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Despite recent advances, the eradication of cancers still represents a challenge which

justifies the exploration of additional therapeutic strategies such as immunotherapies,

including adoptive cell transfers. Human peripheral Vγ9Vδ2T cells, which constitute a

major transitional immunity lymphocyte subset, represent attractive candidates because

of their broad and efficient anti-tumor functions, as well as their lack of alloreactivity and

easy handling. Vγ9Vδ2T cells act like immune cell stress sensors that can, in a tightly

controlled manner but through yet incompletely understood mechanisms, detect subtle

changes of levels of phosphorylated metabolites of isoprenoid synthesis pathways.

Consequently, various anti-tumor immunotherapeutic strategies have been proposed to

enhance their reactivity and cytotoxicity, as well as to reduce the deleterious events. In

this review, we expose these advances based on different strategies and their validation in

preclinical models. Importantly, we next discuss advantages and limits of each approach,

by highlighting the importance of the use of relevant preclinical model for evaluation of

safety and efficacy. Finally, we propose novel perspectives and strategies that should be

explored using these models for therapeutic improvements.
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BIOLOGY AND ANTI-TUMOR FUNCTIONS OF HUMAN Vγ9Vδ2T
CELLS

The complex immune system orchestrates with molecular and cellular components that act
concomitantly or sequentially to sense and to eliminate potential exogenous and endogenous
threats. In vertebrates, the innate immunity is the first germline-encoded and older evolutionary
defense strategy that contributes to a rapid, but poorly specific, reactivity that also remains essential
for recruiting immune cells and establishing a physical and chemical barrier. A major hallmark
of the adaptive immunity, that is associated to immunological memory and next takes place
after this initial process, is the extreme specificity against particular antigenic structures. This
slower, but highly potent, immune reactivity axis is made up of the two mainT and B lymphocyte
effector subsets. Recently, a growing class of additional cellular contributors, that express either
TCR (T Cell Receptor) or BCR (B Cell Receptor) molecules and share phenotypical and functional
characteristics from both systems has been identified. They have been differentially named as
transitional immunity, unconventional or innate-like effectors. Most well-described cell subsets
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that fall at this interface between innate and adaptive immunities
are NKT (Natural Killer T), MAIT (Mucosal Associated Invariant
T) and γδ T cells (1). This latter T cell subset expresses a
heterodimeric TCR composed of γ and δ chains, named as
opposed to α and β chains, associated to the CD3 signaling
complex (2, 3). It is important to note that, although γδ

T cell subsets are present in most vertebrates, there is little
conservation of γ and δ TCR chains and reactivities between
species. This has been evidenced by genetic studies indicating
a high heterogeneity between murine and primate TCR
genes (4, 5).

For the sake of clarity, we propose to focus this present review
on human γδ T cell biology, and more precisely, the human
Vγ9Vδ2 T cell subset, as well as their therapeutic targeting
in preclinical cancer models. The γδ TCR is composed from
a limited number of γ and δ chains (<15 Vγ and Vδ gene
segments) but this low combinatorial diversity is efficiently
counterbalanced by both an elevated junctional diversity and
pairing assembly restrictions to finally produce an extremely
diverse γδ TCR. In humans, γδ T cells are distributed into
four major subsets, which have been identified according to
the expression of δ chain segments, as Vδ1+, Vδ2+, Vδ3+,
and Vδ5+ populations (6). Following ontogeny, most γδ T cell
subsets naturally exhibit a preferential tropism for particular
tissues/organs, through yet unclear mechanisms. As a typical
example of this preferential localization, human Vγ9Vδ2 T
cells [using the nomenclature of Lefranc & Rabbitts (7)]
constitute a major subset in adult peripheral blood (8, 9).
Vγ9Vδ2T cells represent prototypical immune sensors of cellular
stress activated under various pathological contexts, such as
infections and cancer. The species-specific antigenic activation
of Vγ9Vδ2 T cells is a contact- and a TCR-dependent process.
It is important to note that this activation is not restricted
by either conventional MHC class I or II molecules, thus
theoretically minimizing the risk of alloreactive reactions for
allogeneic Vγ9Vδ2 T cell-therapies (e.g., GVHD, graft vs. host
disease). This antigenic activation process implicates mandatory
small phosphorylated carbohydrate metabolites (hereafter
called phosphoantigens, PAg), such as IPP (Isopentenyl
PyroPhosphate), which endogenous (MEV mammalian
mevalonate pathway), or exogenous (MEP microbial pathway)
expression might be altered in some pathological contexts
(e.g., cancer, infections). Recent studies have shown that
PAg levels are sensed through mechanisms involving both
BTN2A1 and BTN3A1 butyrophilins (BTN) expressed by
target cells (10–12). Accordingly, pharmacological compounds
that inhibit the synthesis (i.e., statins) or the degradation (i.e.,
aminobisphosphonates, alkylamines) of PAg in mammalian
cells can block, or induce, the antigenic activation of Vγ9Vδ2 T
cells, respectively (13, 14). Importantly, this Self -reactive nature
of Vγ9Vδ2 T cells needs to be tightly regulated by a set of
various molecules [see (15) and (16), for recent reviews], such
as adhesion molecules (i.e., CD54), activating (i.e., NKG2D) or
inhibiting (i.e., CD94/NKG2A,) NKR (Natural Killer Receptors),
FcR (Fc Receptor) (i.e., FcRγIIIA/CD16), Nectin/Nectin-like (i.e.,
CD226), TLR (Toll-like Receptor) (i.e., TLR4), cytokine receptors

