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Tuberculosis (TB) is a leading cause of death worldwide following infection with

Mycobacterium tuberculosis (Mtb), with 1.5 million deaths from this disease reported

in 2018. Once the bacilli are inhaled, alveolar and interstitial macrophages become

infected with Mtb and differentiate into lipid-laden foamy macrophages leading to lung

inflammation. Thus, the presence of lipid-laden foamy macrophages is the hallmark of TB

granuloma; these Mtb-infected foamy macrophages are the major niche for Mtb survival.

The fate of TB pathogenesis is likely determined by the altered function of Mtb-infected

macrophages, which initiate and mediate TB-related lung inflammation. As Mtb-infected

foamy macrophages play central roles in the pathogenesis of Mtb, they may be important

in the development of host-directed therapy against TB. Here, we summarize and discuss

the current understanding of the alterations in alveolar and interstitial macrophages in

the regulation of Mtb infection-induced immune responses. Metabolic reprogramming

of lipid-laden foamy macrophages following Mtb infection or virulence factors are also

summarized. Furthermore, we review the therapeutic interventions targeting immune

responses and metabolic pathways, from in vitro, in vivo, and clinical studies. This review

will further our understanding of the Mtb-infected foamy macrophages, which are both

the major Mtb niche and therapeutic targets against TB.

Keywords: Mycobacterium tuberculosis, foamy macrophage, tuberculosis, immune responses, lipid metabolism,

lung inflammation, host-directed therapy

INTRODUCTION

Tuberculosis (TB) is a chronic inflammatory disease caused by a Mycobacterium
tuberculosis (Mtb) infection (1). When the Mtb bacilli become inhaled into alveoli,
the bacilli are phagocytosed by alveolar macrophages in the lung (2). Phagocytosed
Mtb uses various approaches to avoid host defense mechanisms, such as inhibition
of phagosome maturation, expression of virulence-associated factors, inhibition
of phagolysosomal fusion, and protection from reactive oxidative radicals (3, 4).
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Following infection with Mtb, alveolar macrophages migrate to
the interstitium and induce inflammatory responses, resulting
in the extravasation of dendritic cells, neutrophils, natural killer
cells, T cells, and B cells (2). These infiltrated immune cells
surround the infected alveolar macrophages, which are reservoirs
of Mtb, to construct TB granulomas (5–7). Thus, understanding
the fate of alveolar macrophages at the initial infectious phase is
critical for preventing TB pathogenesis.

During the construction of TB granulomas, Mtb-infected
macrophages accumulate lipid bodies in their cytosolic area,
differentiating into foamy macrophages, which are hallmarks
of TB lesions (8, 9). The accumulated bubble-like lipid
bodies contain cholesteryl esters and triglycerides (10). Mtb-
infected foamy macrophages play central roles in granuloma
development, maintenance, and infection dissemination (9). In
advanced granulomas, the core region is characterized by caseous
necrosis, which further leads to the formation of a lipid-rich
environment (6, 8, 9, 11). In granulomas, Mtb can grow and
persist in foamy macrophages and the necrotic core (7). When
foamy macrophages leave the original granuloma, a secondary
granuloma is established, promoting dissemination (11). As
the primary niche for Mtb, determining the features of Mtb-
infected foamy macrophages is essential for investigating and
controlling TB pathogenesis. This review describes the current
understanding of foamy macrophages infected with Mtb.

