse large B cell lymphoma (DLBCL) and indolent B-cell
malignancies, showing a response in 12/15 cases, including 8 CR
(18). Signs of CRS and/or NTX were observed in the majority
of patients.

Similarly, T cells transduced with a anti CD19 CAR containing
the 4-1BB and CD3ζ signaling domains (CD19-BBz) exhibited
prolonged in vivo persistence and expansion, correlating with
sustained clinical benefit in individuals with R/R B-ALL (16) and
chronic lymphocytic leukemia (CLL) (14). Investigators of the
University of Pennsylvania (UPenn), after showing the efficacy
of their CD19-BBz construct CTL019 – now developed as tisa-
cel – in 2 children with R/R B-ALL achieving CR (20), reported
on a single-center phase I/IIa study on 30 R/R B-ALL patients.
Morphologic CR was obtained in 90% of patients, and 6-month
event-free survival (EFS) was 67%. All patients developed CRS,
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FIGURE 1 | Axicabtagene ciloleucel (axi-cel or KTE-C19) and tisagenlecleucel

(tisa-cel or CTL019) structure. The 2 constructs share identical recognition

(FMC63-scFv) and signaling (CD3ζ) domains but the co-stimulatory domains

differ: CD28 for axi-cel and 4-1BB for tisa-cel.

which was severe in 27% of the cases (16). In CLL, the same
construct was tested in a single center pilot study including 14
heavily pretreated patients. Overall response rate (ORR) was 57%,
and CR rate was 29%. Median duration of response was 40
months for CR patients, and CRS and NTX occurred in nine and
five cases, respectively (14).

Studies Leading to FDA-Approval of CAR T
Cells
The FDA granted the autologous CAR T-cell therapy
tisagenlecleucel (CTL019 or tisa-cel, KYMRIAH R©, jointly
developed by the UPenn and Novartis) breakthrough therapy
designation for pediatric and young adult R/R B-ALL in July
2014. In August 2017 the FDA announced the approval of
tisagenlecleucel for the treatment of R/R B-ALL for patients
up to 25 years of age. An additional autologous anti-CD19
CAR T-cell therapy was FDA-approved in October 2017, i.e.,
axicabtagene ciloleucel (axi-cel, YESCARTA R©, Kite Pharma
Inc.) for adult patients with R/R DLBCL, primary mediastinal
large B-cell lymphoma (PMBCL), high grade B-cell lymphoma
and transformed FL. Soon after, tisagenlecleucel was also FDA-
approved for adult with R/R DLBCL (of note, tisa-cel is not
labeled for PMBCL). In 2018, the European Medicines Agency
(EMA) approved the two constructs for similar indications
as well. Tisa-cel and axi-cel CAR constructs share identical
recognition (FMC63-scFv) and signaling (CD3ζ) domains but
possess distinct co-stimulatory domains (i.e., 4-1BB and CD28
for tisa-cel and axi-cel, respectively, Figure 1).

ELIANA (CCTL019-B2202) was the first global CAR T-
cell therapy registration trial that led to the FDA-approval of

tisagenlecleucel for pediatric and young adults with R/R B-ALL
(21). It was a multicenter single-arm phase II study enrolling a
total of 92 patients. At enrollment, patients had received amedian
of three prior lines of therapy and 61% had failed a previous
allogeneic hematopoietic stem cell transplantation (allo-HSCT).
In the update analysis on 75 infused patients with a median
follow-up of 13.1 months, best ORR was 81%, with 60% CR,
all of whom MRD negative (<0.01% by flow cytometry). Tisa-
cel was detected in blood up to 20 months after the infusion.
Twelve months EFS and overall survival (OS) were 50 and 76%,
respectively. Globally, 73% of the infused patients developed
grade 3/4 adverse events (AEs) suspected to be related to
tisagenlecleucel, and 47% of them were admitted to the intensive
care unit (ICU) for CRS management. Neurological events were
observed in 40% of the cases within 8 weeks after the infusion,
13% being of grade 3 but none of grade 4. Globally, 24% of
patients were infused in the outpatient setting.

ZUMA-1 was the first multicenter phase I/II clinical trial
testing axicabtagene ciloleucel in aggressive B-NHL (22, 23),
leading to the approval of the product. The phase II portion of
the trial enrolled 119 patients, of whom 108 were infused and
101 evaluated for clinical response. Enrolled patients suffered
from R/R DLBCL (76%), PMBCL (16%), or transformed FL
(8%), and the majority of the cases had received at least
three lines of chemotherapy before CAR T-cell infusion (69%);
26% had primary refractory disease. After lymphodepleting
chemotherapy with low-dose cyclophosphamide and fludarabine,
patients received CAR T cells at target dose of 2× 106 cells/kg. In
this trial systemic bridging chemotherapy was not allowed after
leukapheresis and themedian time from leukapheresis to delivery
of axi-cel to the treatment centers was 17 days. An updated
analysis of the trial by Locke et al. showed a best ORR and CR
rate of 83% and of 58% per investigators’ assessment, respectively.
Responses were durable, with 39% of patients maintaining the
response at a median follow-up of 27.1 months, including 37%
with persistent CR. Of note, CAR T-cell expansion after infusion
was significantly associated with response. The median duration
of progression-free survival (PFS) was 5.9 months, with PFS rates
of 49% at 6 months and 41% at 15 months. Median OS was
not reached, with an estimated 24-month OS rate of 50.5% and
two responding patients underwent allo-HSCT. Globally, 95%
of patients developed grade ≥3 AEs. A total of 93% of patients
experienced CRS, 13% of grade 3/4, including a death related to
hemophagocytic lymphohistiocytosis (HLH). NTX occurred in
64% of patients, 28% being grade ≥3 (22, 24, 25).

JULIET (CCTL019-C2201) was the multicenter single-arm
pivotal phase II clinical trial that led to the FDA-approval of
tisagenlecleucel for adult patients with R/R DLBCL (26). The
trial enrolled 165 patients, of whom 111 were infused and 93
were evaluated for clinical response. Patients had received at least
two prior lines of therapy and 54% had failed a prior autologous
HSCT. Themedian time from enrollment to infusion was 54 days
and the majority of patients (92%) received a bridging therapy
to keep hematological disease under control. Patients received –
after lymphodepleting chemotherapy in 93% of cases – a median
CAR T-cell dose of 3.1× 108 (range 0.6–6.0). The median follow-
up for data cutoff was 14 months. Best ORR was 52%, with
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40% of CR and 12% of partial response (PR). Among patients
with CR/PR as best response (n = 48), the relapse-free survival
(RFS) was 65% at 12 months. At 12 months, OS was 40%. Grade
3/4 CRS rate was 22%, and globally 24% of the patients were
admitted to the ICU for CRS management. NTX developed
in 21% of patients, with 12% of the cases being of grade 3/4,
without fatalities.

Additional Studies on CD19-Targeting
CARs in B-ALL and B-NHL
ROCKET was a multicenter single-arm phase II clinical trial
testing the CD28 construct JCAR015, developed by Juno
Therapeutics. The study enrolled 38 adult patients with R/R B-
ALL and, after a median follow-up of 12.9 months, median EFS
and OS were 4.4 and 8.1 months, respectively. CRS was observed
in 27% of the cases and 29% of the patients experienced grade
3/4 NTX. Following several episodes of cerebral edema, some of
which were fatal, the trial was halted by FDA. After a thorough
analysis, investigators concluded that a surge in inflammatory
cytokine levels from rapid, early T-cell proliferation may have
provoked the blood–brain barrier (BBB) disruption seen in these
patients, inducing fatal cerebral edema (27). However, the precise
underlying cause remains unknown.

TRANSCEND-001 was the first-in-human study testing the
second-generation CD19-BBz product JCAR017 (lisocabtagene
maraleucel, liso-cel), developed by Juno Therapeutics and
characterized by a defined ratio of 1:1 CD8+ and CD4+ CAR
T cells. This multicenter phase I clinical trial enrolled patients
with R/R aggressive B-NHL, and the results of the DLBCL cohort
(including also cases transformed from indolent lymphomas,
high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6
rearrangements, PMBCL and grade 3B FL) were presented at
2019 American Society of Hematology meeting. A total of 342
patients were leukapheresed and 268 ones received liso-cel, at 3
different dose levels. The dose of 100 × 106 viable CAR T cells
was chosen for dose confirmation and thus administered in the
majority of patients (n= 176). Among the 256 heavily pretreated
patients evaluable for efficacy, 34% of whom received a prior
autologous-HSCT, ORR was 73%, with 53% of patients achieving
a CR. After a median follow-up of 12months, median duration of
response (DOR) was not reached and PFS and OS were estimated
at 6.8 and 21.1 months, respectively. In this large clinical trial,
liso-cel demonstrated clinical activity across different subgroups,
including patients with high-risk prognostic features. Regarding
safety profile, CRS developed in 42% and NTX in 30% of patients,
including 2% grade 3/4 CRS and 10% grade 3/4 NTX. Prolonged
grade 3/4 cytopenias were reported in 37% of patients. Globally,
seven deaths were recorded, 4 of which considered to be related
to liso-cel (28).

ZUMA-2 is a multicenter phase II trial which evaluated KTE-
X19, a product which shares the same design of axi-cel but
which is obtained in a different manufacturing process removing
CD19-positive malignant cells, in patients with R/R mantle cell
lymphoma (MCL). Seventy-four patients were enrolled, and
the product was administered to 68 ones. ORR and CR rate
were 93 and 67% in the primary efficacy analysis involving

the first 60 infused patients, and 85 and 59% by intention-to-
treat, respectively. After a median follow-up of 12.3 months, the
estimated 12months PFS and OS were 61 and 83% in the primary
efficacy analysis populations. Cytopenias occurred in 94% of the
patients and grade 3/4 CRS and NTX in 15 and 31% of the
cases, respectively. Two grade 5 infectious adverse events were
recorded (29).