(i.e., IL (interleukin)-15R, IL-21R), and immune checkpoint
inhibitors (i.e., PD-1, programmed cell death protein 1). Hence,
numerous Vδ2 T cell dysfunctions in cancer indications (e.g.,
hypo-reactivity, exhaustion) have been associated to altered
expression profiles of these molecules. In this exquisite sensing
process, Vγ9Vδ2 T cells integrate activatory and inhibitory
signals to rapidly deliver strong functional responses such as
proliferation, cytolysis (through perforin/granzyme-, TRAIL
(TNF-related apoptosis inducing ligand)-, CD95-pathways)
and cytokines (i.e., TNF (Tumor Necrosis Factor)-α, IFN
(Interferon)-γ)/chemokines (i.e., CCL3, Chemokine (C-C motif)
ligand 3)/anti-microbial factors (i.e., granulysin)/epithelial
growth factors (i.e., KGF, Keratinocyte Growth Factor) release.
These latter functions are also linked to their capacity to
help other immune effectors and induce the maturation of
antigen-presenting cells, including themselves (9). Finally, as
for most lymphocyte subsets, the migration of Vγ9Vδ2 T cells
is tightly controlled by a set of chemoattractant factors, such as
chemokine receptors. Their expression regulates Vγ9Vδ2 T cell
trafficking during physiological and inflammatory conditions
(e.g., CCR5, Chemokine (C-C motif) Receptor 5), a process that
is proposed to be of particular importance for tumor addressing
and infiltration in vivo.

For a long time, a set of compelling in vitro studies
evidenced the natural reactivity of human Vγ9Vδ2 T cells
against a broad range of human tumor cell lines and normal
cells infected by a variety of viruses, parasites and bacteria
(17–19). With respect to transformed cells, the range of cell
lines recognized by Vγ9Vδ2 T cells, initially thought to be
primarily restricted to hematopoietic tumors (20, 21), was
next extended to several solid tumors, such as renal and
colon carcinomas (22–24). Importantly, this vision has been
next modified by the availability of aminobisphophonates (e.g.,
pamidronate, zoledronate) and synthetic PAg (e.g., BrHPP,
BromoHydrin Pyrophosphate) that can further help sensitizing a
broad variety of cells to Vγ9Vδ2 T cell sensing and elimination.
Like for most γδ T cell subsets, in vitro studies showed that
Vγ9Vδ2 T cells are able to directly kill target cells and express
pro-inflammatory cytokines that can be also involved in the
clearance of tumor cells (25, 26). Altogether, these in vitro
observations supported a natural implication of Vγ9Vδ2 T cells
in protective anti-tumor immunity. Based on initial results
indicating an altered tumor growth control in TCR δneg mice
(27), several in vivo studies showed that transferred allogeneic
Vγ9Vδ2 T cells can reach and infiltrate tumor site and display
a strong anti-tumor activity as evidenced by significant clinical
benefits (e.g., survival, tumor growth) (28, 29). The implication
of Vγ9Vδ2T cells in the anti-tumor immune reactivity is
supported by the fact that infiltrating γδ T cells are considered
as a favorable cancer prognosis marker for several cancers
(30, 31), Vδ2 T cells infiltrating tumors were detected in
various types of cancer. However, their precise physiological
role might vary from one condition to another, mainly due
the heterogeneity of the tumor microenvironment which can
modulate their functions as well as their functional plasticity
(30, 31).
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RATIONALE FOR HARNESSING Vγ9Vδ2T
CELLS IN CANCER IMMUNOTHERAPY

