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Mild modification of intravenous immunoglobulin (IVIG) has been reported to result

in enhanced polyspecificity and leveraged therapeutic effects in animal models of

inflammation. Here, we observed that IVIG modification by ferrous ions, heme or low

pH exposure, shifted the repertoires of specificities in different directions. Ferrous

ions exposed Fe(II)-IVIG, but not heme or low pH exposed IVIG, showed increased

pro-apoptotic effects on neutrophil granulocytes that relied on a FAS-dependent

mechanism. These effects were also observed in human neutrophils primed by

inflammatory mediators or rheumatoid arthritis joint fluid in vitro, or patient neutrophils ex

vivo from acute Crohn’s disease. These observations indicate that IVIG-mediated effects

on cells can be enhanced by IVIG modification, yet specific modification conditions

may be required to target specific molecular pathways and eventually to enhance the

therapeutic potential.
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INTRODUCTION

Intravenous immunoglobulin (IVIG) preparations consist of polyclonal plasma-derived IgG
collected from thousands of donors. As a consequence, IVIG exhibits an immense repertoire
of antibodies with specificities toward a magnitude of antigens (1). Its inherent polyspecificity
may provide the basis of its pluripotent anti-inflammatory effects if used as a high-dose therapy
(2), whereby a broad range of different mechanisms may act in concert, also depending on
the pathogenesis of the targeted disease (3–5). Accordingly, IVIG is successfully used for the
treatment of a broad range of heterogenous diseases, including neutrophil-associated disorders
such as Kawasaki disease, an acute febrile vasculitis syndrome (6). Neutrophils, as innate effector
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cells, can cause significant tissue damage and they have been
linked to the pathogenesis of a number of other inflammatory
disorders, such as psoriasis (7), or Crohn’s disease (8). Regulation
of survival is an important mechanism to control neutrophils
(9, 10). In Kawasaki disease, apoptosis of circulating neutrophils
is delayed, and high-dose IVIG treatment dramatically reduces
blood neutrophil counts, which has been linked to IVIG-
mediated apoptosis (11, 12). Indeed, we and others previously
reported that IVIG has the capacity to promote death in human
neutrophils by the action of specific antibodies to Siglec-9, or the
classical death receptor FAS (13–16).

Different strategies have been tested to enhance the
therapeutic potential of IVIG and polyclonal immunoglobulin
preparations, including diversification of the repertoire of
antigen specificities by mild chemical modification (3, 17).
As also evidenced by crystallography, a single antibody can
adopt different binding-site conformations (conformational
diversity), spontaneously in absence of antigen or by an induced-
fit mechanism, eventually resulting in the capacity to bind
unrelated antigens (multispecificity) (18). Co-factors, such as
ferrous ions, reactive oxygen species and heme have been shown
to broaden the specificities of immunoglobulins (19, 20). IVIG
modified by ferrous ions or heme showed superior therapeutic
effects in various in vivomodels of sepsis (21–23) or autoimmune
diabetes (24).

In this article, we show using glycan array technology that
immunoglobulin modification either by ferrous ions, heme or
low pH results in different repertoire shifts of specificities toward
carbohydrate antigens. Exposure to ferrous ions, but not heme
or low pH, enhanced the proapoptotic capacity of IVIG by
a FAS receptor-dependent mechanism. Neutrophils exposed to
inflammatory mediators or to rheumatic arthritis joint fluid in
vitro, or ex vivo from patients with active Crohn’s disease, were
susceptible to enhanced death by ferrous ion-exposed IVIG.
However, the ferrous ion modification effect was not observed
for all tested commercial IVIG preparations, which may depend
on differences in immunoglobulin isolation and purification
processes (25).

