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Food allergy is rising at an alarming rate and is a major public health concern.

Globally, food allergy affects over 500 million people, often starting in early

childhood and increasingly reported in adults. Commercially, only one approved

oral immunotherapy-based treatment is currently available and other allergen-based

immunotherapeutic are being investigated in clinical studies. As an alternative approach,

a substantial amount of research has been conducted on natural compounds and

probiotics, focusing on the immune modes of action, and therapeutic uses of such

sources to tackle various immune-related diseases. Food allergy is primarily mediated by

IgE antibodies and the suppression of allergic symptoms seems to be mostly modulated

through a reduction of allergen-specific IgE antibodies, upregulation of blocking IgG, and

downregulation of effector cell activation (e.g., mast cells) or expression of T-helper 2

(Th-2) cytokines. A wide variety of investigations conducted in small animal models or

cell-based systems have reported on the efficacy of natural bioactive compounds and

probiotics as potential anti-allergic therapeutics. However, very few lead compounds,

unlike anti-cancer and anti-microbial applications, have been selected for clinical trials

in the treatment of food allergies. Natural products or probiotic-based approaches

appear to reduce the symptoms and/or target specific pathways independent of the

implicated food allergen. This broad range therapeutic approach essentially provides

a major advantage as several different types of food allergens can be targeted with

one approach and potentially associated with a lower cost of development. This review

provides a brief overview of the immune mechanisms underlying food allergy and

allergen-specific immunotherapy, followed by a comprehensive collection of current

studies conducted to investigate the therapeutic applications of natural compounds and

probiotics, including discussions of their mode of action and immunological aspects of

their disease-modifying capabilities.
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INTRODUCTION

Food allergy is a type-I hypersensitivity reaction caused by
protein antigens found in various food sources, marked by
elevated levels of IgE antibodies that can lead to potentially
life-threatening clinical reactions. Allergic diseases are a global
health issue posing a significant social and economic burden
and reducing the quality of life (1, 2). Every year food allergy
alone costs more than USD 24 billion to the US economy, and
a recent systematic review estimated a much higher economic
burden at the household-level (2, 3). Prevalence-based studies
have reported an alarming increase in food allergy in recent years,
especially among children, reaching as high as 10% (1, 4, 5). For
example in Europe and the United States cases of food allergy
have been reported in 8–11% of the children and adult population
(6–10). More than 90% of all allergic episodes are recorded
against eight major food groups: peanut, tree nuts, milk, wheat,
soy, egg, fish and shellfish (1, 4, 10, 11). In a recent cross-sectional
survey involving over 40,000 adults in the US, it was shown that
at least 10% are food allergic, with the most common food allergy
being to shellfish followed by milk, peanut, tree nut, and fish (10).
Currently strict and careful avoidance of the offending food item
is considered the best approach for preventing accidental allergic
reactions (5). In case of accidental exposure and subsequent
severe reaction, an epinephrine auto-injector (EpiPen) is the only
life-saving option (5).

Naturally occurring bioactive compounds have been
extensively investigated in recent years for their immuno-
modulatory properties with the therapeutic potential to treat
various human diseases including asthma, diabetes, and cancer
(12–14). Bioactive compound sources such as marine algae,
Chinese herbal medicine and traditional herbal medicines have
been reported to be beneficial in modulating allergic responses
(15–17). The natural abundance of different types of marine
algae and herbal sources provides an array of options, making
them a prime source for natural-product based therapeutic
approaches (18–20).

The gut microbiome may play a significant role in regulating
the physiological, immunological and structural changes in the
gut (21–25). Gut microbiome dysbiosis is reported to influence
an array of chronic conditions including, asthma, autoimmune
diseases, and food allergy (23, 26). Probiotics in general have
therefore emerged as potential alternative therapeutics in the
past decade. Beneficial probiotic bacteria were used to modulate
the immune response through targeting Th-1, Th-2, Th-17,
regulatory T (Treg) cells and B cells (23, 26, 27). The microbiota
regulates all facets of the development of tolerance to food
proteins during the early stages of life (28). The identification
and characterization of the protective bacterial taxa and their
metabolites can assist in the development of possible therapeutic
approaches for food allergy by modulating the pathogenesis of
allergic diseases (27–30).