Human Vγ9Vδ2 T cells should be considered as attractive
immune effectors of high therapeutic potential for the main
following reasons:

1. Inter-individual conservation and elevated frequency in the
peripheral blood of human adults;

2. Antigenic specificity linked to cell stress-associated molecules
whose expression is frequently dysregulated in cancer cells;

3. Clinical-grade synthetic agonist molecules, such as
aminobisphosphonates and PAg, that specifically induce
activation, expansion and sensitization of human tumor cells;

4. Simple handling and elevated in/ex vivo expansion index;
5. Absence of alloreactivity (no MHC class I/II restrictions);
6. Capacity to reach and infiltrate tumors;
7. Direct and indirect cytotoxic activities against tumor

cells, through the secretion of lytic molecules and
pro-inflammatory cytokines.

SUCCESSES AND LIMITATIONS OF
Vγ9Vδ2T CELL CANCER
IMMUNOTHERAPIES

Several types of immunotherapies that aim at helping the
immune system to better react against tumor cells, are used
to treat cancer. They include immune checkpoint inhibitors,
monoclonal antibodies and immune cell therapy. In this latter
category, active and passive immunotherapies are distinguished,
according to the approaches developed for inducing Vγ9Vδ2 T
cell activation and expansion.

Regarding active immunotherapies, several strategies have
been considered to obtain in vivo activation of Vγ9Vδ2 T cell
effectors induced following administration(s) of specific clinical-
grade agonist molecules, such as PAg or aminobisphophonates,
together with pro-proliferating cytokines (e.g., IL-2) (32,
33). These approaches originated from initial observations
describing increased frequencies of peripheral Vγ9Vδ2 T cells in
hematological cancer patients treated with pamidronate (34). In
patients with non-Hodgkin’s lymphoma or multiple myeloma,
systemic administrations of both pamidronate with IL-2 were
tolerated by patients and induced expansions of endogenous
peripheral Vγ9Vδ2 T cells, accompanied by partial remissions of
cancer in some patients (35). Next, this strategy was applied to
solid tumors (i.e., non-hormonal prostate cancer) and showed
that activation of Vγ9Vδ2 T cells in vivo was associated with
the development of a pro-inflammatory(IFN-γ) responses (36).
Following these first encouraging results, several clinical trials
have been conducted in patients with renal cell carcinoma or
bonemetastases deriving from breast or prostate cancers (32, 33).
These studies have demonstrated therapeutic responses such as
stabilized diseases and partial remissions in some patients (37–
39). More recently, the efficacy of this strategy was improved
in patients with malignant hemopathies receiving haploidentical
donor lymphocyte infusion (40). Importantly, the majority of

treated patients in these trials experienced mild side effects (i.e.,
flu-like syndrome), likely associated to IL-2, thus confirming
the reduced toxicity of this strategy. To further improve its
specificity, synthetic PAg compounds have been produced at
a clinical grade (i.e., BrHPP) and tested in vivo. In metastatic
renal cell carcinoma patients who received repeated infusions of
BrHPP and IL-2, potent Vγ9Vδ2 T cell expansions withmoderate
clinical activities were observed (41). These phase I/0 clinical
assays showed a satisfactory feasibility of this approach, with a
reduced toxicity (mainly due to IL-2) and excellent Vγ9Vδ2 T
cell expansion rates, but modest clinical efficacies, that might
have been complicated by the bad clinical condition of cancer
patients. Further studies, including assays in monkeys, next
pointed out potential issues such as the progressive exhaustion
of Vγ9Vδ2 T cells (i.e., tachyphylaxis), altered immune status,
activation contexts and tissue homing, that should be solved
to improve the therapeutic efficacy of this strategy in cancer
treatment (42).