MATERIALS AND METHODS

IVIG preparations
A special maltose- and albumin-free batch of Immunovenin-
intact produced without incubation at acidic pH (BulBio-NCIPB
Ltd., Sofia, Bulgaria) was used, as previously done (21). Further
IVIG preparations included KIOVIGTM (Shire Switzerland
GmbH), Intratect R© (Biotest (Schweiz) AG), Endobulin S/D
(Baxter, Deerfield IL, USA) and Octagam 10% (Octapharm,
Lachen, Switzerland). Modification with protein-destabilizing
agents was performed as previously described (19–21, 26).
Briefly, for modification with pH4, native Immunovenin-intact
(10 mg/ml) was incubated 5min at room temperature in 0.1M
sodium acetate buffer (Sigma-Aldrich, St. Louis MO, USA).
Subsequently, IVIG was dialyzed 3 times against phosphate
buffered saline (PBS, pH 7.2); for 1 h and then 2 times for
12 h. For the treatment with heme, native Immunovenin-intact
(10 mg/ml) was incubated for 30min on ice with 10mM heme
and subsequently dialyzed for 12 h against PBS. For exposure

to ferrous ions, IVIG preparations, albumin (Sigma-Aldrich)
(each at 10 mg/ml) or vehicle control were incubated 1 h
at 4◦C with 10mM FeSO4 (Sigma-Aldrich) and subsequently
dialyzed for 12 h against 4mM EDTA in PBS and then
twice against PBS for 12 h. After modification and dialysis,
all IVIG preparations were sterile filtered at 0.22µm (Filter-
Bio, Huberlab, Aesch, Switzerland) and concentrated using
Amicon Ultra R© centrifugal filters (Merck-Millipore, Darmstadt,
Germany). Antibody concentrations were determined using
NanoDropTM technology.

Cell Isolation and Cell Culturing
Neutrophils were isolated from peripheral blood drawn
from healthy donors or from patients by density gradient
centrifugation, as previously described (27). Written consent
was obtained from all donors and the study was approved
by the medical ethics committee of the canton Bern. Briefly,
granulocytes and erythrocytes were separated from peripheral
blood mononuclear cells (PBMCs) by density gradient using
Pancoll human, density 1.077 g/mL (PAN-Biotech, Aidenbach,
Germany). Lysis with erythrocyte lysis solution (150mM
NH4Cl, 10mM KHCO3, 0.1mM EDTA, pH 7.3) resulted in
granulocyte populations containing at least 95% neutrophils.
Cells were cultured at 1 × 106/mL in the presence or absence
of cytokines and/or antibodies for the indicated times using
complete culture medium (RPMI 1640 containing 10% FCS and
200 IU/mL penicillin/100µg/mL streptomycin; Thermo Fisher
Scientific, Waltham MA, USA). Unless otherwise indicated, cells
were stimulated with 20 mg/mL IVIG (133.3µM). Cytokine
stimulation occurred 25min before the addition of IVIG. GM-
CSF (25 ng/mL; Novartis Pharma GmbH, Nürnberg, Germany
and Sigma-Aldrich), LPS (100 ng/mL, Sigma-Aldrich), (z)–
Val-Ala-Asp (VAD)–fluoromethylketone (ZVAD-fmk, 50µM;
BD Life Sciences, Franklin Lakes NJ, USA), quinoline-Val-
Asp-difluorophenoxymethylketone (Q-VD-OPh, 20µM; MP
Biomedicals, Solon OH, USA), anti-FAS/CH11 monoclonal
antibody (mAb) (MBL International Corporation, Sunnyvale
CA, USA) at 20µg/ml, were used. For conditioned medium,
rheumatoid arthritis joint fluids were filtered (40µm pore) and
the cellular compartments were removed by centrifugation. The
resulting supernatant was added in a 25 or 50% proportion
into RPMI to prime the neutrophils for 30min before IVIG
treatment. Vehicle controls of ultra-filtered, IVIG-free vehicle
of native or ferrous ion treated preparations were used. Surface
staining with anti-FAS ligand mAb (Biolegend, San Diego CA,
USA) was performed by flow cytometric analysis (FACSVerse;
BD Biosciences, San Jose CA, USA).