Active compounds isolated from natural sources, as well
as probiotics, have found immense applications in improving
human health and well-being. Over the past few decades, natural
products have been used to treat or alleviate symptoms for
various human disorders, including immune-related diseases.

In recent years, there has been a concerted effort to develop
curative treatment solutions for allergic diseases, particularly for
food allergy.

In this review, we provide a detailed insight into the
current research developments on natural bioactive compounds
and probiotics as potential candidates for the prevention and
treatment of food allergy. We discuss how alternate approaches
based on sources such as marine algae and traditional Chinese
medicine (TCM) assist in modulating and alleviating IgE
mediated allergic responses in food allergy. We then describe
probiotics that help promote intestinal immunity by altering
the composition of the intestinal microbiota, changing the
phenotype and functions of immune cells. By providing a brief
overview of the immune pathways involved in food allergy and
their modulation by natural bioactive compounds or probiotics,
we attempt to summarize our current understanding of the
underlying modes of action. We further discuss the pitfalls
and future perspectives on this approach to prevent or treat
food allergy.

MECHANISMS OF ALLERGIC REACTIONS
AND CURRENT IMMUNOTHERAPEUTIC
APPROACHES FOR FOOD ALLERGY

Food allergy is an acute hypersensitivity reaction, triggered
by IgE antibodies generated against specific food allergens.
A hypersensitivity reaction can lead to systemic or local
inflammatory responses, resulting in swelling, urticaria, eczema,
airway hyper-responsiveness, asthma, and a life-threatening
severe systemic response such as anaphylaxis.

A comprehensive overview of the mechanism of a typical
type-I hypersensitivity reaction is presented in Figure 1. The
sequences of events in the development of an allergic reaction
begins with allergen presentation to the immune system via the
gastrointestinal system, respiratory tract, or the skin, which leads
to allergen specific IgE antibody production. This phase is termed
“allergic sensitization” (Figure 1). IgE-dependent food allergies
often manifest in infancy or early childhood, however, adult-
onset food-allergies cases are increasingly recorded (10, 31, 32).
Mononuclear phagocytes in the gut and the Langerhans cells in
the skin are central to the translocation of food allergens across
epithelial barriers. The sensitization phase involves allergen
presentation to naïve CD4+ T cells by antigen-presenting cells
(APC) such as dendritic cells (DCs), resulting in the activation
and differentiation of T cells into typically CD4+ T cells.
In response, activated Th-2 cells release cytokines, including
interleukin-4 (IL-4), IL-5, and IL-13, which can promote the
immunoglobulin class switch in B cells and differentiation into
IgE secreting plasma cells (Figure 1). The secreted antibodies
bind to the FcεRI receptor on the surface of mast cells and
basophils through its Fc region. Subsequent exposure to identical
or similar allergens leads to binding and cross-linking of two
or more cell surface bound IgE antibodies. Allergen-induced
IgE crosslinking triggers biochemical signals, leading to cell
degranulation, synthesis and secretion of lipid mediators, as
well as the release of Th-2 promoting cytokines (Figure 1)
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FIGURE 1 | An overview of the immunological events occurring during allergic sensitization and effector phase upon exposure to food allergens via (A) skin and (B)

gut. (A) In the epidermis, allergens are sampled by Langerhans cells and the adaptive immune response is developed in draining lymph nodes. (B) In the gut lumen,

allergens are taken up by DCs and the subsequent events take place in Peyer’s patches/mesenteric lymph nodes. Antigen-presenting cells (Langerhans cells in A or

dendritic cells in B) present allergen-derived peptides to naïve CD4+ T-cells via MHC-class II complex. In healthy individuals, a tolerogenic immune response develops,

mediated by regulatory T-cells and IL-10. In susceptible individuals, naïve CD4+ T-cells polarize toward a Th-2 phenotype and produce IL-4, IL-5, and IL-13. IL-4 and