Passive immunotherapies, which are based on ex vivo
PBL(Peripheral Blood Lymphocytes)-Vγ9Vδ2 T cell expansions
and cell transfer(s) have been tested in renal carcinoma
patients with reduced toxicity by low therapeutic efficacy (43).
Next, several clinical trials have been carried out in patients
with circulating or solid cancers, who have been treated by
adoptive transfer of autologous Vγ9Vδ2 T cells, amplified ex
vivo, associated with IL-2 and zoledronate (32, 33). In general,
these studies indicated a good feasibility but a low, although
promising, therapeutic efficacy of this therapy as evidenced
by some partial/complete cancer remissions. Clinical trials of
adoptive transfer of allogeneic Vγ9Vδ2 T cells are currently
underway. Recently, a case report of a patient with a stage
IV cholangiocarcinoma showing recurrent mediastinal lymph
node metastasis after liver transplantation was published. This
patient received consecutive infusions of allogeneic Vγ9Vδ2 T
cells which have been expanded from PBMC (Peripheral Blood
Mononuclear Cells) of a healthy donor. No adverse effects were
detected and a significant clinical response, with no detectable
peritoneal lymph node metastasis, was reported at the end of
treatment (44). Improved strategies for redirecting immune cell
effectors to target cells expressing γδ T cell tumor antigens
are being generated and tested for therapy (45). Thanks to
the significant advance of genetic engineering and transduction
approaches, the efficient expression of natural or optimized
TCR (e.g., γδ TCR) can be realized in lymphocytes (46). The
clinical-grade production of these engineered effectors [e.g.,
CAR (Chimeric Antigen Receptor) γδ T cells] has recently been
validated and is currently being tested in patients with leukemia
or multiple myeloma (33, 46).

Though promising (e.g., feasibility, safety), the results of these
clinical trials, though exploratory or phase 0/I only, stressed the
urgent need of developing new Vγ9Vδ2 T cell-immunotherapies
(e.g., combined therapies) and optimizing their use (e.g., clinical
positioning) to significantly improve their clinical efficacy in
circulating and solid oncological indications. The achievement of
this ambitious goal should require the use of robust physiological
preclinical models in vivo for assessing both the feasibility and
efficacy parameters of these strategies.
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IMPLEMENTATION OF PRECLINICAL
CANCER MODELS AND Vγ9Vδ2
IMMUNOTHERAPIES

A substantial number of preclinical in vivo cancer models,
including, for some of them, Vγ9Vδ2 T cell immunotherapies,
have been carried out using heterotopic mouse models
established with subcutaneous injections of cultured
human tumor cell lines. Among various advantages,
these approaches allow a fast and easy monitoring of
tumor growth by physical measurement of tumor volume
(47). However, these fast growing models, also generally
used for non-Vγ9Vδ2 T cell therapies, rarely faithfully
recapitulate the complexity and heterogeneity of human
oncological disease (e.g., origin of tumor cells, nature of
the environment), also because of the large number of cells
implanted in this particular localization (48, 49). Another
problem is linked to their limited ability to disseminate
(e.g., metastasis). To address this problem, it is important
to orthotopically implant tumor cells (i.e., corresponding
anatomical position) and, if possible, in a minimal quantity
to further mimic the first stages of tumor development
and its natural dissemination, according to the organ
of origin (Figure 1). Importantly, the growing tumor
should be characterized using various approaches such as
imaging, histology or analysis of the phenotype of tumor
cells to accurately determine the relevance of this model
in vivo (50–52).