Determination of Cell Death and Apoptosis
Cell death was assessed by uptake of 1µM ethidium bromide
(Invitrogen, Carlsbad CA, USA) or propidium iodide (PI; Sigma-
Aldrich) and subsequent flow cytometric analysis (FACSVerse
or FACSLyric; BD Biosciences) as previously described (27),
and after 20 h if not stated otherwise. Redistribution of
phosphatidylserine (PS) in presence of propidium iodide (Sigma-
Aldrich) was assessed by flow cytometry, as previously described
(27). Recombinant His6-tagged GFP-Annexin-V was a kind
gift from Prof. T. Kaufmann from the University of Bern,
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Switzerland. In analogy to specific lysis (28), specific cell death
was calculated as follows:

Specific death [%] = (experimental death [%]—spontaneous
death [%]) / (100—spontaneous death [%])× 100.

Mitochondrial Potential
Mitochondrial potential was assessed using
tetramethylrhodamine, ethyl ester (TMRE) mitochondrial
membrane potential assay kit (Abcam, Cambridge, UK),
according to the manufacturer’s protocol. Briefly, freshly
isolated human neutrophils were incubated for 5 h with
or without IVIG preparations. Carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone (FCCP) at 50µM was
used as control. The staining was assessed by flow cytometry
(FACSVerse; BD Biosciences).

Preincubation of IVIG
Preincubation experiments were performed as previously
described (16). Briefly, the indicated concentrations of IVIG
were incubated on ice for 45min with recombinant FAS-Fc
(10µg/mL), TNF receptor 1 (TNF-R1)-Fc (10µg/mL), both
from Enzo Life Sciences AG (Lausen, Switzerland), Siglec-9-Fc
(10µg/mL) from R&D Systems (Minneapolis MN, USA) or
complete culture medium, and subsequently used in neutrophil
cultures. In other experiments, indicated concentrations of IVIG
were incubated in complete culture medium in the presence and
absence of neutrophils (5 × 106/mL) for 1 h. Neutrophils were
subsequently removed by a centrifugation step at 2,000 rpm
for 5min, and freshly isolated neutrophils (1 × 106/mL) were
cultured in supernatant.

Immunodot Assay
The binding of native and Fe(II)-IVIG to FAS was determined
by a dot blot assay on nitrocellulose membrane (Millipore,
Bedford, UK). Recombinant FAS (Enzo Life Sciences AG) in
PBS was dotted at 10µg/mL on nitrocellulose filter membranes.
Dots were blocked with PBS containing 0.05% Tween 20
(Sigma-Aldrich) and 5% bovine serum albumin (BSA; Sigma-
Aldrich) and incubated with IVIG preparations (20 mg/mL)
overnight at 4◦C. The membranes were washed with PBS
containing 0.05% Tween 20. Quantification of FAS-specific
IVIG antibodies was done by incubation with anti-human
IgG1 (Biotin-SP-conjugated AffiniPure goat anti-human IgG
+ IgM, Jackson ImmunoResearch, West Grove PA, USA,
1:20’000 in PBS/T) and subsequent detection with horseradish
peroxidase-conjugated streptavidin (DAKO, Glostrup, Denmark,
1:3’000 in PBS/T). Membranes were soaked in enhanced
chemiluminescence detection reagent (Millipore; Burlington
MA, USA) and visualized using the luminescent image analyzer
LI-COR R© Odyssey (Lincoln NE, USA).

Elisa
Ninety-six well-polystyrene plates (Thermo ScientificTM Immuno
non-sterile 96-well Nunc MaxiSorpTM flat-bottom) were coated
for 1 h at room temperature with 2µg/ml of Factor VIII
(Kogenate FS, Bayer, Munch, Germany), with 10µg/ml of Factor
IX (LFB Biomedicaments, Les Ulis, France), Histone 3 (Sigma-
Aldrich), or Myelin basic protein (Sigma-Aldrich) in PBS buffer.

Plates were blocked with 0.25%Tween 20 in PBS for 90min. After
the plates were incubated 100µg/ml of pooled IgG preparations
for 2 h at room temperature. After washing with PBS containing
0.05% Tween 20, mouse anti-human IgG antibody conjugated
HRP (Southern Biotech, Birmingham AL, USA) was added and
incubated for 1 h at room temperature. After series of washing
with PBS containing 0.05% Tween 20, immunoreactivities
were revealed by adding o-phenylenediamine dihydrochloride
(Sigma-Aldrich) diluted in phosphate citrate buffer pH 5. The
absorbance values were read at 492 nm after stopping of the
reaction with 2N HCl.