IL-13 induce production of allergen specific IgE antibody by B cells and clonal expansion. Allergen-specific IgE binds to FcεRI receptors on the surface of basophils

and mast cells. This entire process is called allergic sensitization. On subsequent exposure to the same allergen (via contact or ingestion), the allergens bind and

crosslink cell-bound IgE antibodies, which triggers degranulation and release of chemical mediators such as histamine, cytokines and prostaglandins. These

mediators are responsible for the manifestation of an allergic reaction. Cytokines including IL-4, IL-5, IL-6, IL-13, and TNF-α are further released which leads to

cell-mediated late-phase allergic reactions through recruitment of eosinophils and Th-2-cells. CD, Cluster of differentiation; DC’s, Dendritic cells; FcεRI, High affinity

immunoglobulin E receptor; MHC, Major histocompatibility complex; Th-2, T-helper-2; IL, Interleukin; IFN-γ, Interferon γ; TNF-α, Tumor necrosis factor-α.

(33–36). The major mediators released during degranulation
include vasoactive amines, lipids, cytokines and proteases that
are responsible for the manifestation of clinical symptoms of a
typical allergic reaction. Histamine is an early phase mediator
of an allergic reaction that causes vasodilation, an increase in
vascular permeability, and contraction of smooth muscles. The
release of proteases, like mast cell proteases (MCP), may cause
local tissue damage contributing to inflammatory conditions
including asthma (33, 34, 37). Prostaglandins and leukotrienes
follow suit and have a very similar effect on smooth muscles and
vascular dilation (38). Cytokines initiate the late phase reaction
by recruiting leukocytes such as eosinophils, neutrophils, and
Th-2 cells. Mast cell degranulation activates the release of
tumor necrosis factor (TNF) and IL-4, promoting inflammation
by attracting neutrophils and eosinophils in multiple sites.
Eosinophils and neutrophils in turn can release proteases, which
can lead to localized tissue damage (e.g., eosinophilic esophagitis)
(39). Th-2 cells may exacerbate the reaction by producing IL-5,

recruiting more eosinophils to tissue sites and causing tissue
injury (Figure 1) (39).

Currently available treatment strategies involve allergen-
specific immunotherapy (AIT) which is a specialized and
targeted treatment procedure performed to induce tolerance
in individuals against specific food allergens (40). AIT exposes
the allergic individual to small but increasing doses of the
allergenic protein, resulting in desensitization or lowered
allergen reactivity. The main goal of AIT is to achieve
sustained immune unresponsiveness to the food allergen
(5, 40, 41). There are different routes by which AIT can be
administered such as SCIT (subcutaneous immunotherapy),
SLIT (sublingual immunotherapy), OIT (Oral Immunotherapy),
IDIT (intradermal immunotherapy), EPIT (epicutaneous
immunotherapy) LNIT (local nasal immunotherapy) and ILIT
(intralymphatic immunotherapy) depending on the types of
allergens (40, 42). OIT is currently one of the preferred ways
of administering AIT for peanut, egg and milk allergy, and has
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been reported to induce desensitization (43). Recently, the Food
and Drug Administration (FDA, USA) approved PALFORZIA
[Peanut (Arachis hypogaea) Allergen Powder-dnfp, Aimmune
Therapeutics] as an OIT and the first therapeutic available for the
treatment of peanut allergy for patients aged 4 years through 17
years of age (44). However, for other food allergen sources there
are currently no curative therapies available. AIT is currently the
most researched and potentially therapeutic approach for food
allergy, which has a disease-modifying capacity.