MACROPHAGES

Differentiation and General Features of
Lung Macrophages
Macrophages are well-classified by their ontogeny (12–14).
The functions and phenotypes of macrophages are influenced
by their developmental origins and locations. Macrophages
are generally formed as three major precursors: embryonic
yolk sac precursor, fetal liver precursors, and bone-marrow
derived blood monocytes (13, 14). In the steady state lungs,
macrophages consist of alveolar macrophages and interstitial
macrophages (15). The alveolar macrophages originate from
fetal liver macrophages and fetal monocytes under the control of
granulocyte/macrophage colony-stimulating factor (GM-CSF),
peroxisome proliferator-activated receptors-gamma (PPAR-
γ), and the lung microenvironment (16–19). To maintain
homeostatic regulation, alveolar macrophages have a unique
enhancer repertoire, including Spi-C and Car4, which are
induced by the macrophage lineage-determining factor PU.1
in the lung-specific microenvironment (20, 21). A recent study
demonstrated that mammalian target of rapamycin (mTOR)
signaling is also required for the self-renewing ability of
alveolar macrophages, accompanied by a distinctive metabolic
signature based on the expression of sterol regulatory binding
protein (SREBP) target genes (22). While undergoing tissue
imprinting in the lungs, alveolar macrophages generally
express immunosuppressive genes, including tumor growth
factor-β (TGF-β) and interleukin-10 (IL-10) (17, 23). Alveolar
macrophages have unique phenotypic features; they are loosely
adherent, round-shaped cells expressing high levels of cluster
of differentiation 206 (CD206), which detects microbial

carbohydrates and high levels of scavenger receptors, such as
macrophage scavenger receptor class A andmacrophage receptor
with collagenous structure (23). Notably, alveolar macrophages
also express high levels of CD11c and CD170; moreover, their
expression of F4/80 and CR3 is low or absent compared with
that in other parts of the lung or peripheral tissue-resident
macrophages (17).

In contrast, interstitial macrophages originate from primitive
yolk sac macrophages and bone marrow monocytes (15). These
cells are smaller and have monocyte-like morphology, which is
characterized by a high nuclear/cytoplasm ratio with cytosolic
vacuoles compared to alveolar macrophages (24). Interstitial
macrophages express high levels of CD11b, CD64, F4/80, and
the proto-oncogene tyrosine-protein kinaseMER (25). Following
invasion by microorganisms, interstitial macrophages play a
role in the second-line defense via their phagocytosis and
antigen presentation abilities (26). These interstitial macrophages
have diverse immune responses depending on the activation
stimulus, explained by the concepts of M1 and M2 macrophages.
The activated spectrums and concepts for the M1 and M2
macrophages are further described below.

General Functions and Metabolic
Programing of M1 and M2 Macrophages
and Their Distinct Roles in Lung
Inflammation by Mtb Infection
Overall, when macrophages are infected with bacteria or
viruses, they elicit pro-inflammatory responses by releasing anti-
microbial proteins and cytokines, such as complement proteins,
tumor necrosis factor α, IL-1β, IL-6, IL-12, and IL-23 (27–29).
These pro-inflammatory macrophages can activate endothelial
cells in the blood vessels to support extravasation of other
immune cells into inflamed areas (28, 29). Macrophages also
trigger T cell responses through their antigen presenting abilities
via major histocompatibility complex II molecules (30). In vitro,
macrophages can be classically activated by lipopolysaccharide
or interferon γ (IFN-γ) to mimic bacterial infection or pro-
inflammatory activation, respectively. These classically activated
macrophages are named as M1 macrophages (31). From
the perspective of immunometabolism, M1 macrophages are
well-known to drive pro-inflammatory responses during the
metabolic switch for glycolysis with a broken tricarboxylic acid
(TCA) cycle (32, 33). The pentose phosphate pathway andNAD+

salvage pathway are essential for generation of mitochondrial
reactive oxygen species (ROS), which induces DNA damage
following M1 macrophage activation (34). In addition to massive
glycolysis with an impaired TCA cycle, glucose-derived carbons
are incorporated into fatty acids or sterol via lipogenesis in
activated M1 macrophages (35).

Macrophages also play pro-resolving or anti-inflammatory
roles that depend on signal transducer and activator of
transcription-6 (STAT-6) and IL-10 release (27–29). These
macrophages are involved in the phagocytosis of apoptotic cells,
induction of collagen deposition, and coordination of tissue
integrity to reinforce tissue repair, regeneration, and fibrosis
(27, 36). There is also a method to polarize anti-inflammatory
macrophages through the activation of IL-4/IL-13 or IL-10 in
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vitro; these alternatively activated macrophages are generally
named as M2 macrophages (31). M2 macrophages preferentially
utilize oxidative phosphorylation and fatty acid oxidation
(FAO) to drive anti-inflammatory responses (37). In M2
macrophage activation with IL-4 treatment, mitochondrial
metabolism is regulated by polyamine biosynthesis to regulate
the integrity of the TCA cycle and electron transport chain (38).
Collectively, M1 and M2 macrophages may undergo distinct
lipid metabolic reprogramming, followed by their differential
immune responses.