Glycan Array Analysis
The glycan microarrays from the CFG (http://www.
functionalglycomics.org/static/consortium/resources/
resourcecoreh8.shtml) were prepared from amine functionalized
glycan structures covalently coupled in microarrays to N-
hydroxysuccinimide-derivatized microscope slides as previously
described (29). The IVIG preparations were screened at 180
ug/ml for binding to glycans on CFG glycan array version 5.1
(610 different glycans), as previously described (1).

Statistical Analysis
Statistical analysis was performed as indicated in the figure
legends using GraphPad Prism versions 6.0c and 8.0.1 (GraphPad
Software Inc., San Diego CA, USA). Heatmap and hierarchical
clustering were performed using R (The R Foundation for
Statistical Computing, Version 3.0.2).

RESULTS

The modification of antibodies using protein destabilizing agents
has been shown to alter their antigen recognition capacity (19,
20). To compare the impact of different protein destabilizing
agents on the immunoprofiles of an IVIG preparation we used
glycan array version 5.1 from the Consortium for Functional
Glycomics (CFG), which permits repertoire analysis for binding
to 610 glycan antigens (1, 30). A previously described early
production stage batch of Immunovenin-intact (native IVIG)
was screened, which was not pre-exposed to acidic pH during
production and was maltose- and albumin-free (21). As revealed
by hierarchical clustering analysis, exposure of this native
IVIG to ferrous ions, heme or pH 4 conditions resulted in
diverse immunoprofiles with distinct carbohydrate recognition
patterns and divergent cliques of highly correlated reactivities
(Figure 1A). Our analysis revealed that during the modification
process specific reactivity of antibodies to certain antigens is lost
(cliques 2 and 6) or gained (cliques 3, 5, or 7). Furthermore,
combination treatment of IVIG by heme or ferrous ions
differentially affected the binding of IVIG to factor VIII, factor
IX, as compared to single modification (Figure 1B). Similar
effects were found for IVIG binding to the antigens histone 3 and
myelin basic protein (Supplementary Figure 1).

Regulation of neutrophil survival by IVIG at concentrations
achieved during high-dose IVIG therapy, has been ascribed to
the activities of specific functional antibodies, and IVIG-induced
neutrophil death is enhanced under inflammatory conditions
(13, 15, 16, 31). Given the different repertoire changes induced by
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FIGURE 1 | Immunoglobulin modification by ferrous ions, heme or low pH results in a diverse immunoprofile with altered capacity for regulating neutrophil survival. (A)

Immunoprofiles of ferrous ion-exposed Fe(II)-IVIG, heme- or low pH-exposed IVIG preparations, analyzed by glycan array technology. Hierarchical clustering analysis

based on reactivity levels expressed as relative fluorescence units (RFU) and as indicated in the color key. (B) Binding reactivity to factor VIII and IX of IVIG before and

after exposure to heme and/or ferrous ions as analyzed by ELISA. (C–E) Neutrophil death upon treatment with 20 mg/ml native or modified IVIG (20-h cultures),

(Continued)
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FIGURE 1 | analyzed by flow cytometry. (C) Death-promoting effects of modified IVIG preparations on neutrophils in presence or absence of GM-CSF or LPS. (D,E)

Concentration effect curve (D) and time course (E) for cell death induction by ferrous ion-exposed Fe(II)- or native IVIG in unprimed or primed (GM-CSF, LPS)

neutrophils analyzed by flow cytometric ethidium bromide exclusion assay. (D) Specific death in 20-h cultures calculated in comparison to untreated controls as

outlined in the Materials and Methods section. (E) Neutrophil death upon treatment with 20 mg/ml IVIG. Two-way ANOVA, followed by Dunnett’s posttest (B) or

Tukey’s posttest for comparisons among groups (C). Data are representative of three (E), four (B), or at least five (C,D) experiments; mean ± SD (B) or SEM (C–E). *P

< 0.05, **P < 0.01, ****P < 0.0001. Specific death was calculated in comparison to untreated controls as outlined in the Materials and Methods section.