ZUMA-3 is a phase I/II trial evaluating KTE-X19 in adult
patients with R/R B-ALL (NCT02614066) (30). Until now, only
the phase I results have been reported. After a median follow-
up of 16 months, 45 patients had received KTE-X19, 66%
of which had received ≥3 prior lines of therapy. There were
2 reported KTE-X19–related grade 5 AEs (cerebral infarction
and multiorgan failure), both in the context of CRS. CRS and
NTX of grade ≥3 occurred in 29 and 38% of the patients,
respectively. Of 41 patients with a follow-up ≥2 months, 68%
achieved CR/CR with incomplete count recovery (CRi) and
73% reached undetectable MRD. With the limitation of small
patient numbers and the presence of some confounding factors,
prior blinatumumab treatment did not seem to jeopardize the
manufacturing process or affect clinical results (31). The phase
II of the trial is currently ongoing at the 1 × 106 infusion dose
and with revised adverse event management recommendations.
Another phase I/II trial (ZUMA-4, NCT02625480) is evaluating
axicabtagene ciloleucel in pediatric/adolescent patients with R/R
B-ALL (32).

Mature data on an autologous CD19-28z CAR T-cell
construct completely manufactured at MSKCC (NTC01044069)
in relapsed B-ALL adult patients were reported by Park and
colleagues (33). Fifty-three patients received CAR T cells and
CR was obtained in 83% of the cases. After a median follow-up
of 29 months, median EFS and OS were 6.1 and 12.9 months,
respectively. Patients with <5% bone marrow blasts before
treatment had an improved remission duration and survival, with
median EFS and OS of 10.6 and 20.1 months, respectively. After
infusion, severe CRS occurred in 14 patients and was fatal in
one of them. Patients without morphological marrow remission
before treatment, higher burden of disease or extra-medullary
disease had a greater incidence of CRS, NTX, and shorter long-
term survival.

The field of anti-CD19 CAR T-cell development in B-NHL
and B-ALL is rapidly expanding, with several additional studies
being recently reported (34–39), and more than 100 clinical trials
currently registered worldwide. Comparing the results of these
studies is becoming increasingly complex, given the differences in
patient population, bridging therapy and toxicity grading system
employed. Selected clinical trial results in B-ALL and B-NHL are
summarized in Tables 1, 2.

CAR T-CELL TOXICITY

Cytokine Release Syndrome Diagnosis and
Management
CRS is the most frequent AE associated with CAR T-cell therapy,
being described in 50–90% of the patients in major clinical trials
(21, 22, 24–26), and most commonly occurring within the first
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TABLE 1 | Selected clinical trials of CAR T cells in B-cell acute lymphoblastic leukemia.

Setting Target Product Costimul.

domain

Generation Vector Population

infused

Response Durable remission

rate

CRS

(gr.3/4)

NTX

(gr.3/4)

Institute/

Company

Clinical trial References

B-ALL CD19 Tisagenlecleucel

(CTL019,

Kymriah® )

4-1BB Second (2nd) Lentiviral 75, R/R

pediatric/AYA

B-ALL

(up to 25 yo)

ORR 81%

CR 60%

RFS

80% at 6 mo

59% at 12 mo

47%U 13%± UPenn/Novartis ELIANA

NCT02435849

multicenter

phase II

(21)

KTE-X19 CD28 Second (2nd) Retroviral 45, R/R adult

B-ALL

ORR 82%

CR 73%

Median DOR

12.9 mo

29%§ 38%± Kite, Gilead ZUMA-3

NCT02614066

multicenter

phase I/II

(30)

24, R/R

pediatric/AYA

B-ALL

CR + CRi rate

64–100%

(related to

CART dose)

ongoing remission

25–56% (related to

CART dose)

22–75%§ (related

to CART dose)

11–36%± (related

to CART dose)

ZUMA-4

NCT02625480

Multicenter

phase I/II

(32)

19-28z-CAR CD28 Second (2nd) Retroviral 53, R/R adult

B-ALL

CR 83% Unknown 26%¶ 42%± MSKCC/Juno NCT01044069

Phase I

(33)

CD19-28z-CAR CD28 Second (2nd) Retroviral 19, R/R

pediatric/AYA

B-ALL

(up to 30 yo)

CR 67% 12-mo LFS 78.8% 28%± 5%¬ NCI NCT01593696

Phase I

(40)

CD4+/CD8+

CD19-BBz-CAR

4-1BB Second (2nd) Lentiviral 45, R/R

pediatric/AYA

B-ALL

MRD− CR 89% Unknown 23%± 21%± SCH PLAT-02

NCT02028455

Phase I/II

(41)

CD19-

BBz.EGFRt-CAR

4-1BB Second (2nd) Lentiviral 30, R/R adult

B-ALL

CR 93%

MRD neg 86%

Unknown 23%§ 50%± FHCRC NCT01865617

Phase I/II

(42)

UCART19 4-1BB Allogeneic

CAR T cells,

gene editing

with TALEN

Lentiviral 7, R/R pediatric

B-ALL

CR + CRi 88%

MRD neg 86%

Ongoing remission

28%

15%† 0% † MDACC, UCL

etc./Servier

PALL

NCT02808442

Phase I

(43)

13, R/R

Adult B-ALL

Ongoing remission

21%

CALM

NCT02746952

Phase I

CD22 CD22-BBz-CAR 4-1BB Second (2nd) Lentiviral 21, R/R

pediatric/adult

B-ALL

CR 73% Median DOR

6 mo

0%± 0%± NIH NCT02315612

Phase I

(44)

U, Penn/CHOP grading scale; §, NCI 2014 consensus grading scale modified by Lee DW et al. (45); ¶, MSKCC criteria; ¬, CTCAE v4.02; ±, CTCAE v4.03; †CTCAE v5.0.

ALL, acute lymphoblastic leukemia; R/R, relapse/refractory; AYA, adolescent and young adult; ORR, overall response rate; CR, complete remission; CRi, complete remission with incomplete hematologic recovery; MRD, minimal residual

disease; mo, months; DOR, duration of response; EFS, event-free survival; RFS, relapse-free survival; LFS, leukemia-free survival; DFS, disease-free survival; NR, not reached; CRS, cytokine release syndrome; NTX, neurotoxicity; UPenn,

University of Pennsylvania Hospital; SCH, Seattle Children’s Hospital; FHCRC, Fred Hutchinson Cancer Research Center; MSKCC, Memorial Sloane Kettering Cancer Center; NCI, National Cancer Institute; MDACC, MD Anderson

Cancer Center; UCL, University College of London.
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TABLE 2 | Selected clinical trials of CAR T cells in B-cell non-Hodgkin lymphomas and chronic lymphocytic leukemia.

Setting Target Product Costimul.

domain

Generation Vector Population infused Response Durable remission

rate

CRS

(gr.3/4)

NTX

(gr.3/4)

Institute/

Company

Clinical trial Reference

B-cell

NHL

CD19
Axicabtagene

ciloleucel

(KTE-

C19, Yescarta® )

CD28 Second (2nd) Retroviral 108, R/R DLBCL,

PMBCL, t-FL

ORR 83%

CR 58%

Median DOR

11.1 mo

11%§ 32%± NCI/Kite, Gilead ZUMA-1

NCT02348216

multicenter phase I/II

(25)

KTE-X19 68, R/R MCL ORR 93%

CR 67%

Unknown 15%§ 31%± ZUMA-2

NCT02601313

multicenter phase II

(29)

Tisagenlecleucel

(CTL019,

Kymriah® )

4-1BB Second (2nd) Lentiviral 111, R/R

DLBCL, t- FL

ORR 52%

CR 40%

12-mo RFS 65% 22%U 12%± UPenn/Novartis JULIET

NCT02445248

Multicenter phase IIa

(26)

Lisocabtagene

maraleucel

(JCAR017)

4-1BB Second (2nd) Lentiviral 269, R/R DLBCL,

t-FL,

PMBCL, FL3B,

HGBCL

ORR 73%

CR 53%

12-mo DOR

54.7%

2%§ 10%± FHCRC/Juno,

Celgene TRANSCEND-001

NCT02631044

Multicenter phase I

(28)

Lisocabtagene

maraleucel

(JCAR017)

+ Durvalumab

4-1BB Second (2nd) Lentiviral 11, R/R

B-NHL

ORR 91%

CR 64%

Unknown Unknown Unknown Celgene/Juno PLATFORM

NCT03310619

Phase I/II

(46)

JCAR014 +

Durvalumab

4-1BB Second (2nd) Lentiviral 15, R/R

Aggressive B-NHL

ORR 50% Ongoing remission

33%

7%§ 0%± FHCRC/Juno,

MedImmune

NCT02706405

Phase Ib

(47)

CD20 CD20-CAR None First (1st) Plasmidic 7, R/R

Indolent NHL, MCL

ORR 43%

CR 28%

Median DOR

5 mo

0%◦ 0%◦ FHCRC NCT00012207

Phase I

(48)

scFvFc.CD28-

CD137z

CD28

4-1BB

Third (3rd) Plasmidic 3, R/R

indolent NHL, MCL

ORR 100%

CR 67%

PR 33%

Unknown 0%◦ 0%◦ FHCRC NCT00621452

Phase I

(49)