When infected with Mtb, both alveolar and interstitial
macrophages play important roles in defending against TB
and modulate immune responses (39). Mtb-infected alveolar
macrophages exhibit enrichment in gene sets such as those
involved in lipid uptake, oxidative phosphorylation and fatty
acid oxidation, similar toM2macrophages (39, 40). Mtb-infected
alveolar macrophages express an antioxidant transcriptional
signature via NRF2-dependent pathways, resulting in impaired
control of Mtb growth with reduced inflammatory responses in
the early stage of infection (40, 41). Mtb enhances the expression
of genes in alveolar macrophages that are involved in Mtb
division, growth, ribosomal protein synthesis, cell wall synthesis,
fatty acid import, mycolic acid biosynthesis, the TCA cycle, and
β-oxidation (40). Because the features of interstitial macrophages
are determined by immunological stimuli, TB lesions have been
investigated using M1 and M2 macrophages to dissect the
immune responses occurring during TB progression (42, 43).
In the early stage of Mtb infection, interstitial macrophages
are typically differentiated to M1 macrophages. Mtb-infected
interstitial macrophages express gene sets for cell adhesion,
chemotaxis, ROS biosynthesis, nuclear factor-κB responses,
hypoxia, and glycolysis in vivo (39, 40). In M1-like interstitial
macrophages, Mtb shows a gene signature related to the
response to environmental stresses and a non-replicative state
(40). Mtb-infected M1 macrophages are transformed into M2
macrophages over time by the 6-kDa early secretory antigenic
target (ESAT-6), which is a major virulence factor of Mtb (43).
In addition to controlling the bacterial burden, modulating
granuloma formation, and immune responses, Mtb-infected
macrophages contribute to TB dissemination (44, 45). Mtb was
shown to translocate from the phagolysosome to the cytosol,
thereby eliciting host cell apoptosis in an ESAT-6–dependent
manner (44). Apoptotic cells are then phagocytosed by newly
infiltrating macrophages to generate the primary granuloma,
and Mtb-infected macrophages egress to the distal tissues,
contributing to the initiation of secondary granuloma formation
(45) (Figure 1A).

From the perspective of immunometabolism, the Warburg
effect inM1macrophages generates pro-inflammatory responses,
such as the secretion of IL-1β, which is known as a beneficial
cytokine against Mtb (46, 47). Induced Warburg effects in
the early phase of Mtb infection also generate ROS with the
activation of hypoxia inducible factor 1α, which is necessary
to induce Mtb specific IFN-γ dependent immunity (48, 49).
IL-12, another cytokine secreted by M1 macrophages, can
generate protective immune responses against Mtb (50). In
contrast, M2 macrophages possess less bactericidal activities

compared to M1 macrophages against Mtb infection (42). IL-
10, a representative cytokine secreted from M2 macrophages,
suppresses antimycobacterial immunity and promotes Mtb
survival (51). It has been reported that another M2 macrophage-
secreted cytokine, TGF-β, suppresses IFN-γ responses from T
cells against Mtb in the lungs of mice and humans infected
with TB; deletion of TGF-β signaling decreases the bacterial
burden via the generation of cytotoxic T cell responses in TB
granulomas (52).

Collectively, these investigations suggest the dynamic
activation status of Mtb-infected macrophages (Figure 1A).
Alveolar macrophages show enhanced lipid metabolism via
PPAR-γ and inflammatory properties that facilitate infection
and persistence of Mtb bacilli (18). In the progression of TB
granulomas, blood monocyte-derived macrophages infiltrate
and polarize to M1 macrophages. In the early phase of
Mtb infection, excessive glycolysis with increasing lipids
drives fatty acid synthesis in M1 macrophages. Further
differentiation to M2 macrophages by ESAT-6 is closely linked
to FAO with anti-inflammatory responses, providing favorable
environments for Mtb survival (43). Therefore, these lipid
metabolic reprogramming pathways may be considered targets
for supporting host-directed therapy (HDT) to elicit anti-TB
immune responses.