the various protein destabilizing factors, we compared the effects
of native IVIG with ferrous ion-, heme- or low pH-exposed
preparations on neutrophil survival (Figure 1C). While all these
IVIG preparations at 20mg/ml exhibited higher neutrophil death
in presence of GM-CSF or LPS, IVIGmodification by ferrous ion
exposure significantly enhanced the death-inducing capacity of
IVIG. Neither native nor ferrous ions exposed vehicle control,
EDTA controls, or albumin had an effect on neutrophil survival
(Supplementary Figure 2). Among conventional commercial
IVIG preparation, the enhanced death effect upon ferrous ion
exposure was observed for one further preparation (IVIG #1)
(Supplementary Figure 3), which could be due to differences
in titers of anti-FAS antibodies among preparations (32), or
repertoire shifts due to protein-modifying conditions during
specific IVIG production processes (25). However, we continued
our study using the early stage preparation of Immunovenin-
intact, as described above.

The enhanced death response of neutrophils to ferrous
ion-modified IVIG “Fe(II)-IVIG,” was already observed at
concentrations below 10 mg/ml (Figure 1D), indicating an
increase of both efficacy and potency. Neutrophil death upon
Fe(II)-IVIG treatment was both concentration- (Figure 1D)
and time-dependent (Figure 1E) under unstimulated or
inflammatory conditions.

Enhanced Pro-Apoptotic Effects of IVIG
Upon Ferrous Ion Exposure
Both apoptotic and non-apoptotic forms of neutrophil
death have been described, depending on the inflammatory
environment (13, 15). Fe(II)-IVIG treatment was associated
with apoptotic features such as increased Annexin-V staining
(Figure 2A), as assessed by flow cytometry. To confirm that the
enhanced cytotoxic capacity of IVIG by ferrous ion exposure
is apoptotic, pharmacological inhibition experiments using the
pan-caspase inhibitors Q-VD or z-VAD were performed in
presence or absence of the pro-inflammatory stimuli GM-CSF
or LPS (Figure 2B). In line with previous evidence (13), pan-
caspase inhibition abrogated IVIG-induced death in unprimed
neutrophils, but had only a partial effect on cell death in presence
of GM-CSF or LPS, indicating residual non-apoptotic death
under these conditions. However, upon caspase inhibition the
enhanced death upon Fe(II)-IVIG treatment was no longer
observed, neither in unprimed nor in GM-CSF or LPS-treated
cells indicating a requirement of caspase-dependent pathways.
Furthermore, the mitochondrial potential was significantly
lower upon culture of neutrophils in presence of Fe(II)-IVIG
(Figure 2C). Taken together, these findings indicate that the
increased neutrophil death-inducing capacity of IVIG upon
ferrous ion exposure depends on apoptosis.

Enhanced Anti-FAS Activity of Fe(II)-IVIG
on Neutrophils
Neutrophil survival is regulated by cell surface receptors, such
as FAS, TNF-R1 or Siglec-9 (33, 34). Preincubation of IVIG
with neutrophils has been shown to diminish the cytotoxicity
of IVIG, suggesting a role of specific antibodies to surface
receptors contained in IVIG (16). Pre-adsorption of both
native or Fe(II)-IVIG with neutrophils aimed at reducing
antibodies to neutrophil surface molecules diminished the
cytotoxic capacity of both preparations (Figure 3A). Using
recombinant Fc-coupled TNF receptor 1 (TNF-R1), FAS, or
Siglec-9 proteins, the involvement of specific surface receptors in
native or Fe(II)-IVIG induced death was investigated in blocking
experiments (Figure 3B). Siglec-9-Fc blocked the death of GM-
CSF- or LPS-primed, but not unprimed neutrophils, which is
expected given that cross-linking of Siglec-9 has been shown
to transduce cytokine-dependent neutrophil death (35, 36).
However, exclusively FAS-Fc abrogated the enhanced cytotoxic
activity of Fe(II)-IVIG, an effect that was observed in all cells,
unprimed or GM-CSF or LPS stimulated. This suggests that FAS-
dependent pathways are primarily responsible for modification-
related effects, while other death-inducing stimuli might co-exist.
Flow cytometric analysis did not indicate a difference of FAS
ligand (FASL) surface expression between native or Fe(II)-IVIG
(Figure 3C). However, immunoblotting revealed higher binding
activity of Fe(II)-IVIG to FAS than native IVIG (Figure 3D
and Supplementary Figure 4). The paralleled increase of FAS
reactivity and FAS-dependent death by Fe(II)-IVIG indicated
that the altered specificity of modified IVIG enhances the
proportion of FAS-specific antibodies with agonistic properties.