Recently Pajno et al. published EAACI guidelines on AIT for
IgE mediated food allergy providing comprehensive information
on the evidence-based dose recommendations for different
type of AIT regimens in clinically diagnosed patients of
food allergy (41). EAACI guidelines further elaborate and
discuss the safe implementation of existing immunotherapy,
associated inherent issues and challenges based on medicinal
and social outlook (41). This review primarily focuses on
the potential of natural bioactive compounds and probiotics
as novel candidates in the prevention and treatment of food
allergy. These sources may have the potential to complement
current AIT-based approaches to provide tolerance against
allergic diseases. A specific overview on the mode of action
of marine algae, TCM and probiotics is discussed ahead,
with particular focus on natural compounds and probiotic

bacteria formulations that affect specific immunological signaling
pathways (Figures 2, 3).

NATURAL COMPOUNDS FOR FOOD
ALLERGY TREATMENT

Natural compounds have been an attractive source for the
prevention or treatment of various immunological disorders.
The efficacy of natural compounds has been extensively reported
in past decades. The sources for these natural compounds
include polysaccharides from marine algae or non-algal origins,
traditional medicinal systems such as TCM and medicinal
plants. We discuss the role and efficacy of natural compounds
in influencing allergic disorders, with a specific focus on
food allergy.

Polysaccharides
Polysaccharides are a heterogeneous group of macromolecules
with various biological properties that can act as potential
therapeutics for human diseases (45). These macromolecules
consist of large monomeric units of monosaccharides joined
together by glycosidic linkages. Polysaccharides can be
hydrolyzed by acid hydrolysis or with the aid of specific
enzymes, to produce the monomeric monosaccharide

FIGURE 2 | A graphical summary of the effects on different cell populations and cytokines, involved in an allergic immune response, after exposure to

polysaccharides, herbal medicinal plants or traditional Chinese medicine. The reported mode of action of either natural polysaccharides or medicinal plants appears to

be quite similar in murine models. Mice supplemented with abovementioned sources demonstrates reduced allergen-specific IgE antibody responses and a marked

reduction in clinical symptom severity including diarrhea and drop in temperature (clinical symptoms not shown). Reduced IgE expression levels inhibits mast cell

degranulation leading to symptomatic relief. Polysaccharides and medicinal plants mediate Th-1 pathway by expressing IFN-γ, IL-10, IL-12, and IL-22 maintaining the

intestinal epithelial barrier function and preventing antigen presentation to dendritic cells (DC). Reduced levels of chemokines such as IL-25 and IL-33 results in

decreased antigen presentation on DC’s. Th-1, T-helper-1; DC’s, Dendritic cells; IL, Interleukin; IFN-γ, Interferon gamma.
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FIGURE 3 | A graphical summary of the immunomodulatory effects of probiotic supplementation on the allergic response in small animal models. An equilibrated

intestinal epithelial barrier in conjunction with commensal bacteria used in probiotics have been shown to protect against allergic sensitization to food allergens.

Probiotic supplementation assists in maintaining the intestinal epithelial barrier’s integrity by increasing mucus production through stimulated goblet cells. Release of

IL-22 and GM-CSF by ILC cells in the lamina propria promotes mucus production and increased barrier function by stimulating Paneth cells to produce anti-microbial

peptides (not shown). Reduced intestinal permeability and increased mucus production reduces the risk of food allergen translocation into systemic circulation.

Probiotics can include a range of essential bacteria in the mix, thereby producing different metabolites responsible for elevated expression of Treg cells in the gut. An

increase in Treg cells leads to the production of TGF-β and retinoic acid, favoring localized IgA antibody production by IgA+ B-cell antibody switching in Peyer’s

patches as well as increased production of IL-10 and IL-1β. Secretory IgA antibody promote systemic tolerance to food allergens by translocating into the lumen. IL,

Interleukin; GM-CSF, Granulocyte-Macrophage Colony-stimulating factor; ILC, Innate lymphoid cells.