INTERACTION BETWEEN MTB AND
MTB–DRIVEN FOAMY MACROPHAGES

Characteristics of Mtb-Infected Foamy
Macrophages and the Utilization of Their
Lipids by Mtb
Alterations of metabolic pathways are involved not only
in the inflammatory responses of macrophages but also
in the transformation of Mtb-infected macrophages into
foamy macrophages, which are the major contributors to TB
pathogenesis (Figure 1B), as previously described (5, 6). Foamy
macrophages are named based on their morphology as they
contain bubble-like lipid bodies in their cytoplasm (53). Mtb-
infected foamy macrophages have different features compared
to non-foamy macrophages (Table 1, upper). Specifically, Mtb-
infected foamy macrophages express higher levels of MHCII,
CD11c, CD40, and CD205, similar to dendritic cells, but show
reduced capacity for antigen processing (54). Moreover, Mtb-
infected foamy macrophages induce nitric oxide with elevated
secretion of TGF-β to suppress T cell responses (55–57).

Upon infection, intracellular Mtb is located in the
phagosomes, and the membrane of Mtb-containing phagosomes
is enclosed and interacts with lipid bodies (58). A recent study
demonstrated that the phagosome–lipid body interaction
is regulated by the mycobacterial cell wall components
lipoarabinomannan and phosphatidylinositol mannoside
mediated by the late endosome marker Rab7 (59). After the
phagosomes surrounded lipid bodies, Mtb translocated to lipid
bodies for the utilization of lipids, such as cholesterols, fatty
acids, and triglycerides, as carbon sources for survival. Mtb takes
advantage of cholesterol and fatty acids in foamy macrophages to
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FIGURE 1 | Generation of Mtb-infected foamy macrophages during the formation of TB granulomas. (A) Composition of Mtb-infected foamy macrophages during TB

pathogenesis. Alveolar macrophages initially infected by Mtb and translocated into the interstitial space to generate immune responses. With the extravasation of

immune cells Mtb-infected alveolar macrophages differentiate into foamy macrophages. Infiltrated interstitial macrophages are also infected with Mtb and further

differentiate into foamy macrophages. In the early stage of Mtb infection, macrophages show pro-inflammatory responses like M1 macrophages contributing to the

restriction of Mtb survival. ESAT-6, a representative virulence factor of Mtb, polarizes these M1 macrophages into M2 macrophages to induce permissive responses in

(Continued)
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FIGURE 1 | Mtb survival in the chronic stage of TB. These Mtb-infected foamy macrophages are hallmarks of TB granulomas; translocation of Mtb-infected foamy

macrophages induces dissemination of Mtb. “aM8” and “iM8” indicate “alveolar macrophage” and “interstitial macrophage,” respectively. (B) Metabolic perturbation

by Mtb infection to generate foamy macrophages with Mtb infection, lipid accumulation leads to the generation foamy macrophages via metabolic reprogramming. In

the early stage of Mtb infection, excessive glycolysis with defective mitochondrial respiration contributes to de novo lipogenesis. Acetyl-CoA, a product of glycolysis, is

metabolized to 3-hydroxybutyrate (3-HB) by ketogenesis to induce GPR109A signaling. De novo lipogenesis is also induced by signal transduction of GPR109A and

mTORC1 signaling, which is induced by macrophage activation. Nuclear receptors, such as those in the PPAR and LXR family, also contribute to both metabolic

reprogramming and immune responses. The expression of miR33 is induced by Mtb and miR33 inhibits lipid catabolism, supporting Mtb survival. Direct and indirect

processes are indicated by arrows and dotted arrows, respectively.