CLL CD19 Tisagenlecleucel

(CTL019,

Kymriah® )

4-1BB Second (2nd) Lentiviral 14, R/R CLL/SLL ORR 57%

CR 29%

Unknown 43%U 7%◦ UPenn/Novartis NCT01029366

Phase I

(14)

Lisocabtagene

maraleucel

(JCAR017)

4-1BB Second (2nd) Lentiviral 23, R/R CLL/SLL ORR 81%

CR 45%

Unknown 9%§ 22%± Juno, Celgene TRANSCEND-CLL-

004 NCT03331198

Phase I/II

(50)

CTL119.BBz-CAR

+ Ibrutinib

4-1BB Second (2nd) Lentiviral 19, r/r cll ORR 71%

CR 43%

Ongoing remission

53% at 12 mo (MRD−

37%)

16%U 5%± UPenn NCT02640209

Pilot trial

(51)

CD19-

BBz.EGFRt-CAR

4-1BB Second (2nd) Lentiviral 24, r/r cll

Post-ibrutinib

(5 richter, 25%

post -venetoclax)

ORR 71%

CR 21%

MRD neg 58%

Unknown 25%§ 25%± FHCRC NCT01865617

Phase I/II

(52)

U, Penn/CHOP grading scale; §, NCI 2014 consensus grading scale modified by Lee DW et al. (45); ◦, CTCAE v3.0; ±, CTCAE v4.03.

NHL, non-Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; t-FL, transformed follicular lymphoma; FL3B, grade 3B follicular lymphoma; MCL, mantle cell lymphoma; PMBCL, primary mediastinal B-cell lymphoma; HGBCL,

high-grade B-cell lymphoma; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; R/R, relapse/refractory; ORR, overall response rate; CR, complete remission; PR, partial response; MRD, minimal residual disease;

DOR, duration of response; OS, overall survival; PFS, progression-free survival; RFS, relapse-free survival; CRS, cytokine release syndrome; NTX, neurotoxicity; UPenn, University of Pennsylvania Hospital; FHCRC, Fred Hutchinson

Cancer Research Center; NCI, National Cancer Institute.
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days after product infusion. CRS is a systemic inflammatory
condition, which originates from direct activation and expansion
of T cells after the interaction with target cells, leading to the
production of cytokines such as TNF-alpha and INF-gamma.
Besides, activated macrophages are the main responsible for IL-
6 and IL-1 secretion, an essential event for CRS progression (53,
54). Furthermore, activated endothelial cells appear particularly
important for the development of severe CRS.

CRS could range from a self-limiting flu-like syndrome to a
life threatening multi-organ dysfunction, requiring immediate
intervention and intensive life-supporting treatments. The CRS-
associated capillary leak syndrome can lead to hypotension,
reduced renal blood flow and pulmonary edema. Besides, it
can be accompanied by clinical and/or laboratory evidence of
macrophage activation, or even turn into a full-blown HLH
(55), and specific criteria for the diagnosis of for CAR T-
cell-related HLH/macrophage activation syndrome have been
proposed (56). A reliable way to evaluate CRS is of utmost
importance, in order to weight the incidence and the severity
of CRS, but the comparison of different products and trials
has been complicated by the lack of a uniform grading
system (14, 45, 56). To overcome this issue, a consensus
grading system for CRS and NTX associated with immune
effector cell therapies has been recently proposed by the
American Society for Transplantation and Cellular Therapy
(ASTCT) (57).

Along with aggressive supportive measures usually in the
contest of an ICU, severe CRS management requires the
use of direct cytokine inhibition. The FDA-approved drug
tocilizumab – an IL-6 receptor antagonist – is currently employed
as first line treatment for CRS (usually ≥G2) and is also
under investigation as a prophylactic strategy (58). For patients
with an unsatisfactory response, second line relies on systemic
corticosteroids. In this regard, recent data showed that early
therapeutic intervention at the first signs of CRS – including
the use of corticosteroids – can prevent serious complications
without affecting clinical results, mitigating the fear that these
drugs could hamper CAR T-cell efficacy (59, 60). Although in
some centers corticosteroids are now commenced early, possibly
at the same time as tocilizumab (61), the aforementioned results
might not be valid for all CAR T-cell products, and the best dose
and duration of corticosteroids treatment remains to be defined.

Additional cytokine antagonist agents (e.g., the anti-IL-6
siltuximab, the TNF inhibitor etanercept, and the anti-IL-1
receptor anakinra) (4, 56, 62) or ibrutinib, as suggested in
a preclinical model (63), may represent further options in
refractory cases. Recently, the tyrosine-kinase inhibitor dasatinib
was shown to suppresses CAR T-cell cytotoxicity, cytokine
secretion, and proliferation, thus suggesting a potential role of
this drug in the treatment of CRS (64, 65).

A standardized CRS management strategy has been hard to
define, due to different grading systems and CAR T-cell products
tested in clinical trials, and proposing recommendations
for the best approach in refractory cases is even harder,
given the small number of patients who received each
treatment and the incomplete understanding of the pathogenesis
of CRS.

Finally, alternative strategies to optimize safety without
compromising efficacy of CAR T-cell therapy, such as
fractionated intrapatient dosing, are also being developed (66).

Neurotoxicity Diagnosis and Management
NTX is the second most frequent serious AE, and it has
been specifically defined with the term “CAR T-cell-related
encephalopathy syndrome” (CRES) (56) or the broader “immune
effector cell-associated neurotoxicity syndrome” (ICANS) (57).
ICANS can occur in the contest of CRS, and severe NTX is
more frequent in patients with severe CRS (67); however, the two
events are not directly related, since neurologic symptoms often
do not develop simultaneously, starting sometimes before CRS or
even after CRS resolution (55).

Severe ICANS is characterized by endothelial activation
and increased BBB permeability, leading to high concentration
of inflammatory cytokines in the cerebrospinal fluid (CSF).
Consequently, brain vascular pericyte stress and further secretion
of endothelium-activating cytokines cause a further increase
in BBB permeability, in a vicious cycle (67). Moreover, in a
preclinical macaquemodel both CAR and non-CAR T cells could
accumulate in the CSF and in the brain parenchyma, suggesting
their direct role in NTX development (68).

ICANS usually manifests with impaired attention, language
disturbance, confusion, and disorientation. Headache, tremors,
agitation, hallucination, and aphasia can also occur. More
rarely and in severe cases, seizures, motor weakness, increased
intracranial pressure, and cerebral edema may be present.
The more recent grading system of NTX employs a 10-point
scoring system following the Immune Effector Cell-Associated
Encephalopathy (ICE) assessment tool and it considers five main
neurological domains (57).

Patients with severe ICANS should be managed aggressively
and a multidisciplinary approach is often necessary, including
neurologic consultation. Electroencephalogram, brain magnetic
resonance, and CSF examination are important in the work-up
of a suspected ICANS to rule out other causes of NTX (56, 67).
Levetiracetam can be used as a prophylactic strategy to prevent
seizures, beginning on the day of CAR T-cell infusion, or it
can be started at the first sign of NXT. First line treatment for
NTX usually consists of corticosteroids, mainly dexamethasone
or high dose methylprednisolone. Tocilizumab is used when
concomitant CRS occurs, but its role for NTX treatment is
less clear, given its inability to cross BBB and its possible
capability to increase IL-6 levels in CSF, reason why the anti-
IL-6 drug siltuximab is emerging as an effective alternative
(56, 69). Recently, granulocyte-macrophage colony-stimulating
factor (GM-CSF) was shown to be an important player in the
pathogenesis of NTX, and the humanized monoclonal antibody
anti-GM-CSF lenzilumab was able to effectively prevent CD19-
CAR-induced neuroinflammation and CRS in preclinical models
(70). A clinical trial testing lenzilumabwith axi-cel in R/RDLBCL
will soon be open for enrollment (NCT04314843).

Albeit life-threatening in some instances, including a few
fatal episodes (67), ICANS is completely reversible alike CRS
in the vast majority of cases, and most patients have a self-
limited course.
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Additional Side Effects
Infusion reactions are usually mild and tumor lysis syndrome
(TLS) is uncommon but can occur in patients with high
tumor burden: both should be managed according to standard
guidelines (62). Prolonged B-cell aplasia is very common and
it is a marker of CAR T-cell persistence (14). The resulting
hypogammaglobulinemia can be corrected with intravenous
immunoglobulin replacement therapy. Severe pancytopenia is
extremely common and can last several weeks after CAR T-cell
infusion, in up to 30% of the cases persisting beyond day 30.
Late hematological toxicity has been associated with high grade
CRS and a recent stem cell transplantation (71). Cytopenia can
be managed with growth factors and antifungal prophylaxis can
be considered for prolonged neutropenia. Especially for patients
receiving fludarabine-containing lymphodepleting regimens, a
prolonged prophylaxis for pneumocystis jirovecii pneumonia
and herpes zoster reactivation is recommended (69).

Clinical Risk Factors and Biomarkers for
CAR T-Cell-Related Toxicity
CAR T-cell-induced CRS and NTX pathophysiology currently
remains poorly understood and risk factors for toxicity
development have been mostly defined in the context of
human studies.

