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Zoonotic infections are an imminent threat to human health. Pangolins were recently

identified as carriers and intermediate hosts of coronaviruses. Previous research has

shown that infection with coronaviruses activates an innate immune response upon

sensing of viral RNA by interferon-induced with helicase C domain 1 (IFIH1), also known

as MDA5. Here, we performed a comparative genomics study of RNA sensor genes in

three species of pangolins. DDX58/RIG-I, a sensor of cytoplasmic viral RNA and toll-like

receptors (TLR) 3, 7, and 8, which bind RNA in endosomes, are conserved in pangolins.

By contrast, IFIH1 a sensor of intracellular double-stranded RNA, has been inactivated by

mutations in pangolins. Likewise, Z-DNA-binding protein (ZBP1), which senses both Z-

DNA and Z-RNA, has been lost during the evolution of pangolins. These results suggest

that the innate immune response to viruses differs significantly between pangolins and

other mammals, including humans. We put forward the hypothesis that loss of IFIH1 and

ZBP1 provided an evolutionary advantage by reducing inflammation-induced damage

to host tissues and thereby contributed to a switch from resistance to tolerance of viral

infections in pangolins.
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INTRODUCTION

Emerging infectious diseases represent a major challenge to public health. The transmission of
pathogens from other vertebrate animals to humans is of particular concern because the resulting
diseases, known as zoonoses, have caused major epidemics in the past and continue to pose
enormous threats to the human population, as exemplified by the recent severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) outbreak (1, 2). In a broader sense, viral and bacterial
pathogens are among the strongest drivers of evolutionary change and the genomes of vertebrate
species have been shaped, to a large extent, by adaptations to pathogens.

To cope with viral infections, vertebrate species have evolved response strategies which can
be classified into resistance and tolerance (3). Resistance depends on the efficient sensing of
the infection and mounting of antiviral responses that involve programmed death of infected
cells, suppression of viral replication, inflammation and the establishment of adaptive immunity.
However, pathogens can also trigger overreactions of the immune system which cause more harm
to the individual than the infectious agent itself (4, 5). Therefore, tolerance to infections has
evolved as an alternative response of many hosts to specific pathogens (6, 7). In this scenario, the
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pathogens are not efficiently eliminated but the pathogen or
defense-induced damage to the host is reduced. Tolerance does
not depend on, or is even impeded by, the early sensing of
pathogen-associated patterns (PAMPs) and its mechanisms of
protection are not yet fully understood (6, 8, 9). Species that
tolerate infections can carry a high burden of infectious agents,
and therefore may be important reservoirs for transmissions
to other species. This notion is supported by the finding

FIGURE 1 | IFIH1 is a pseudogene in pangolins. (A) Gene locus of IFIH1 in the pangolin (M. javanica), cat, and human. Genes are represented by arrows pointing in

the direction of transcription. A sequence gap is located between FAP and IFIH1 in the pangolin. (B) Inactivating mutations in exon 1 of IFIH1 in three species of

pangolins. Nucleotide sequences of pangolins, cat and human were aligned. The coding sequence of human IFIH1 was translated and the amino acid sequence is

shown below the nucleotide sequences. Frameshift mutations and in-frame stop codons are highlighted by red shading. Nucleotides conserved in more than 50% of

the sequences are indicated by blue fonts. Nucleotides in the flanking region of the first intron are shown with gray shading. Nucleotide sequence accession numbers

(GenBank): Human (NC_000002.12, nucl. 162317845-162318307, compl.), cat (NC_018730.3, nucl. 154125204-154125666, compl.), Malayan pangolin

(NW_016533891.1, nucl. 53417-53871, compl.), Chinese pangolin (JPTV01003556.1, nucl. 39028-39476, compl.), tree pangolin (SOZM010146646.1, nucl.

741-1188, compl.). Abbreviations: compl., complementary; nucl., nucleotide numbers; Mj, Manis javanica; Mp, Manis pentadactyla; Mt, Manis tricuspis.

that bats tolerate many viral infections some of which have
spread to humans causing zoonoses such as Ebola, severe
acute respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS) (7).

Pangolins have been identified, besides bats, as a possible
source of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-
19) (10–14). Eight species of pangolins form the mammalian
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order Pholidota which is most closely related to Carnivora
(cat-like and dog-like carnivorans). They are insectivorous
and toothless animals whose body is largely covered by
keratinous scales. The immune defense of pangolins has not been
characterized yet except for reports on the deficiencies of TLR5, a
receptor of bacterial flagellin (15) and interferon-ε, an antiviral
cytokine of epithelia (16, 17). The receptor of SARS-CoV-2,
i.e., angiotensin I converting enzyme 2 (ACE2) is conserved in
pangolins (18) and coronaviruses isolated from pangolins have a
receptor binding domain in their spike protein that is uniquely
similar to that of SARS-CoV-2 (10, 19).