generate energy and metabolic intermediates via the expression
of isocitrate lyases for the glyoxylate cycle (60). To utilize lipids,
Mtb contains abundant genes encoding lipid transporters and
lipolytic enzymes. It has been reported that LucA and Mce1 are
expressed in Mtb to import fatty acids (61). Rv0200/OmamB,
Rv0172/Mce1D, Rv0655/MceG, and Rv0966c are also known
as fatty acid transporters of Mtb in foamy macrophages (62).
Rv2672 is the membrane-associated Mtb protein mycobacterial
secreted hydrolase 1 and is required for Mtb persistence via
utilization of host lipids under hypoxic conditions (63). In
addition to Mtb survival, fatty acids are required for the
synthesis of virulence-associated lipids, including polyketide
lipids phiocerol-dimycoseroic acid, poly-acylated trehaloses,
sulfolipids, and mycolic acids (60). Increased accumulation of
triglycerides and elevated levels of triglyceride synthetase 2 have
been reported in the modern Mtb Beijing strain compared to
the ancient Mtb Beijing strain. Moreover, these elevated levels of
triglyceride are associated with rapid disease development (64).

Furthermore, it has been suggested the use of lipids in
host cells is related to dormancy of Mtb (58, 65–67). It
is reported that Mtb persists in a dormant non-replicative
state in foamy macrophages compared to infect non-foamy
macrophages (58). Mtb utilize fatty acids from host cells to
generate intracellular lipid inclusions, which are lipid bodies
in the cytoplasm of mycobacteria. Bacilli with these inclusions
show persistently arrested growth in response to stress (65, 66).
Particularly, utilization of host triglycerides is required to obtain
the dormancy-like phenotypes of Mtb in foamy macrophages
(68). TheMtb mutant with reduced triglyceride synthesis is more
sensitive to antibiotics compared to wild-type Mtb (65). The
region of difference 1 protein in Mtb contributes to increasing
the levels of intracellular triglycerides in Mtb by enhancing the
expression of diacylglycerol O-acyltransferase, a key enzyme in
triglyceride synthesis (67). Therefore, reducing lipid bodies in
Mtb-infected foamy macrophages may control the intracellular
survival of Mtb.

Mechanism of Lipid Accumulation of
Foamy Macrophages by Mtb Infection and
Their Implications for HDT
Recently, it has been reported that several bacterial factors of
Mtb have additive modulatory effects on the lipid metabolism
of host cells (Figure 1B). For example, ESAT-6 stimulates the
translocation of glucose transporter GLUT-1, resulting in the
active transport of glucose with the perturbation ofmetabolic flux
(69, 70). Enhanced glucose metabolism leads to increased de novo
lipid synthesis, which elevates the accumulation of lipids in foamy

macrophages (69). It has been reported that activation of the G
protein-coupled receptor GPR109A, an anti-lypolytic receptor,
by ESAT-6 leads to the accumulation of lipid bodies in foamy
macrophages, contributing to Mtb survival (70). In contrast,
blockage of glycolysis with 2-deoxyglucose is detrimental to
defense against Mtb infection because it disturbs M1-like
activation in interstitial macrophages (39). Overall, glycolysis
has contradictory roles against Mtb infection. By inducing pro-
inflammatory immune responses, glycolysis with a broken TCA
cycles supports anti-microbial responses in macrophages (39).
However, excessive glycolysis is associated with elevated lipid
accumulation by bacterial factors, including ESAT-6, to generate
a niche that is suitable forMtb (69, 70). Therefore, metabolic links
between excessive glycolysis and lipogenesis are potential targets
for reducing bacterial burdens with effective immune responses
(Table 1).

Mtb also modulates nuclear transcription receptors of
host cells involved in metabolic reprogramming and immune
responses (71, 72). The Mtb-induced PPAR-γ pathway, which
is a prominent signaling pathway that induces the activation
of M2 macrophages, leads lipid accumulation to support the
intracellular survival of Mtb. In this processes, PPAR-γ, with
testicular receptor 4, increases the level of CD36 to contribute
to lipid uptake (71). Another PPAR family member, PPAR-
α, is a transcriptional inducer of FAO that prevents lipid
accumulation inMtb-infected foamymacrophages and promotes
autophagy with transcription factor EB to reduce intracellular
Mtb growth (73). Liver X-receptor (LXR)-α and LXR-β are
also critical regulators of oxysterol metabolism that modulate
immune responses in Mtb infection (74, 75). In mice with Mtb
infection, LXR-α and LXR-β signaling is required to generate
protective T cell responses (74). It has been reported that
LXR signaling plays a role in regulating antimicrobial peptide
expression to restrict Mtb growth via IL-36 (75).