First, investigators tried to identify clinical factors promoting
CAR T-cell expansion, since high CAR T-cell peak counts in
patients with CD19-positive lymphoid malignancies have been
consistently correlated with the development of severe CRS
(16, 40, 72, 73) and NTX (22, 73). High pre-treatment tumor
burden is a major driver of CAR T-cell in vivo propagation
and B-ALL patients developing severe CRS had a significantly
higher baseline bone marrow blast count compared to those who
developed lower-grade or no CRS (16, 62, 74). Globally, trials
including patients with ALL reported higher rate of severe CRS
compared to NHL ones (21, 22, 26, 30, 33), and this may be
due to higher tumor burden, different disease distribution and
more proliferative nature of ALL compared to NHL (75). Similar
to severe CRS, TLS, and severe neurotoxic effects secondary to
CAR T-cell infusion have been found to prevalently occur in
individuals with greater tumor burden (33, 41, 56, 67).

Besides, in two studies investigating the clinical effects of anti-
CD19CART-cell products with defined CD4:CD8 ratio in R/R B-
ALL (42) and NHL (73), Turtle and coworkers observed superior
CAR T-cell peak levels in individuals receiving higher (i.e., 2 ×

106 vs. 2 × 105/kg) CAR T-cell dose, likely accounting for the
correlation between numbers of infused CAR T-cell and severe
toxicity (40, 41, 76). Notably, disease burden and CAR T-cell dose
have a synergistic, positive effect on CAR T-cell expansion. Thus,
adapting CAR T-cell dose to disease burden, rather than defining
an individual fixed dose for all patients, might optimize efficacy
and safety in each case.

The co-stimulatory domain also play an important role, since
28z CAR T cells show superior and more rapid expansion
compared to BBz ones (55); besides, T cells expressing CARs
with hinge and transmembrane domains from the CD8-alpha

molecule release significantly lower levels of cytokines in vitro
compared to those derived from CD28 (77).

Combined cyclophosphamide/fludarabine (Cy/Flu)
conditioning also improves expansion and persistence of
CAR T cells, as opposed to single-agent cyclophosphamide
(42, 73), presumably due to its intensified depleting effect on
recipient lymphocytes (78). Consistent with this hypothesis,
Cy/Flu has been found to be an independent predictor of severe
CRS and ICANS post-CAR T-cell infusion (67, 76, 78).

Several biomarkers have been correlated with CRS and/or
NTX development, such as LDH, ferritin, CRP, inflammatory
cytokines, GM-CSF, von Willebrand Factor, and angiopoietin 2
(reflecting endothelia activation) and lower platelet count, but a
definitive predictive model is still lacking (22, 67, 76, 79–82).

IMPROVING CAR T-CELL EFFICACY

Mechanisms of Resistance to CAR T-Cell
Therapy
Clinical experience with anti-CD19 CAR T cells has identified
two main causes of resistance or disease relapse: (1) the presence
or appearance of antigen-negative tumor cells, and (2) intrinsic
characteristics of effector T cells which limit their function and
efficacy (i.e., antigen-positive relapses) (83).

Approximately 30% of pediatric and young adult B-ALL
patients treated with anti-CD19 CAR T cells relapse with a
CD19-negative disease (21), and CD19 loss and downregulation
has been observed in the NHL setting as well (84). Indeed, in
ZUMA-1 trial 33% of the patients with available post-relapse
samples showed loss of CD19 expression (85). It is still unclear
whether these CD19-negative cells are present in the initial
cancer and overgrow thanks to a selective advantage under the
pressure exerted by T-cell therapy, or if they result from de novo
mutations. The lack of CD19 surface expression may be due
to mutations or alternative splicing events (86, 87), suggesting
the possibility that in some patients the CD19 protein may
be truncated, therefore lacking the epitope that is necessary
to trigger recognition and killing of tumor cells by CAR T
cells and CD19 detection by flow cytometry (88). Preclinical
models demonstrated the impact of antigen-loss on the efficacy
of CAR T cells also in the setting of solid tumors (89, 90).
A recent communication by Ruella et al. highlighted a novel
rare mechanism of resistance to CAR T-cell therapy, conferred
by the accidental transduction of a single leukemic B cell with
the anti-CD19 CAR gene during therapy manufacturing (91).
The authors showed that the CAR, erroneously expressed on
the surface of the neoplastic cell, directly bound CD19–co-
expressed on the same cell–hiding it from recognition and
conferring resistance to reprogrammed T cells. An “antidote” to
deplete these resistant cells has been recently developed in vitro
(92). A further mechanism of CD19-negative immune escape,
particularly relevant in MLL-rearranged B-ALL, is lineage switch
from lymphoid to myeloid leukemia, with consequent loss of
expression of B-lymphoid lineage antigens (93, 94).

Alternatively, CAR T-cell treatment failure can be due to
antigen-positive relapses, which often occur early after product
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infusion and whichmay be due several T-cell relatedmechanisms
[reviewed in (95)]. First, poor expansion and early elimination of
adoptively transferred CAR T cells have been almost invariably
described in patients who are refractory to the treatment or
who relapse in the first months after product infusion (16,
21, 22, 33). Also, reduced anti-tumor activity, anergy and
early CAR T-cell exhaustion have been correlated to inferior
response rates, especially in CLL (96). Finally, the presence of an
immunosuppressive microenvironment can significantly impair
the functionality of CAR T cells and represents a major obstacle,
especially for their application in solid tumors (see below).

Further improvement in lymphodepleting chemotherapy is
currently in progress, with the aim of increasing the magnitude
of CAR T-cell expansion and achieving more durable in vivo
proliferation. In addition, the design of fully humanCAR is under
development to limit immune responses against murine-derived
scFv and to prolong CAR T-cell in vivo persistence (97). Possible
strategies to improve CART-cell efficacy are depicted in Figure 2.

Targeting Alternative Antigens in
Lymphoproliferative Diseases
A possible approach to overcome CD19 antigen loss is the
targeting of alternative surface antigens, including CD20,
CD22, immunoglobulin kappa (k) light chain, CD123, receptor
tyrosine kinase-like orphan receptor (ROR1), and CD37, which
are currently under evaluation for the treatment of B-cell
malignancies (98).

After terrific results obtained with anti-CD20 monoclonal
antibodies in B-cell lymphoproliferative diseases, anti-CD20
CAR T-cell therapy has been evaluated, showing enhanced
persistence of transduced T cells – including both CD28 and 4-
1BB co-stimulatory domains – and subsequent prolonged PFS in
two of three treated patients with indolent B-cell lymphomas or
MCL (48, 49).

Similarly to CD19, CD22 is also almost uniformly
expressed on B cells, and it is currently under evaluation
as a target in CD19-negative B-ALL relapses (99, 100).
Data from a phase I trial including 21 children and adults
with B-ALL infused with anti-CD22 CAR T cells showed
a dose-dependent anti-leukemic activity. A total of 15
patients previously treated with anti-CD19 CAR T cells
were included: CR was obtained in 73% of the cases, including
CD19-negative ones, and median remission duration was
6 months (44). Interestingly, drug-induced CD22 up-
regulation on leukemic cells could be a promising strategy
to improve anti-CD22 CAR T-cell efficacy and remission
durability (101).

Immunoglobulin k light chain antigen is another attractive
target, although its expression is limited to a fraction of non-
malignant B cells. On the other side, complete B-cell aplasia
can be avoided, thus minimizing long-term humoral immunity
impairment. Phase I clinical trials are evaluating efficacy and
safety of anti-k light chain CAR T cells in B-NHL, CLL and
multiple myeloma (MM) patients (102), with preliminary data
showing no significant therapy-related toxicities.

FIGURE 2 | Possible strategies to improve CAR T-cell efficacy. (A) Pooled CAR T cells, consisting of two or more T-cell populations expressing CAR with distinct

antigen specificities. (B) Dual CAR T cells are engineered to co-express CAR molecules with different antigen specificities. (C) Tandem CAR T cells express a

bispecific CAR construct harboring two ligand-binding domains with different antigen specificities. (D) The murine-derived scFv is replaced in fully human CAR T cells,

in order to limit the occurrence of immune rejection. (E) Armored CAR T cells are modified to secrete cytokines or to express immunomodulatory ligands together with

the CAR. (F) CAR T cells can be co-administered with pharmacological agents with immunomodulatory properties.
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ROR1 is a transmembrane glycoprotein crucial for cell
proliferation and survival, constitutionally expressed on
embryonal tissue and aberrantly on many adult malignant
tissues, including B-cell malignancies (103–106). Humanized
monoclonal antibodies, small molecule inhibitors, bispecific
T-cell engagers (BiTE), and anti-ROR1 CAR T cells are under
development (107–110).

Finally, preclinical studies showed that also anti-CD37 CAR T
cells can be active against B-cell lymphomas (111, 112).

Despite some promising results, none of the antigens studied
so far in B-cell malignancies appears to equal CD19, and the
results of ongoing trials will probably clarify their role in future
CAR T-cell development.