Given that IVIG has been reported to contain both agonistic
and blocking antibodies to FAS (16, 37), we also examined
the capacity of Fe(II)-IVIG to block the pro-apoptotic effects
of a FAS-specific monoclonal antibody, clone CH-11, on
neutrophils (16, 36). While native IVIG at 1 and 5 mg/ml
inhibited CH11-induced neutrophil death, the blocking capacity
was lost in Fe(II)-IVIG at both concentrations (Figure 3E).
These data suggest that enhanced FAS signaling by Fe(II)-IVIG
cannot be explained exclusively by an increase of FAS-binding
capacity (Figure 3D) in isolation, but also involves a reduction
of antibodies with FAS-blocking activities (Figure 3E). Thus,
modification of IVIG by ferrous ion exposure may reset the
balance between agonistic and blocking anti-FAS antibodies.

Effect of Fe(II)-IVIG on Neutrophils From
Inflammatory Diseases ex vivo
Neutrophils from patients with inflammatory disorders are
exposed to inflammatory mediators in vivo, and exhibit altered
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FIGURE 2 | Modification of IVIG by ferrous ion-exposure enhances pro-apoptotic effects of IVIG in both unprimed and primed (GM-CSF, LPS) neutrophils. Flow

cytometric analysis of neutrophils upon treatment with Fe(II)- or native IVIG. (A) Representative Annexin V-FITC/PI staining of 15 h-cultures of unprimed or primed

(GM-CSF, LPS) neutrophils. (B) IVIG induced neutrophil death upon pretreatment with the pan-caspase inhibitors Q-VD-OPh (QVD) or Z-VAD-fmk (ZVAD) in 20

h-cultures of unprimed and primed (GM-CSF, LPS) cells. (C) Mitochondrial potential assessed by tetramethylrhodamine ethyl ester (TMRE) staining in 5 h cultures.

Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) was used as a positive control. Two-way ANOVA, followed by Tukey’s posttest for comparisons among

groups (B), or paired t test (C). Data are representative of at least 2 (B), three (A), or four (C) independent experiments (mean ± SEM in B,C). *P < 0.05, n.s.,

non-significant.

survival properties when exposed to certain death-inducing
stimuli (27, 35, 36). To examine the death-inducing capacity
of ferrous ion-exposed IVIG on in vivo primed cells, death
responses of neutrophils from patients with active Crohn’s
disease (n = 3) or psoriasis (n = 5), or healthy individuals (n
= 5), were compared upon ex vivo culture and treatment with
native or Fe(II)-IVIG (Figure 4A). Enhanced death responses to
native IVIG were observed in neutrophils from Crohn’s disease
but not from psoriasis, presumably reflecting higher systemic
exposure to inflammatorymediators in vivo. Under all conditions
tested, Fe(II)-IVIG exhibited higher death responses. GM-CSF
or LPS stimulation further enhanced death responses to Fe(II)-
IVIG in healthy donor and psoriasis neutrophils, but not Crohn’s
disease neutrophils, which may be maximally stimulated in
vivo. Conditioned medium containing 25% or 50% of cell-free
joint fluid from rheumatoid arthritis (RA) patients, enhanced
IVIG-induced death, whereby both the potency and efficacy of
ferrous ion-exposed IVIG were higher (Figure 4B). These data
suggest that IVIG modification by ferrous ion exposure may
enhance the pro-apoptotic capacity of IVIG on neutrophils in
inflammatory disorders.