In addition to modulating nuclear transcription factor

signaling pathways, infection by Mtb induces tumor necrosis

factor receptor signaling, followed by the activation of its
downstreammTOR complex 1 (mTORC1) and caspase pathways

in human primary macrophages (10). Activation of mTORC1

results in the accumulation of triglycerides in Mtb-infected
macrophages. Mtb also induces miR-33 expression in foamy

macrophages to inhibit lipid catabolism and autophagy, enabling

intracellular survival and persistence (76).
Additionally, accumulating evidence has suggested that the

disruption of lipid homeostasis, including hypercholesterolemia,

leads to increased TB susceptibility. It is reported that
apolipoprotein E-deficient mice have an increased susceptibility
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TABLE 1 | Comparison of general characteristics between foamy and non-foamy macrophages, and metabolic interventions of Mtb-infected foamy macrophages for

host-directed therapy.

Cell type Mtb states Features Surface marker Immune responses References

Non-foamy

macrophages

Replicative Highly-phagocytic CD11b+ CD64+

F4/80+ MertK+

Not reported (25, 58)

Foamy macrophages Dormant, non-replicative (after 6

days of infection)

Less-bactericidal

Less-phagocytic

CD11b+CD11chi

MHCIIhi CD40hi

CD205hi

Reduced antigen

processing capacity

(54, 58)

Suppressive effects on

effector T cells via higher

level of nitric oxide

(55, 56)

Reduced TNF-α and IL-1α

secretion

Elevated TGF-β secretion

(57)

Metabolic

perturbation

Reported conditions Experimental type Mtb strain Effect on TB control References

Glycolysis boosting Treatment with metformin Type 2 diabetes

patients (cohort study)

NA* Beneficial effects on

prevention and treatment

against TB

(88–90)

Glycolysis inhibition Treatment with 2-deoxyglucose BMDMs from C57BL/6 Erdman Increased Mtb burdens (39)

Increased lipid uptake

via CD36

Genetic ablation of PPAR-γ

using shRNA transfection

THP-1 cells with

PPAR-γ knockdown

H37Ra, H37Rv Decreased both Mtb burden

and lipids

(71)

Increased lipid efflux by

ATP-binding cassette

transporter

Genetic ablation of LXR-α using

shRNA transfection

THP-1 cells with LXR-α

knockdown

H37Ra, H37Rv Increased Mtb burden and

intracellular lipids

(71)

De novo fatty acid

synthesis inhibition

C75 treatment THP-1 cells and human

MDM

H37Rv Lowering bacterial burden

and lipid accumulation

(91)

De novo triacyglyceride

synthesis inhibition

Rapamycin treatment for

blocking mTORC1

Human MDM H37Rv Reduced both Mtb burden

and lipid accumulation

(10)

Everolimus and temsirolimus

treatment for blocking mTORC1

Patients with

metastatic renal cell

carcinoma (cohort

study)

NA* Aggravation of TB

progression by their

immunosuppressive

activities

(92, 93)

De novo cholesterol

synthesis inhibition

Treatment with simvastatin in

combination with rifampicin,

pyrazinamide, and isoniazid

THP-1 cells and

BALB/c mice

H37Rv Beneficial effects on anti-TB

therapy

(79)

Treatment with simvastatin in

combination with rifampicin,

pyrazinamide, and isoniazid

J774 cells and BALB/c

mice

CDC1551 Increased first-line anti-TB

drug efficacy

(82)

Treatment with atorvastatin THP-1 cells and human

MDM

H37Rv Decreased both Mtb survival

and intracellular lipids

(91)

Treatment with seven different

statins

Patients with metabolic

syndrome (cohort

study)

NA* Lowering risk of active TB

progression

(83)

Treatment with statins in

combination with anti-TB drugs

Patients with

pulmonary TB (cohort

study)