Targeting Multiple Antigens in
Lymphoproliferative Diseases
A reasonable strategy to successfully avoid antigen-negative
relapses in hematologic tumors is to adoptively transfer CAR
modified T cells targeting more than one tumor antigen. This
goal may be achieved by administering to patients: (1) two mixed
T-cell populations, each transfected with CARs showing different
specificities (pooled CAR T cells, Figure 2A); (2) T cells that
are engineered to co-express two CARs, each one competent
to drive full T-cell activation (dual CAR T cell, Figure 2B); (3)
T cells expressing one single CAR with two binding-domains
in frame (tandem-CAR, Figure 2C) (113). Generally, tandem-
CARs can induce activation of the CAR-expressing T cells by
encountering either one of the two target antigens. Depending on
the specific tandem-CAR construct, the binding of the CAR with
the two antigens might have different effects on the downstream
signaling and T-cell activation. Several pre-clinical studies (89, 90,
114, 115) have been published using bi- or tri-specific CARs, all
showing that multiple-targeting is highly effective in preventing
escape. Ruella et al. reported that targeting CD19 and CD123 on
leukemic blasts represents an effective strategy for treating and
preventing antigen-loss relapses occurring after CD19-directed
therapies (116). Indeed, they devised a dual CAR-expressing
construct that combined CD19- and CD123-mediated T-cell
activation and demonstrated that it provides superior in vivo
activity against B-ALL cells compared to single-expressing CARs
or pooled CAR T cells. Other groups analyzed the efficacy of
bispecific CART cells triggering robust cytotoxicity against target
cells expressing either CD19 or CD20 (117, 118). Shah et al.
recently reported data about a phase I first-in-human trial in R/R
B-NHL exploring an anti-CD20/anti-CD19 bispecific CAR T-cell
construct, with the aim of improving response rates and limiting
CD19 negative relapse (118). Additional constructs co-targeting
CD19 and CD22 are under development (119).

Globally, data on CAR T cells targeting more than one tumor
antigen are still limited, but they are of extreme interest especially
in settings in which CD19-negative relapses are more common
or in which a specific target antigen is difficult to find (see also
section Perspectives in Other Settings).

Combination Therapies
Combining agents with different mechanisms of action may
increase antitumor effect and reduce the risk of resistance

(Figure 2F). As for normal T cells, CAR T-cell activity can be
hampered by immune checkpoint proteins, such as programmed
death ligand 1 (PD-L1), frequently expressed on tumor cells.
Preclinical data have shown that combining CAR T cells
with existing systemic checkpoint blockade antibodies potently
enhances the eradication of established tumors (120–123). Thus,
the combined use of immune checkpoint inhibitors with CAR
T cells is currently being studied. The association of axi-cel
plus atezolizumab is currently being tested in the ZUMA-6 trial
(NCT02926833) with encouraging preliminary results (124) and
two ongoing studies are evaluating JCAR014 (NCT02706405)
(47) and liso-cel (NCT03310619) (46) in combination with
another anti-PD-L1 antibody, durvalumab, in patients with
relapsed/refractory B-NHL. Sequential approaches are being
explored as well, and investigators at the UPenn recently
started a phase I/II trial to evaluate the feasibility and efficacy
of anti-PD-1 antibody pembrolizumab in patients failing to
respond to (or relapsing after) tisa-cel therapy for B-NHL
(NCT02650999) (125).

Besides, investigators are testing the co-administration of
pharmacological agents with immunomodulatory properties,
in order to revert immune dysfunctions that characterizes
lymphoproliferative diseases, such as CLL and MM. In CLL,
tumor cells contribute to generate several defects in innate
and adaptive immune system function, which are predictive
of a more aggressive disease (126–130). Long-term ibrutinib
therapy exerts not only direct anti-tumor activity but also a
valuable immunomodulatory effect on different immune cell
compartments (131–134). Previous data had already shown that
ibrutinib treatment enhances the generation of CAR T cells, and
the co-administration of ibrutinib improved the engraftment and
therapeutic efficacy of anti-CD19 CAR T cells in CLL and MCL
mouse models (135, 136). The mechanisms underlying these
ibrutinib-induced effects have not been completely clarified,
and may be explained by off-tumor effects exerted on different
immune compartments, particularly on T cells, but also by
the tumor burden reduction which in turn may mitigate the
immunosuppressive signals induced by the neoplastic clone.
Based on these preclinical evidences, a prospective clinical trial
combining humanized anti-CD19 CAR T cells with ibrutinib
in CLL patients not achieving a CR after 6 months of single-
agent ibrutinib treatment is currently ongoing at the UPenn
(NCT02640209) (51). With similar intents, the administration
of lenalidomide and other immunomodulatory drugs (IMIDs) in
combination with CAR T cells is under evaluation in the setting
of MM (137, 138). Preclinical data showed that lenalidomide
combined with second-generation CAR T cells specific for
the CS1 tumor antigen improves anti-myeloma properties and
provided the basis to test this combination in the clinical setting
(139). Newer agents are also being explored in order to improve
expansion and persistence of CAR T cells, such as the 4-1BB
agonist utomilumab, currently being tested in the ZUMA-11 trial
with axi-cel (NCT03704298).

Combination therapies can also be used to target the tumor
microenvironment, and anti-CD123 CAR T cells targeting both
Hodgkin lymphoma cells and tumor-associated macrophages
showed promising activity in preclinical models (140).
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Oncolytic viruses (OV) have recently received considerable
attention due to their potential ability to synergize with
cancer immunotherapies. In different preclinical studies, the
administration of armed-OV enhanced the immune functions
of CAR T cells. OV expressing cytokines have been shown
to enhance the survival of tumor-bearing mice by increasing
CAR T-cell accumulation in the tumor and modulating its
microenvironment (141, 142). Alternatively, the expression of
a anti PD-L1 “minibody” by an OV could block the PD-1:PD-
L1 interaction between CAR T cell and tumor cells, resulting in
enhanced tumor control (143). Finally, release of BiTEs by an OV
enhanced CAR T-cell homing and activation in the tumor, thus
enhancing survival and improving efficacy (144, 145).

Armored CAR T Cells
A possible strategy to increase CAR T-cell activity is to
endow them with additional functions, aimed at improving
tumor infiltration ability, effector functions, reduce
immunosuppression, decrease tumor escape, or stimulate
the native immune system. These novel engineered T cells are
known as fourth-generation CAR T cells or armored CAR T cells
(CAR T cells expressing an additional transgene for enhanced
function, Figure 2E).

Commonly, fourth-generation CAR T cells are characterized
by the secretion of specific cytokines, such as IL-12, IL-15,
IL-18, and IL-21, and often referred as T cells redirected
for universal cytokine-mediated killing or TRUCKS. IL-12 can
improve T-cell cytolytic activity, mitigate T regulatory cell-
mediated immunosuppression, and recruit and activate an innate
immune cell response that can potentially avoid antigen-negative
escape. As systemic administration of IL-12 was shown to cause
severe side effects (146), constitutive or inducible expression of
IL-12 has been integrated in CAR T cells (147–149). Expression
of IL-15, either soluble or membrane-bound, improved survival
and proliferation of CAR T cells without significant toxicity
in vitro and in animal models (150–152). IL-18 is another
cytokine included into TRUCKs and it was shown to improve
CAR T-cell antitumor activity and increased NKG2D-positive
NK cells tumor infiltration, while reducing the frequency of
regulatory T cells and suppressive macrophages in the tumor
micro-environment (153–155). Lastly, in a preclinical lymphoma
model, IL-21 was shown to foster the generation of anti-tumor
T cells with enhanced Wnt/β-catenin pathway and stem-like
properties, thus potentially leading to long-lived memory CAR T
cells (156). Alternatively, some of the effects induced by cytokines
can be obtained by including a cytokine signaling domain for
IL-2Rβ in the second-generation CAR construct (157).

Moreover, T cells can be redirected with additional domains
to convert immunosuppressive signals into activating ones.
For instance, dominant negative (DN) mutations of the TGF-
β receptor in Epstein–Barr virus-specific T cells make them
resistant to tumor-derived TGF-β in a lymphoma model (158).
Another strategy to overcome the immune suppressive signals
from tumor microenvironment is the inclusion of the so-called
“switch receptors.” For example, the fusion of the extracellular
domain of the IL-4 receptor with the intracellular one of the IL-
7 receptor results in the activation and proliferation of T cells in

the presence of the normally inhibitory cytokine IL-4 (159, 160).
Similarly, a PD-1/CD28 chimeric switch receptor can convert the
PD-L1 immunosuppressive stimulus into a costimulatory signal
(161). Armored CAR T cells can also be modified to express
ligands for costimulatory molecules. For instance, the expression
of CD40L on CAR T cells leads to the activation of endogenous
antitumor immune response (162) while the expression of 4-1BB-
L increases the persistence of CD28-costimulated CART19 in B-
ALL preclinical models (163). A clinical trial exploring armored
CAR T cells in NHL and CLL is currently undergoing at MSKCC
(NCT03085173) and preliminary results are promising (164).
Additional effector functions can be obtained by the inclusion of
chemokine receptors and ligands in armored CAR T cells. For
example, IL-7 and CCL19 expression in CAR T cells was shown
to improve their survival and activity in a solid tumor mouse
model (165). Anti-CD30 CAR T cells expressing the chemokine
receptor CCR4 showed better lymphoma infiltration and overall
anti-tumor activity in preclinical models of Hodgkin lymphoma
(166). Furthermore, anti-PD-L1 antibodies can be released by
CAR T-cell within the tumor microenvironment, improving
T-cell infiltration and functionality (167). An alternative and
even more innovative approach has devised the generation
of armored CAR T cells locally secreting PD-1-blocking scFv
(168), thus avoiding potential toxicities associated with systemic
checkpoint inhibition.

Furthermore, armored CAR T cells can secrete bispecific
T-cell engagers or BiTEs. This technology allows targeting
multiple tumor antigens together with the recruitment of tumor-
infiltrating T cells. T cells that secrete BiTEs targeting tumor
antigens such as EPHA2 (169), CD123 (170), and CD19 (171) are
being developed.