DISCUSSION

It has previously been shown that modification of polyclonal
IgG by protein destabilizing agents, such as ferrous ions, reactive
oxygen species or heme, leads to increased immunoreactivity
(19, 20). Notably, exposure of IVIG to ferrous ions resulted
in the newly acquired ability to bind human cytokines,
complement components and danger molecules (21). Given
that array technology allows for high-throughput profiling of
antibody repertoires (1, 15, 30, 38–40), here we employed
glycan array technology to compare immunoprofiles upon
modification of IVIG by ferrous ions, heme or low pH exposure.
The various types of modification resulted in remarkable but
heterogenous shifts of the repertoires of specificities, indicating
that these modifying agents exerted idiosyncratic effects on
the conformational diversity of a considerable proportion of
antibodies contained in IVIG. Exposure to ferrous ions, but not
to heme or low pH, enhanced the pro-apoptotic effects of IVIG
on human neutrophils by a FAS-dependent mechanism.

Our study supports the notion that mild modification
may alter the specificity repertoire of IVIG to acquire
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FIGURE 3 | Increased cytotoxicity of ferrous ion-exposed IVIG involves FAS signaling in neutrophils. (A) Concentration-dependent death response of autologous

neutrophils to IVIG (native or ferrous ion-exposed) following preincubation with polymorphonuclear neutrophils (PMNs) (IVIGPMN) or medium (IVIGmedium ). (B) Neutrophil

death upon preincubation of native or Fe(II)-IVIG with recombinant TNF-R1-, Siglec-9- or FAS-Fc proteins in presence of absence of GM-CSF or LPS. (C) Surface

expression of FAS ligand (FASL) on unprimed or primed (GM-CSF or LPS) neutrophils upon culture for 15 h in medium, native or Fe(II)-IVIG. (D) Immunoblotting

indicating native and Fe(II)-IVIG reactivity to immobilized recombinant FAS-Fc protein. (E) Blocking effect of IVIG preincubation at two different concentrations on

neutrophil death induced by an α-FAS monoclonal antibody (mAb, clone CH11). The dashed line represents the mean level of neutrophil death specifically induced by

α-FAS mAb treatment. Students t test (B), paired t test (D), one-way ANOVA, followed by Tukey’s posttest for comparisons among groups (C), or Dunnett’s posttest

with anti-FAS as control (E). Data are representative of three (A), four (D) five (C), or six (B,E) independent experiments (mean ± SEM). *P < 0.05, **P < 0.01, n.s.,

non-significant. Specific death was calculated in comparison to untreated controls as outlined in the Materials and Methods section.

immunoregulatory characteristics. In this regard, the enhanced
pro-apoptotic effects of Fe(II)-IVIG suggest that iron exposure
may enhance the anti-inflammatory potency and efficacy of IVIG
therapy in patients with neutrophil-predominant disorders, such
as Kawasaki disease. However, future studies will be required
to investigate the potential of modified IVIG in Kawasaki
disease, or other inflammatory disorders such as psoriasis
or Crohn’s disease with pathogenetic neutrophil involvement.
However, the fractionation and virus-inactivation steps in the
production of IVIG would require special attention in terms
of the sometimes considerable protein-modifying processes,
which may affect the reactivity of the polyclonal antibodies
(25), eventually depending on idiosyncratic characteristics of
their conformational diversity (18). Indeed, modification by
iron exposure did not enhance the pro-apoptotic activities of
all commercial IVIG preparations investigated, which may be
explained by the observed dependence on a distinct death

pathway involving FAS (but not Siglec-9 or TNF-R1). Thus, our
data support the concept that mild protein-modification can lead
to enhanced anti-inflammatory effects, but that the nature of the
protein-modifying agents and the pre-conditions of the IVIG
fractionation process should be considered.

More than 20 years ago, the presence of anti-FAS antibodies
in IVIG has been initially reported (37). Subsequent studies
revealed the presence of both agonistic and blocking anti-FAS
antibodies in IVIG (16, 31, 41), and the resulting effect on
neutrophil survival was shown to be concentration-dependent.
Such hormetic effects have recently been reported for tumor-
directed antibodies (42). While we observed a net increase of FAS
receptor binding activity of IVIG upon ferrous iron exposure, we
observed a reduced blocking capacity of IVIG to the monoclonal
anti-FAS antibody CH11, suggesting that FAS-mediated death by
Fe(II)-IVIG depends on a higher ratio of agonistic vs. blocking
anti-FAS antibodies.
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FIGURE 4 | Fe(II)-modification of IVIG enhances death of neutrophils under inflammatory conditions. (A) Human neutrophils freshly isolated from the peripheral blood