Antiviral defense of vertebrates is initiated by sensors of viral
nucleic acids. Infections with RNA viruses, such as coronaviruses,
influenza viruses and Ebolavirus activate sensors of extracellular
or endosomal RNA, such as TLR3, TLR7, and TLR8 (20), and
sensors of intracellular RNA, such as IFIH1/MDA5, ZBP1, and
DDX58/RIG-I (21–28). These sensors are specific for different
subtypes of RNAs that constitute the viral genome or appear
during viral replication or gene expression and they activate
distinct cellular and organismal responses, such as necroptotic
cell death, interferon signaling and inflammation (27, 29).

Here we report a unique degeneration of the innate immune
response against RNA viruses in pangolins.

MATERIALS AND METHODS

The following genome sequences of pangolin species
were analyzed: Malayan pangolin (Manis javanica),
Assembly: ManJav1.0 (GCA_001685135.1), submitted
by The International Pangolin Research Consortium
(16); Chinese pangolin (Manis pentadactyla), Assembly:
M_pentadactyla-1.1.1 (GCA_000738955.1), submitted by
Washington University; Tree pangolin (Manis tricuspis),
Assembly: ManTri_v1_BIUU (GCA_004765945.1), submitted by
Broad Institute. Gene annotations were available in GenBank
only for M. javanica (NCBI Manis javanica Annotation
Release 100).

Shared order of gene arrangement (synteny) in the Malayan
pangolin (M. javanica), cat, dog, cattle, mouse, and human was
assessed by comparison of gene loci that were downloaded from
GenBank at https://www.ncbi.nlm.nih.gov/gene/ (last accessed
on 27 March, 2020). In addition, Basic Local Alignment Search
Tool (BLAST) was used to find regions of local similarity
between sequences (30). Amino acid and nucleotide sequence
were aligned with the Multalin software (31). Divergence times
of evolutionary lineages were obtained from the Timetree website
(www.timetree.org) (32).

FIGURE 2 | ZBP1 is a pseudogene in pangolins. (A) Gene locus of ZBP1 in the pangolin (M. javanica), cat, and human. Genes are represented by arrows pointing in

the direction of transcription. (B) Inactivating mutations in exon 4 of ZBP1 in three species of pangolins. Nucleotide sequences of pangolins, cat and human were

aligned. The coding sequence of human ZBP1 was translated and the amino acid sequence is shown below the nucleotide sequences. In-frame stop codons are

highlighted by red shading. Nucleotides conserved in more than 50% of the sequences are indicated by blue fonts. Nucleotides in the flanking region of the introns are

shown with gray shading. Nucleotide sequence accession numbers (GenBank): Human (NC_000020.11, nucl. 57614878.0.57615077, compl.), cat (NC_018725.3,

nucl. 5721658-5721857), Malayan pangolin (NW_016529116.1, nucl. 156452-156651, compl.), Chinese pangolin (JPTV01006633.1, nucl. 23295.0.23494), tree

pangolin (SOZM010101098.1, nucl. 532-731). Abbreviations: compl., complementary; nucl., nucleotide numbers; Mj, Manis javanica; Mp, Manis pentadactyla; Mt,

Manis tricuspis.
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FIGURE 3 | Evolution of RNA sensor genes and possible implications on

antiviral responses in pangolins. (A) Phylogenetic tree of mammals and

comparison of presence (+) or absence (–) of RNA sensor genes. Evolutionary

gene loss (indicated by lightning bolt symbols) was inferred from the species

distribution of the genes. Species: Malayan pangolin (Manis javanica), Chinese

pangolin (Manis pentadactyla), tree pangolin (Manis tricuspis), cat (Felis catus),

dog (Canis lupus familiaris), bear (Ursus arctos horribilis), cattle (Bos taurus),

mouse (Mus musculus), human (Homo sapiens). (B) Schematic overview of

innate immune sensors of viral RNA and signaling in mammals. Only RNA

sensors investigated in this study are shown. The schematic includes the

hypothesis about IFIH1 and ZBP1-dependent differences in the antiviral activity

and defense-induced damage to the host. The directions of the colored

arrows indicate the effects of the presence or absence of RNA sensors. 5’PPP,

triphosphorylated at the 5’-end; ds, double-stranded; ss, single-stranded.

RESULTS

IFIH1 Is a Pseudogene in Pangolins
IFIH1, also known as melanoma differentiation-associated
protein 5 (MDA5), binds to double-stranded RNA in the
cytosol and signals through mitochondrial antiviral-signaling
protein (MAVS) to activate expression of interferons and to
induce inflammation (33). IFIH1 senses cytoplasmic RNA of

coronaviruses and other viruses (27, 34, 35). Comparison of
the IFIH1 gene locus showed conservation of the arrangement
of IFIH1 relative to the neighboring genes in mammals
(Figure 1A). In the Malayan pangolin, IFIH1 is inactivated
by more than 10 frameshift and in-frame stop mutations. In
silico translation of the pangolin IFIH1 pseudogene (GenBank
gene ID: 108398082) and alignment of the resulting amino
acid sequence to that of human IFIH1 showed numerous
disruptive mutations (Figure S1A). An open reading frame
in exon 1 of the Malayan pangolin encodes a theoretical
protein that lacks essential domains and has only 100 amino
acid residues whereas functional IFIH1 proteins consist of
more than 1,000 amino acid residues (Figure S2). Detailed
comparative analysis of exon 1 showed the presence of
multiple frameshift mutations and in-frame stop codons in
the IFIH1 genes of Malayan, Chinese and tree pangolins
(Figure 1B). One of the frameshift mutations and one premature
stop mutation are shared by all three species, suggesting
that these mutations have already been present in their last
common ancestor that lived more than 20 million years
ago (32).