Modulating CAR T-Cell Regulation
The field of engineering T cells, including gene editing and
suicide genes strategies (172), is rapidly evolving and it will
likely allow to increase the potency and safety of CAR T cells.
T-cell exhaustion is an important factor limiting antiviral and
antitumor responses in the setting of chronic antigen exposure
(173, 174), and it also contribute to reduce CAR T-cell efficacy.
The structure and the regulation of CAR expression on the
surface of engineered T cells play a central role in predisposing
CAR T cells to chronic activation and exhaustion (7). In
particular, antigen-independent signaling has been found to drive
early exhaustion of CAR T cells and to limit their antitumor
efficacy in vivo (7, 175), and it can be influenced by the type
and the position of the co-stimulatory domain, the spacer length,
and/or the promoter or the vector used to express the CAR.
Therefore, in order to prevent or delay CAR T-cell dysfunction,
several efforts are being made to optimize the design and the
expression of CAR constructs. Eyquem et al. reported on an
innovative approach targeting a CAR coding sequence to the
TCR locus and placing it under the control of endogenous
regulatory elements (176). This method reduces tonic signaling,
averts accelerated T-cell differentiation and exhaustion, and
increases the therapeutic potency of engineered T cells. More
recently, Viaud et al. demonstrated in a syngeneic lymphoma
murine model that their “switchable” CAR T-cell platform,
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which can incorporate “rest” phases through cyclical dosing
of the switch, was able to induce a robust central memory
population and enhance CART-cell expansion and efficacy (177).
These findings can have several clinical implications, since the
engineering of more functional T cells might reduce the T-cell
doses employed, therefore eliciting milder toxicities (172).

EMERGING CAR T-CELL APPLICATIONS

Chronic Lymphocytic Leukemia
In recent years, CLL treatment paradigm has been revolutionized
by B-cell receptor and BCL2 inhibitors (178). Nevertheless,
relapses occur, especially in high-risk setting, such as patients
with unfavorable genetic markers like TP53 mutations. CAR T-
cell treatment could represent a viable option in case of treatment
failure, or might directly compete with targeted therapies–
especially in patients with older age and unfavorable disease
features, avoiding a long-term drug administration which can
lead to toxicities (179), lack of compliance and ultimately cost
problems (180).

Albeit CLL was one of the first diseases in which CAR T cells
were used (15), experience is more limited compared to B-ALL or
DLBCL. Nevertheless, safety and efficacy data are encouraging,
especially in high risk patients (180).

The two FDA-approved anti-CD19 CAR T-cell constructs and
JCAR017 are under investigation for R/R CLL (14, 50, 181).
Turtle and colleagues reported on 24 CLL patients, the vast
majority (92%) of whom had failed ibrutinib, treated with CD19-
BBz CAR T cells after receiving lymphodepleting chemotherapy.
Four weeks after infusion, CR+PR rate was 71%. Twenty patients
(83%) developed CRS and eight developed NTX, with a fatal
outcome in one patient. Fifty-eight percent of the patients who
had deep sequencing of bone marrow samples after therapy
reached MRD negativity. These data demonstrated that CAR
T cells can be effective in CLL patients who failed targeted
therapies, but longer follow-up is needed in order to evaluate the
durability of such responses (52).

Thus far, remission rates obtained with CAR T cells in
CLL are lower compared to B-ALL and DLBCL (14, 52, 96).
Besides, responses appear to be weaker in the lymphnodes
than in the bone marrow. Immune dysregulation typical of
CLL may partly explain the lower efficacy of CAR T cells
in these patients. Indeed, an impaired immune system (i.e.,
CD8pos T cells with low proliferative and cytotoxic capacities,
and/or less expansion of “naïve” CD4pos T cells) can lead to
decreasing CAR T-cell activation after transduction (182, 183).
These intrinsic characteristics of CLL milieu are usually present
at the time of diagnosis but are also favored by previous lines of
treatment, particularly by fludarabine. These data could support
the development of allogeneic CAR T cells from healthy donors,
in whom the activity and cytotoxicity of T cells are not modified
by the tumor clone (see section Alternative Sources) or the
association with immunomodulatory agents, as discussed supra.
Recent results of a pilot study evaluating CD19 CAR T cells
concomitantly to ibrutinib in CLL (n = 19) showed a good
tolerability, with robust CAR T-cell expansion and decreased
CRS severity as compared to CLL patients treated with CAR T

cells without ibrutinib, and similar response rates and long-term
outcomes (184).

Alternative antigenic targets other than CD19 are under
investigation in CLL, such as clonal light chain (kappa or
lambda), CD23, the receptor of the invariant fragment of IgM
(FcγR), and ROR1 (102, 107, 185, 186). Selected clinical trial
results in CLL are summarized in Table 2.

Multiple Myeloma
Recently, clinical and basic research on CAR T-cell treatment for
MMhas started to yield encouraging results and, among theMM-
specific targets current under investigation, B-cell maturation
antigen (BCMA) seems to be the most promising one (187).
Indeed, two phase I clinical trials, conducted, respectively, at the
NIH (NCT02215967) (188) and UPenn (NCT02546167) (189),
showed remarkable results in preliminary reports.

Data about a third phase I multicenter trial (NCT02658929)
exploring the second-generation CAR bb2121, composed of anti-
BCMA scFv and a 4-1BB costimulatory domain, were recently
published (190). The first 33 highly pretreated patients who
received a bb2121 infusion showed an ORR of 85%, with a
CR rate of 45%. A dose-dependent effect on the frequency
and duration of response was observed: VGPR or better were
observed only with doses ≥150 × 106 CAR T cells. Median
follow-up was 11.3 months and median duration of response was
10.9 months. CAR T-cell expansion was associated with response,
and CAR T cells persisted up to 1 year after the infusion. Median
PFS was 11.8 months, comparing favorably with other salvage
therapies for a similar population (191, 192). CRS and NTX
were reported in 76 and 42% of the patients, respectively, and
were mostly mild. Phase II and III multicenter studies evaluating
the efficacy and safety of bb2121 in subjects with R/R MM
are currently ongoing in the US and in Europe (NCT03361748
and NCT03601078).

Results of another phase I trial in R/RMM patients employing
LCAR-B38M, a bispecific CAR T-cell product that binds BCMA
at two separate antigenic epitopes, were recently reported (193).
After lymphodepletion based on cyclophosphamide, LCAR-
B38M CAR T cells were administered in three separate infusions.
At data cutoff, 57 patients received the product. CRS occurred in
90% of patients, 7% being grade ≥ 3 and one patient reported
severe NTX. The ORR was 88%, including 68% of CR and MRD
negativity was achieved by 63% of the patients. After a median
follow-up of 8 months, median PFS was 15 months.

Although associated with high ORR, the main problem of
anti-BCMA CAR T cells is the relatively short durability of
responses, possibly due to the loss or down regulation of BCMA
expression on MM cells and CAR T-cell limited persistence or
functional exhaustion (194).

In addition to BCMA, alternative target antigens expressed
on MM cells surface and compound CART cells expressing two
(or more) different CARs are under investigation. Yan et al.
explored the activity and safety of a combination of humanized
anti-CD19 and murine anti-BCMA CAR T cells in patients
with R/R MM (195). Twenty-one patients were infused and,
after a median follow-up of almost 6 months, 95% of patients
had an objective response, including nine stringent CR. The
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most common adverse event was CRS (90% of the patients),
including 14% grade 3/4 cases. Ongoing studies are investigating
several other potential targets on MM plasma cell surface (196),
including CD44v6 (197), Lewis Y (198), NKG2D ligands (199),
CD229 (200), and integrin β7 (201). Selected clinical trial results
in MM are summarized in Table 3.

Perspectives in Other Settings
In R/R Hodgkin lymphoma, CD30-directed CAR T-cell
therapy showed a manageable safety profile and significant
activity in phase I clinical trials, employing either CD30-BBz
(202) or CD30-28z CAR T-cell products (203), especially
after lymphodepleting chemotherapy was introduced (204).
Nevertheless, the number of patients treated so far is small.
Furthermore, CD30-directed CAR T cells are being evaluated in
CD30-positive anaplastic large cell lymphoma, with encouraging
results (202, 203).

In T-cell neoplasms, the development of CAR T cells been
limited by the difficulty of targeting malignant cells without
killing the very effector cells (fratricide) (205). Thus, several
efforts have been made to find tumor-specific antigens (e.g.,
CD1a), which would prevent prolonged T-cell aplasia as well
(206–208). Besides, fratricide killing could be avoided by
knocking-out the target gene on effector cells using gene editing
approaches (e.g., TALENor CRISPR/Cas9), with some preclinical
experience on CD7-knockout anti-CD7 CAR T cell already
published (206, 209). Finally, CAR NK and allogeneic CAR T
cells are being tested, with the advantage of avoiding a potential
contamination of the product with malignant T cells and, for NK,
also fratricidal killing (206) (see section Alternative Sources).

The development of CAR T cells for advanced solid tumors
and relapsed/refractory AML, still associated with unfavorable
prognosis despite recent therapeutic developments (210), has
been limited by the absence of a suitable tumor-specific antigen
(211, 212) and severe and toxicities due to on-target off-tumor
effects occurred in some trials (213–217). Thus, investigators are
trying to find more suitable targets (218, 219) and exploring
strategies to promptly induce CAR T-cell exhaustion only when
needed (220), such as mRNA electroporation (221, 222) and
inducible suicide genes (223). CARs co-targeting two or three
antigens are also being developed, aiming at preventing possible
off-tumor side effects but also at avoiding antigen escape risk
(115, 224–229). In solid malignancies, tumor microenvironment
represents an unique obstacle which can significantly hamper
CAR T-cell efficacy (230). Thus, innovative strategies such as
CAR T-cell local delivery (231–234) and PD-1/PD-L1 axis block
are being explored (120, 121, 235, 236).