An indisputable tool for creating preclinical murine models
representative of human pathology, not to mention therapies
subsequently used, is the graft of explanted tumor samples from
cancer patients. Two main strategies have been proposed: (i)
the administration of dissociated and cultured tumor cells or
(ii) the implantation of tumor fragments (hereafter called PDX,
patient-derived xenograft) (Figure 1). These human tumors can
heterotypically or orthotopically engrafted in immunodeficient
mice, such as NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJl), with
engraftment rates (40–95%) related to the presence of stroma.
In the case of dissociated and cultured primary tumor cells,
all these preparation steps might affect their phenotype and
promote the biased growth of particular tumor variants. This
issue can be addressed using tumor fragments (53) but the
implantation of such large PDX is rarely possible in orthotopic
because of size or surgical issues (e.g., intracerebral glioblastoma)
(Figure 1). The engraftment and the growth of PDX often
take 2–4 months, which can vary by tumor type, implant
location, and the strain of immunodeficient mice utilized. This
long duration parameter, further complicated by the necessity
to divide and to re-implant small fragments of grafted PDX,
strongly limits the use of PDX models and its interest for
establishing robust, homogeneous and reliable tumor mouse
models (i.e., progressive loss of tumor heterogeneity and
replacement of the human microenvironment disappears by a
murine stroma) (53).

In the absence of relevant and robust in vitro tumor
models, including the promising, but currently developed

spheroid/organoid/3D tumor systems, the development of novel
therapies still requires assessment steps in preclinical animal
models before being proposed for therapy. Their use is expected
to help predict selected therapeutic effects and analyze selected
parameters such as feasibility, side effects and toxicity. In
particular with regard to human Vγ9Vδ2 T cells, it is not
possible to use syngeneic murine models due to the lack
of counterpart of this lymphocyte subset in mice and its
species specificity (4, 5). Mostly due to an elevated cost of
care, non-human primates, which also contain PAg-reactive γδ

T cells, are ill-developed for cancer therapy studies. Highly
immunodeficient mice, such as nude or NSG mice, represent
the most relevant strains of choice for developing human
cancer and immunotherapy models. However, the downside
is that most of these immunodeficient mouse models are not
relevant for analyzing the contribution of the tumor environment
and immune system components to the anti-tumor efficacy
of immunotherapies. Rebuilding human immune system in
mice remains possible, thanks to the systemic injection of
human PBMC in irradiated mice (54). However, this approach
might generate strong xenogeneic reaction against the host,
which limits the relevance and the operational time window
for using these humanized animal models. In addition, the
management and reproducibility of these sophisticated models
remains complicated. Right now, the mostly developed method

FIGURE 1 | Mouse models for ortho- or heterotopic administrations of human

tumor cells. (A) Schematic representation of human tumor cell implantation

strategies in immunodeficient mouse (e.g., NSG). Human tumor cells from

either cell lines, primary/organoid cultures or patient-derived xenograft can be

implanted orthotopically or heterotopically, respectively. (B,C)

Immunohistochemistry (hematoxylin and eosin stainings) of orthtopic (brain)

implantation of cells from a primary culture of human glioblastoma (GBM-1) (B)

and heterotopic (subcutaneous) implantation of human prostate cancer cells

(PC-3 cell line) (C). Bars: 500µm. NJ & ES, unpublished work.
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FIGURE 2 | Molecular axes foroptimization(s) of anti-tumor Vγ9Vδ2 immunotherapies. Human Vγ9Vδ2 T cells (left, blue) can sense human tumor cells (right, red) of

diverse tissular origins, in independent or cooperative manners, through various molecular pathways implicating wild-type or engineered TCR, NKR, FcR/CD16, TLR,

CAR. Following activation, the direct (cytolysis) and indirect (e.g., pro-inflammatory cytokines release) anti-tumor reactivity might be enhanced by either agonist

compounds, such as aminobisphosphonates (NBP), standard chemo-radiotherapies or environment factors, such as cytokines (e.g., IL-21).

of humanization remains the injection/grafting of human tumor
cells into immunodeficient mice.