ZBP1 Is a Pseudogene in Pangolins
ZBP1 binds to left-handed double helix structures of DNA and
RNA (Z-DNA and Z-RNA) and thereupon triggers necroptosis
and inflammation through interactions with receptor-interacting
serine/threonine-protein kinase 3 (RIPK3) (36). Influenza virus
and other viruses induce ZBP1-mediated innate immune
responses in humans and mice (24, 25). Comparison of the ZBP1
gene locus showed conservation of the arrangement of ZBP1
relative to the neighboring genes in mammals (Figure 2A). In the
Malayan pangolin, ZBP1 is inactivated by multiple in-frame stop
codons. In silico translation of the pangolin ZBP1 pseudogene
(GenBank gene ID: 108390931) and alignment of the resulting
amino acid sequence to that of human ZBP1 showed premature
termination of the translation product and lack of the carboxy-
terminal half of the protein (Figure S1B). Mutations that prevent
the production of a functional protein were found in all segments
of the ZBP1 pseudogene of the Malayan pangolin. The nucleotide
sequence alignment of ZBP1 exon 4 shows the presence of in-
frame stop codons in three species of pangolins (M. javanica,M.
pentadactyla,M. tricuspis) (Figure 2B).

In contrast to IFIH1 and ZBP1, the genes encoding the
intracellular RNA sensor RIG-I, i.e., DExD/H-box helicase 58
(DDX58), and TLR3, TLR7, and TLR8 which control the sensing
of RNA in endosomes and a series of other genes involved in
antiviral signaling and defense, such as MAVS, RIPK3, MLKL,
SKIV2L, OAS2, RNASEL, and EIF2AK2 (PKR) do not contain
disruptive mutations and therefore appear to be intact in the
Malayan pangolin (M. javanica) (Table S1). DDX58 contains in-
frame stop codons and frameshift mutations in the tree pangolin
(M. tricuspis) but not in the Chinese pangolin (M. pentadactyla)
(Figure S3), suggesting that the tree pangolin lacks functional
DDX58/RIG-I in addition to the two intracellular RNA sensors
(IFIH1 and ZBP1) absent in all pangolins.
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Pangolins Have Lost IFIH1 and ZBP1 After
Their Evolutionary Divergence From Other
Mammalian Lineages
We screened the genomes of mammals from diverse
phylogenetic lineages for functional copies (devoid of
frameshift mutations and premature in-frame stop codons)
of ZBP1, IFIH1 and other RNA sensor genes. Mapping the
presence or absence of these genes onto the phylogenetic
tree suggested that loss of both ZBP1 and IFIH1 occurred
in the pangolin lineages soon after divergence from the
lineage leading to Carnivora (represented by cat, dog and
bear in Figure 3A). Other genes implicated in anti-RNA-viral
defense are conserved in the selected set of species (Figure 3A;
Table S2).

DISCUSSION

Based on the known target specificities of mammalian RNA
sensors (Figure 3B), the loss of ZBP1 and IFIH1 suggests
that the response to Z-RNA and long double-stranded RNA
is diminished in pangolins. Accordingly, the resistance to
RNA viruses that depend on cytoplasmic Z-RNA and long
double-stranded RNA for replication has likely decreased in
the evolution of pangolins. We put forward the hypothesis
that strong antiviral defense was harmful and loss of
ZBP1 and IFIH1 provided an evolutionary advantage by
increasing tolerance to infections by certain RNA viruses,
including coronaviruses.

Viruses are potent drivers of evolutionary adaptations in
their hosts. Both insufficient and overshooting responses to viral
infections have deleterious effects, leading to strong selection for
resistant or tolerant host genotypes (37, 38). Bats have retained

functional RNA sensor genes (Table S3) but exert only dampened
antiviral responses, indicating that they have adapted to the
evolutionary pressure from viruses by decreasing inflammatory
responses and by enhancing tolerance to viral replication (39–
42). The results of the present study suggest that pangolins are
another group of mammals with evolutionarily downregulated
defense against a subset of viruses, namely those sensed by
IFIH1/MDA5 or ZBP1 in other species. Our data urge to study
the virus burden of pangolins, their antiviral immune response
and their ability to act as reservoirs for viruses with zoonotic
potential, especially coronaviruses. While genetic suppression
of IFIH1/MDA5 and ZBP1-dependent pathways had neutral or
beneficial effects in the evolution of pangolins, pharmaceutical
suppression of IFIH1/MDA5 and ZBP1-dependent signalingmay
be beneficial for human patients with overreactions to viral
nucleic acids.
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