NA* Not associated with

improved outcomes of

pulmonary TB

(81)

Treatment with seven different

statins in combination with

anti-TB drugs or not

Type 2 diabetes

patients (cohort study)

NA* Not associated with

decreased TB development

(80)

Fatty acid oxidation Treatment of etomoxir, as CPT1a

inhibitor

BMDMs from C57BL/6 Erdman Decreased bacterial

burdens

(39)

NA*, not applicable; BMDM, bone marrow-derived macrophage; CPT1a, carnitine palmitoyltransferase 1a; LXR-α, liver X receptor-alpha; MDM, monocyte-derived macrophage;

Mtb, Mycobacterium tuberculosis; mTORC1, mammalian target of rapamycin complex 1; PPAR-γ, peroxisome proliferator-activated receptor-gamma; shRNA, short hairpin RNA;

TB, tuberculosis.
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to hypercholesterolemia, showing defective priming of IFN-γ
responses (77). Oxidized low-density lipoproteins, which are
modified under hyperlipidemic conditions, also contribute to
enhancing TB susceptibility via lysosomal dysfunction, impairing
the control of Mtb survival (78). Statins, the 3-hydroxy-3-
methylglutaryl-CoA reductase inhibitors for reducing cholesterol
synthesis, have been attempted to treat Mtb infection (79–
82). Clinically, treatment with statins has been reported to
elicit improved outcomes for patients with TB (82, 83), but
showed no additional effects in some cases (80, 81). By
considering the characteristics of each patient, it is necessary
for novel HDT approaches to modulate the immune response
and/or cholesterol metabolism to be effective against TB.
Collectively, these observations suggest that lipid metabolism
and/or homeostatic pathways are promising targets for HDT
against TB (Table 1, lower).

FUTURE DIRECTION AND PERSPECTIVES

To discover new therapeutic strategies against TB, many
researches have attempted to alleviate Mtb infection through
HDT. Foamy macrophages provide a niche for bacilli survival,
maintenance, and persistence using their enriched cytosolic
lipids. Even worse, necrosis of Mtb-infected foamy macrophages
results in the generation of the necrotic core of TB granulomas,
causing extracellular growth of Mtb. As Mtb actively utilizes
lipids to generate energy and virulent factors from host cells,
the regulation of host lipid metabolism pathways is a potential
therapeutic strategy for alleviating TB by preventing vicious
cycles between Mtb and macrophages.

In summary, alveolar and interstitial macrophages exert
opposite roles against Mtb infection; therefore, understanding
these macrophages is important for establishing strategies against
TB pathogenesis. In TB pathogenesis, alveolar macrophages are
susceptible to Mtb with elevated fatty acid uptake and FAO.
In contrast, interstitial macrophages show resistance features
like M1 macrophages in the early stage of Mtb infection.
Pro-inflammatory M1 macrophages exhibit massively increased
glycolysis and fatty acid synthesis with bactericidal activities. M2
macrophages show elevated lipid catabolism with suppressive

activities in their antibacterial responses against Mtb. Thus,
the Mtb-induced transformation processes from M1 to M2
macrophages are potential immunological targets of TB. Some
recent revolutionary investigations have been conducted using
in vitro granuloma and organoid culture systems to gain further
insights into TB (42, 84–86). Using in vitro granuloma culture
systems, M1 macrophages were shown to transform into M2
macrophages following Mtb infection (42). Although these
techniques have only provided limited information of Mtb-
infected macrophages to date, they have potential for further
detailed investigations of Mtb-infected foamy macrophages to
suggest more promising targets of HDT.Moreover, the metabolic
pathways of Mtb-infected foamy macrophages perturbed by
Mtb infection are important targets of HDT against TB. A
recent study indicated that Mtb-infected foamy macrophages
could uptake more fluoroquinolones compared to non-foamy
macrophages in vivo (87), suggesting that it is important to
consider the functions of foamy macrophages for anti-TB drug
treatment. With consideration of the physiology of macrophages,
it is expected that HDT strategy targeting immunological
functions and/or metabolic perturbation of Mtb-infected foamy
macrophages can be developed.
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