PATHS FOR THE DEVELOPMENT OF
IMPROVED Vγ9Vδ2 IMMUNOTHERAPIES
USING PRECLINICAL MODELS

Various preclinical strategies are currently developed to
assess the therapeutic potential of novel optimized Vγ9Vδ2
immunotherapies targeting various pathways (which are
summarized in Figure 2). In particular, several research and
clinical groups aim at proposing immunotherapeutic strategies
to enhance the reactivity and the cytolytic activity of human
Vγ9Vδ2 T cells against tumor cells (16). Of note, the routes
for treatment administration in preclinical models should be
carefully selected. Most clinical treatments are either orally or
systemically administered which might significantly contribute
to an increased toxicity or alow therapeutic efficiency (e.g.,
low specificity). An increasing number of studies evidenced
the benefits of local administrations for limiting the systemic
toxicity while increasing therapeutic doses (55, 56). These
principles should be applied, if clinically possible, for the
adoptive transfer(s) of Vγ9Vδ2 T cells.

Following an initial assessment in vitro, both orthotopic and
heterotopic preclinical models of human tumors from various
types of tissues, have been implemented in mice and used
for the following Vγ9Vδ2 T cell immunotherapy optimizations
(Figure 2):

- Natural reactivity of allogeneic Vγ9Vδ2 T cells against some
tumor cell types. For example, some human mesenchymal

GBM cells naturally overexpress NKG2D ligands that induce a
natural Vγ9Vδ2 T cell reactivity leading to the elimination of
tumor cells in vivo (57);

- Transfer(s) of human Vγ9Vδ2 T cells combined to agonist
compounds (e.g., aminobisphosphonate compounds)
administration(s) to further increase the recognition of tumor

cells by Vγ9Vδ2 T cells (47). These therapeutic components

can be injected either systemically (e.g., intravenously) or
close to the tumor sites (for solid tumors) in orthotopic
models (50, 52);

- Transfer(s) of human Vγ9Vδ2 T cells combined to radio-
chemotherapies. This strategy relies on the observations that
these first-line standard treatments are proposed for most

cancer indications and could promote cell stress events that

could increase the reactivity of Vγ9Vδ2 T cells against human
tumor cells (58–60);
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- Transfer(s) of human Vγ9Vδ2 T cells combined to
antibodies directed against inhibitory immune checkpoint
molecules (e.g., PD-1) (61) or ADCC (Antibody-Dependent
Cellular Cytotoxicity)-triggering molecules molecules (e.g.,
FcγRIIIA/CD16) (62, 63);

- Bispecific antibodies which are generated under various
molecular formats and have a dual specificity for a
selected tumor antigen (targeting) and for the Vγ9Vδ2 TCR
(activation) (64).

- Agonist antibodies targeting Vγ9Vδ2 T cell activation
molecules (e.g., ectodomain of BTN3A1) to induce a PAg-
independent, but TCR-specific, reactivity of Vγ9Vδ2 T cells
against tumor cells (65);

- Selected cytokines that can enhance the cytotoxic potential
of Vγ9Vδ2 T cells, such as IL-21 (51, 66), or boost their
proliferation during ex vivo amplification before adoptive
transfer, such as IL-15 associated to Vitamin C (67).

CONCLUDING REMARKS

In terms of phenotype and functions, the human Vγ9Vδ2 T
cell subset represents a unique and highly attractive T cell
population for designing efficient cancer immunotherapies.
However, initial clinical trials targeting this subset yielded
mixed results with both encouraging (e.g., good feasibility, weak
toxicity) and disappointing observations (e.g., modest clinical
efficacy), that could be attributed to inappropriately designed
strategies or incorrect therapeutic settings. Nonetheless, these
studies clearly met on the urgent need for proposing improved
therapies, an objective that should be achieved through the
development of more relevant and physiological preclinical
models. Although first in vivo models have been proposed
decades ago, with a major bias toward rodents (ie. mouse),
their use for designing Vγ9Vδ2 T cell-immunotherapies has

long been severely hampered by the strict species-specific
restrictions of this primate subset. However, the research in
this field widely accelerated in the past years thanks to the
emergence and development of immunodeficient murine strains
as well as improved grafting, mouse humanization and high-
dimension detection/“big data” analysis approaches. Importantly,
animal-free in vitro models (e.g., spheroids, organoids) are
currently developed and should also be used soon in this
process. Altogether, these elements should accelerate the
entry of this research field within a novel dimension, which
should be evidenced by an increased number of successful
immunotherapeutic trials in cancer patients.
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