A detailed description of the limited clinical results available
so far has been recently reviewed elsewhere (212, 237).

ALTERNATIVE SOURCES

Allogeneic CAR T Cells
Because of manufacturing issues, especially in heavily pre-treated
patients, CAR T-cell production sometimes fails or requires too
long; thus, universal allogeneic anti-CD19 CAR T-cell products

obtained from healthy donors (off-the-shelf products) could
represent a readily available solution. However, allogeneic T cells
have very high alloreactive potential, because of TCR natural
reaction against non-autologous tissues. Recently, thanks to
gene editing technology, researchers succeeded in preventing the
expression of endogenous TCR knocking down the TRAC gene
(i.e., the gene codifying α chain of TCR), in order to minimize
graft-versus-host disease (GVHD) risk in non-HLA matched
recipients. As a matter of fact, TRAC loci can be disrupted using
electrotransfer of mRNA codifying various nucleases (238–240),
such as zinc finger nucleases (ZFN) (241), transcription activator-
like effector nucleases (TALEN), megaTAL nucleases (242–244),
and CRISPR/Cas9 systems (245).

UCART19 (a CD19-BBz product) is modified to lack both
CD52 expression and the endogenous TRAC locus, and to
include a RQR8 marker-suicide gene as “safety switch.” In this
way, these allogeneic CAR T cells become resistant to anti-CD52
monoclonal antibody alemtuzumab, used for lymphodepletion
along with cyclophosphamide and fludarabine to increase
CAR T-cell persistence, and precautionary targeted elimination
through anti-CD20 monoclonal antibody rituximab becomes
possible. A phase I pediatric trial (PALL, NCT02808442) for high-
risk R/R CD19-positive B-ALL and a phase I dose-escalation
adult trial (CALM, NCT02746952) for patients with R/R B-
ALL are underway. Preliminary data were presented at 2018
American Society of Hematology meeting (43). A total of 20
patients received at least one UCART19 infusion, 13 in CALM
and 7 in PALL trial. After UCART19 infusion, 88% of evaluable
patients (14/16) achieved CR or CRi, and 86% (12/14) of them
reached MRD negativity. Globally, 11 patients underwent allo-
HSCT. Preliminary data suggested that anti-leukemic activity was
linked to CAR T-cell expansion. Severe CRS was reported in
15% of the patients and no severe NTX occurred. Grade 1 acute
GVHD was reported in two patients.

In MM, allogeneic anti-BCMA CAR T cells induced
sustained antitumor responses in mouse models and,
importantly, maintained their phenotype and potency after
scale-up manufacturing, standing promisingly for clinical
evaluation (246).

Despite the reduced GVHD risk of TCR-negative off-the-shelf
CAR T cells, these cells are exposed to killing by the patient’s
own mismatched T cells, leading to rejection and subsequently
short-lasting response. Therefore, several attempts are under
investigation to protect allogeneic CAR T cells from rejection,
such as the use of ZFN gene-editing technology to eliminate
HLA molecule expression from CAR T cells (247). Moreover,
investigators are also trying to prevent NK activation, a possible
cause of CAR T-cell rejection due to “missing self ” recognition,
enforcing expression of non-classical HLA molecules (i.e., HLA-
E and HLA-G) (247–250).

An alternative approach – borrowed from regenerative
medicine – is the generation of tumor-targeting T cells from
induced pluripotent stem cells (iPSC), allowing to exploit
the unlimited proliferative capabilities of iPSC together with
the CAR-directed antigen specificity. Themeli et al. generated
CD19-CAR-expressing T cell-derived iPSC with an effector
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TABLE 3 | Selected clinical trials of CAR T cells in multiple myeloma.

Setting Target Product Costimul.

domain

Generation Vector Population

infused

Response Durable

remission rate

CRS

(gr.3/4)

NTX

(gr.3/4)

Institute/Company Clinical trial References

MM BCMA BCMA.CAR CD28 Second (2nd) Retroviral 16, R/R MM ORR 81%

≥VGPR 63%

Unknown 38%§ 6%¬ NIH NCT02215967

Phase I

(188)

CART-BCMA 4-1BB Second (2nd) Lentiviral 25, R/R MM ORR 48% Median DOR

≈ 4 mo

32%U 12%* UPenn/Novartis NCT02546167

Single-center,

phase I

(189)

bb2121 4-1BB Second (2nd) Lentiviral 33, R/R MM ORR 85%

CR 45%

Median DOR

10.9 mo

6%§ 3%± NIH/Bluebird Bio,

Celgene NCT02658929

Multicenter

phase I

(190)

LCAR-B38M None First (1st) Lentiviral 57, R/R MM ORR 88%

CR 68%

Median DOR

14 mo

7%§ 2%± Nanjing Legend

Biotech

LEGEND-2

NCT03090659

Multicenter

phase I/II

(193)

k-Ig LC κ. CAR CD28 Second (2nd) Retroviral 7, R/R MM ≥PR 57% Unknown 0%* 0%* BCM
CHARKALL

NCT00881920

Phase I

(102)

NKG2DL CM-CS1T CD3ζ plus

DAP10

Second (2nd) Retroviral 5, R/R MM – – – – DFCI/Celyad NCT02203825

in vitro

Phase I

(199)

U, Penn/CHOP grading scale; §, NCI 2014 consensus grading scale modified by Lee DW et al. (45); *, CTCAE v4.0; ¬, CTCAE v4.02; ±, CTCAE v4.03.

MM, multiple myeloma; R/R., relapse/refractory; ORR, overall response rate; CR, complete remission; PR, partial response; VGPR, very good partial response; SD, stable disease; wk, weeks; EFS, event-free survival; DOR, duration of

response; PFS, progression-free survival; CRS, cytokine release syndrome; NTX, neurotoxicity; UPenn, University of Pennsylvania Hospital; DFCI, Dana-Faber Cancer Institute; NIH, National Institutes of Health; BCM, Baylor College

of Medicine.
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memory phenotype, which were effective in killing CD19-
positive lymphoma cells (251). Among the products currently
under development for clinical application, FT819, an off-the-
shelf iPSC product, is engineered to express a CD19-CAR
together with the antibody-engaging CD16 Fc receptor (allowing
dual-targeting), and to eliminate the TCR surface expression.
FT819 was evaluated in the pre-clinical setting, resulting effective
in targeting tumor cells both in vitro and in vivo in amousemodel
of ALL (252). However, before moving to human studies, the risk
of transferring undifferentiated iPSC with tumorigenic potential
and the issue of host rejection need to be carefully addressed.

CAR NK Cells
Another potential source of CAR carrier for off-the-shelf
products is represented by NK cells. NK cells, which constitute
approximately 10% of circulating lymphocytes, are efficient
immune effector cells with a recognized role in the control of
neoplastic proliferation (253). The interest toward these cells in
this setting depends on their specific characteristics. In addition
to the CAR-specific target recognition, transducedNK cells retain
the ability to recognize neoplastic cells through their innate
receptors, thus reducing the risk of tumor escape (254). Since
NK cells do not require HLA matching for target recognition,
allogeneic NK cells do not cause GVHD. Also, the limited life-
span of NK cells reduces the risk of long term side effects.

Allogeneic NK cells can be derived from donor peripheral
blood, bone marrow, or even from cord blood. Indeed, cord
blood represents an optimal source, since NK cells can be
readily available and can usually be collected in clinically relevant
doses for adoptive immunotherapy (255). NK cells engineered
to express a CD19-directed CAR, to ectopically produce IL-
15 as a support for survival and proliferation, and to express
a suicide gene (i.e., inducible caspase-9) showed killing ability
in vitro and in vivo in a mouse model (256). The preliminary
results of a trial exploring the safety and efficacy of CD19-28z-
2A-iCasp9-IL15 transduced cord blood NK cells in patients with
relapsed or refractory CD19-positive B-lymphoid malignancies
(NCT03056339) have been recently published by Rezvani group.
After lymphodepleting chemotherapy, 11 patients received a
single infusion of CAR-NK. Eight of the 11 treated patients
rapidly responded (within 30 days), 7 of whom achieving CR
and no major side effect was recorded, including CRS, NTX, or
GVHD (257).

Cell lines represent an alternative NK cell source, and
among them NK-92 is the most widely used. NK-92 was
established from a patient with NK-cell lymphoma, and is
characterized by an activated NK-cell phenotype and a strong
cytotoxic activity which, however, may not be sufficient to
kill clonal cells of lymphoid origin (258, 259). CD19-CAR
construct can be effectively expressed on NK-92 cells, conferring
cytolytic capability toward previously resistant CD19-positive
neoplastic cells in vitro and in mouse models (260–262).
However, before in vivo application, cells need to be irradiated
to avoid tumor engraftment, possibly negatively impacting on
their efficiency.

A phase I/II trial evaluating PCAR-119 (NK-92 cell line
engineered to express a CD19-TCRzeta-CD28-4-1BB CAR)

in patients with CD19-positive lymphoproliferative diseases is
currently open in China (NCT02892695), but results are not
available yet. The result of the first-in-man clinical trial of
CAR NK-92 cells have been reported in the setting of AML,
where three patients were treated with a CD33 CAR NK-92,
demonstrating the feasibility of the procedure (263).