of patients with active Crohn’s disease (n = 3), psoriasis (n = 5), or healthy individuals (n = 5) were assessed for neutrophil death (24-h cultures; flow cytometric

ethidium bromide-exclusion assay) induced by native or Fe(II)-IVIG with or without prior priming with GM-CSF or LPS. (B) Cell death of healthy neutrophils cultured in

conditioned medium with 25 or 50% cell-free rheumatoid arthritis joint fluid, in presence or absence of native or Fe(II)-IVIG, analyzed as in (A). Students t test (A),

one-way ANOVA, followed by Tukey’s posttest for comparisons among groups (B). Data are representative of at least three (A) or four (B) independent experiments

(mean ± SEM). *P < 0.05, **P < 0.01.

in vivo studies using murine models of sepsis or autoimmune
diabetes demonstrated an increased anti-inflammatory potential
of IVIG modified by ferrous ions or heme (21–24). However,
we previously observed that mouse neutrophils are resistant to
IVIG-mediated death, suggesting that at least certain in vivo
models may not adequately reflect IVIG effects on neutrophils,
eventually due to species-differences of epitopes and molecular

pathways (15). Further challenges using current models of
humanized mice are imposed by small granulocyte fractions
(around 3%) (43).

Our study provides conceptual evidence that mild
modification influences the specificity, functional capacity,
and pro-apoptotic effects of leukocyte regulatory antibodies
in IVIG. We show that idiosyncratic differences exist between
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different protein modifying agents, which may also influence
fractionation processes and clinical responses to currently used
commercial IVIG preparations (25). However, our study also
delineates novel directions for cell-directed therapeutic strategies
in neutrophil-associated disorders through mild modification
of IVIG.
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Supplementary Figure 1 | (A and B) Binding reactivity to histone 3 (A) and

myelin basic protein (B) of IVIG before and after exposure to heme and/or ferrous

ions as analyzed by ELISA. (C–F) Binding reactivity to factor VIII (C), factor IX (D),

histone (E) and myelin basic protein (F), of a second IVIG preparation with

reported low pH treatment (company product information) as analyzed by ELISA.

Data are representative of four replications (mean ± SD). ∗∗∗∗P < 0.0001. Two-way

ANOVA, followed by Dunnett’s posttest.

Supplementary Figure 2 | Neither vehicle with ferrous ions nor ferrous

ion-exposed albumin or leftover EDTA from dialyzing has an effect on neutrophil

death as assessed by flow cytometric dye exclusion assay. (A,B) Cell death of

unprimed or primed (GM-CSF, LPS) neutrophils cultured in presence of the ferrous

ion vehicle or (A) or Fe(II)-IVIG dialyzed with or without EDTA (B). (C) Treatment

with native and ferrous ion-exposed albumin. Students t test (A), one-way

ANOVA, followed by Tukey’s (B) posttest for comparisons among groups, paired t

test (C). Data are representative of two (B), three (A) or four (C) experiments

(mean ± SEM). n.s., non-significant. Specific death was calculated in comparison

to untreated controls as outlined in the Materials & Methods section.

Supplementary Figure 3 | Death-promoting effects of commercial IVIG

preparations (shaded bars) and corresponding Fe(II)-IVIG (filled bars) on

neutrophils in presence or absence of GM-CSF or LPS. Two-way ANOVA,

followed by Tukey’s posttest for comparisons among groups. Data are

representative of nine independent experiments (mean ± SEM). ∗∗∗∗P < 0.0001,

n.s., non-significant. Specific death was calculated in comparison to untreated

controls as outlined in the Materials and Methods section.

Supplementary Figure 4 | Immunoblotting indicating native and Fe(II)-IVIG

reactivity to immobilized recombinant FAS-Fc protein. Representative dot blots

incubated with native (upper panel) and Fe(II)-IVIG (lower panel) shown. Each blot

was coated with PBS as control.
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