INTEGRATION OF CAR T CELLS INTO
CLINICAL ROUTINE

FACT Standards for Immune Effector Cells
Since 1966, the Foundation for the Accreditation of Cellular
Therapy (FACT) has promoted quality practice in HSCT. More
recently, FACT has broadened its objectives to also include
standards in the nascent field of cellular therapies. In this context,
FACT recently published the first edition of the Standards
for Immune Effector Cells (IEC). These Standards apply to
immune effector cells used to modulate an immune response
for therapeutic intent, such as dendritic cells, natural killer cells,
T, and B cells. This includes, but is not limited to, CAR T-cell
therapy and vaccines (264).

Requirements for programs that administer immune effector
cells in a center that is not already FACT-accredited are
fully contained in the FACT IEC Standards. When IEC
are administered in a FACT-JACIE accredited stem cell
transplantation unit, the program must fully comply with the
new 7th edition of FACT-JACIE Hematopoietic Cell Therapy
Standards (265).

Treating Site Preparation and Logistics
Each institution that initiates a CAR T-cell therapy program will
face both clinical and administrative challenges before offering
this new therapy to patients. This process involves complex
logistics that cover the collection of cells at the apheresis center,
shipping them to the manufacturer for production, coordinating
receipt of the product, and defining an ideal workflow for CAR
T-cell administration and patient management (266–269).

Hospitals need to develop a CAR T-cell consultation service
to facilitate patient selection and treatment. Ideally, this
service should consist of a multidisciplinary team that includes
physicians, nurses, and social workers with expertise in cellular
therapies, and an effective administrative infrastructure that
ensures the execution of the workflow. There should be open
communication between the center’s and manufacturing site’s
staffs regarding any questions related to the timing of delivery
and product quality. This multidisciplinary team, including
physicians with expertise in CAR T cells and different medical
specialists, should have regular meetings to review each patient’s
treatment course, and to develop institutional guidelines that
include algorithms for the management of expected adverse
events, such as CRS and NTX, and recommendations for
the clinical staff of different departments (e.g., pharmacy,
emergency department, neurology and intensive care unit). This
is in accordance with Risk Evaluation and Mitigation Strategy
(REMS) programs to reduce the potential risks of CAR T-cell
agents, which require authorized centers to comply with specific
guidelines, including the training of providers who prescribe,
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dispense, and administer CAR T cells. REMS programs also
mandate patients and caregivers’ education about toxicities,
including a REMS wallet card given to each patient which reports
the key symptoms possibly related to CAR T-cell therapy and the
contacts of the referent physicians (270).

In many centers in the U.S., transplant programs have
assumed this responsibility as they have clinical expertise in
the diseases currently being treated with CAR T cells, and
they are also well-versed in the logistics and regulatory aspects
of delivering cellular therapies. However, some centers have
developed other models, including self-standing immune effector
cells services, or decided to deliver CAR T cells in disease-
specific services.

Finally, community oncologists play a critical role,
recognizing potentially eligible patients and following them
after CAR T-cell treatment has been administered. Thus, to
ensure optimal long-term outcomes for patients, it becomes
essential to establish a prolonged communication between
the reference center and the local oncologist, who must be
familiar with common toxicities and their monitoring and
management (271).

CIBMTR Guidelines for Cellular Therapies
Data registries of HSCT recipients across Europe and
United States have been essential to evaluate long-term
follow-up results in this field. During the summer of 2016, the
United States based Center for International Blood and Marrow
Transplant Research (CIBMTR) launched the new Cellular
Therapy Registry forms. These forms, based on the design of
the transplant forms, aim to collect information on all cellular
therapies including CAR T cells. The goal of the CIBMTR
Cellular Immunotherapy Data Resource (CIDR) is to centralize
cellular therapy data collection and reporting requirements such
as the United States FDA follow-up obligation for genetically
modified cells.

Additionally, in February 2018, the European Medicines
Agency (EMA) workshop, including members from the
European Society for Blood and Marrow Transplant (EBMT)
and from the CIBMTR, reported their immediate priorities
on patient data registries on CAR T-cell therapy (272).
Specifically, they aimed to harmonize data element definitions
across registries, to establish measures that ensure data are
collected systematically with appropriate verification and quality
assurances, to ensure arrangements are in place to permit data
sharing, and to improve communications between registry
holders, regulators and marketing authorization holders and
applicants. The report also included recommendations to
facilitate and improve registry data use including the systematic
collection of a set of core commonly-defined data elements (273).

DISCUSSION

The advent of CART-cell treatment is revolutionizing established
oncology paradigms, especially – to date – in B-cell malignancies.
CAR T cells have already entered the treatment armamentarium
for B-ALL and aggressive B-NHL, and the first presented real
world data are reassuring and globally confirmed results of

clinical trials (274–276), showing efficacy even beyond current
indications (37, 277). The preclinical and clinical research field is
extremely active, and we can anticipate an increase in treatment
indications and available products in the near future. Indeed,
the exciting results of ZUMA-2 trial in R/R MCL (29) open
new possibilities in this difficult lymphoma subtype, and tisa-
cel (ELARA trial, NCT03568461) and axi-cel (ZUMA-5 trial,
NCT03105336) are being evaluated in R/R indolent lymphomas
as well. Furthermore, the promising data on CAR NK and
allergenic CAR T cells are opening the road to off-the-shelf
products (43, 257).

CAR T-cell results are still hard to compare to those obtained
with conventional treatment options, especially for the oldest
trials lacking of data by intention-to-treat and considering the
heterogeneity of treated patients [e.g., B-ALL patients with MRD
positivity and in full blown relapse (33) included in the same
trials]. Long-term outcomes are of extreme importance to this
purpose and data need to be carefully collected. Globally, updated
reports of the largest clinical trials are quite positive, since the
persistence of responses observed in B-ALL and B-NHL seems
confirmed in the majority of the cases, but follow-up duration
remains relatively limited (25, 26, 28).

Importantly, several practical issues need to be considered in
order to offer this treatment to all patients who may need it and
to integrate CAR T cells in the evolving treatment paradigm of
B-cell malignancies.

In the setting of B-ALL, a recent expert opinion from
the EBMT and the ASTCT (278) has addressed the possible
drawbacks of new treatment options, such as blinatumomab and
inotuzumab ozogamicin, and their place in the context of novel
cellular therapies. For instance, blinatumomab, which represents
an important option for relapsed and MRD positive patients,
should be avoided as a bridging therapy before CAR T-cell
infusion to minimize the risk of antigen loss (278, 279), although
some conflicting data on this issue have been reported (31). The
role of allogeneic HSCT after CAR T-cell therapy is being actively
debated as well, since some patients (i.e., those with prolonged
CAR T-cell persistence and confirmed MRD negative remission)
might not need it. The OBERON trial (NCT03628053), a
randomized open label multicenter phase III study comparing
tisagenlecleucel vs. blinatumomab or inotuzumab in R/R ALL
patients, will hopefully better clarify the role of each agent in the
treatment paradigm of B-ALL.

In aggressive B-NHL, two CAR T-cell products are now
commercially available, and a third one in advanced stage of
development (280), thus the question of which one might be
preferred will soon be posed. Given the remote possibility of
head-to-head randomized clinical trials and the difficulty of
driving definitive conclusions from the indirect comparison of
the available studies, the issue will likely remain open, with each
center experience playing an important role. Furthermore, the
role of allo-HSCT in this disease group is probably going to
change. Given the relatively limited non-relapse mortality and
the fairly good long-term results of CAR T-cell therapy in heavily
pretreated R/R B-NHL patients, some authors are now suggesting
to employ it earlier in the course of the disease, reserving allo-
HSCT for patients who relapse after or who are refractory to

Frontiers in Immunology | www.frontiersin.org 16 May 2020 | Volume 11 | Article 888

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cerrano et al. CAR-T Research and Clinical Practice

CAR T cells (281). Besides, ongoing clinical trials [i.e., BELINDA
(NCT03570892), ZUMA-7 (NCT03391466), and TRANSFORM
(NCT03575351)] are challenging the place of autologous HSCT,
which is being directly tested against CAR T cells, or exploring
the use of CAR T cells following autologous HSCT in poor-risk
patients (282).

Even in the presence of available commercial products, the
enrollment in clinical trials remains essential, both to test
newer and hopefully better constructs and to clarify their
position in the treatment landscape of each disease. Early
referral to centers providing these therapies thus becomes of
paramount importance.

Another relevant issue is the affordability of these treatments,
especially in the context of public health care systems. As a
matter of fact, the total cost for axicabtagene ciloleucel or
tisagenlecleucel treatment is close to 1 million dollars per patient,
considering the price of the product and all the expenses
related to the supportive measures needed (283). Several analyses
have been recently presented to address the issue and, albeit
quite positive in terms of cost-effectiveness, their conclusions
will be confirmed only when mature data on the durability
of remission, long-term survival and rate of alloHSCT will be
available (283–287). As CAR T-cell therapy becomes available for
more indications, the price of the products will hopefully start
to be lowered, improving cost-effectiveness and allowing more
patients to get access to these treatments. In order to reduce costs,
point-of-care production systems, which employ fully automated

devices to manufacture CAR T cells, are being tested, possibly
reducing the production time as well (288).

After a long road started more than 20 years ago, CAR
T-cell therapies have become commercially available. The
better understanding of CAR T-cell biology will help to
develop strategies to improve their efficacy and safety.
New applications in several hematological malignancies
and solid tumors are also emerging, but need to be
validated by the results of ongoing studies. Nevertheless,
translating their application from the small scale of
early-phase clinical trials to the large scale of clinical
practice will require considerable scientific, logistic, and
economic efforts.
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