units (46, 47). Based on the type of monomeric units, the
polysaccharides can be distinguished as homopolysaccharides
(homoglycans) or heteropolysaccharides (heteroglycans) (48).
Heteropolysaccharides may also contain non-carbohydrate
units along with the monosaccharides. In the human gut,
Bacteroidetes, Firmicutes and Actinobacteria are some of the
dominant phyla responsible for enzymatically degrading dietary
polysaccharides and producing functional secondary metabolites
such as short chain fatty acids (SCFA’s), and mucin (45, 49).
These dominant bacterial phyla’s are responsible for secreting
different classes of CAZymes (carbohydrate active enzymes) such
as glycan utilizing glycoside hydrolases, carbohydrate esterases,
sulfatases, and polysaccharide lyases, which are further classified
and reported based on family members of respective enzymes
in the CAZy database (www.cazy.org) (50, 51). Conversely, the
human gastrointestinal system secretes a limited number of
enzymes essential for digesting dietary fiber polysaccharides
such as starch. Interestingly studies have reported the ability
of geographically distinct populations that can catabolize
marine algal polysaccharides such as alginate, carrageenan and
porphyrans (52, 53).

Different polysaccharides have been reported to contain
sugar molecules, such as galactose, rhamnose, fucose, and

arabinose, acting as immune potentiators; and reported for
their anti-coagulant, anti-HIV and anti-oxidant activities
(47, 54–57). Moreover, studies have also reported that
polysaccharides can influence the immune response upon
digestion by downregulating Th-2 cytokines and suppressing
allergic inflammatory responses in the gut (17, 58–61).
A brief summary of these investigations is provided
in Table 1.

Marine Algae

A wide variety of novel active metabolites from marine algae
have been reported for their biological properties, in particular
sulfated polysaccharides from various species of marine algae for
their anti-inflammatory, anti-allergic, anti-coagulant and anti-
oxidant activities (15, 60, 61, 73, 74). Three major groups of
marine algae: brown algae, red algae, and green algae, are the
main sources of sulfated polysaccharides. Several recent reports
have indicated that chemically active metabolites from marine
algae can suppress allergen specific antibodies such as IgE,
IgG, IgG1 by downregulating CD3, CD4, and CD8 cell surface
receptors thereby attenuating the cytokine response (e.g., IL-4,
IL-5, and IL-13), in both in vitro and in vivo models of allergy
(17, 75–78).

Frontiers in Immunology | www.frontiersin.org 5 May 2020 | Volume 11 | Article 996

www.cazy.org
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


P
ra
ta
p
e
t
a
l.

N
a
tu
ra
lT

h
e
ra
p
e
u
tic
s
fo
r
F
o
o
d
A
lle
rg
y

TABLE 1 | A summary of studies investigating the immunomodulatory effects of active oligo- and polysaccharide components from various natural sources, tested for preventative (prophylactic) or treatment (curative)

strategies, using mouse models of food allergy.

Sr. no. Source of

natural bioactive

compounds

Active

component

Allergen source Strain, route of

exposure

Treatment

strategy

Examined parameters Outcomes References

1 Undaria pinnatifida

(Wakame)

Mekabu fucoidan Ovalbumin BALB/c, NA - NA/Preventative - IL-4, IL-5, IL-13, IFN-γ

- IgE, eosinophils in BALF

- Histology (H&E)

↓ IgE producing B-cells

↓ IgE production by I.P.

administering fucoidan

(62, 63)

2 Porphyra

haitanensis (Red

Algae)

Sulfated

polysaccharides

and

R-phycocyanin

Tropomyosin BALB/c, i.p. - Treatment - Anaphylactic symptom scorin

- IL-4, IL-13, IFN-γ expression

- Histamine in feces and sera

- β-hexosaminidase and histamine by

RBL-2H3 cell

↓ Anaphylactic score

↓ Histamine and TM-specific IgE

↓ IL-4, IL-13

↑ IFN-γ

(64)

3 Porphyra

haitanensis (Red

Algae)

Sulfated

polysaccharides

(PHPS)

Tropomyosin BALB/c, i.p. - Preventative and

Treatment

- TM-specific IgE, IgG1 and IgG2a in sera

- Histamine in feces

- Histology

- IL-4, IL-5, IL-13, IL-10 and

IFN-γ expression

↓ Histamine and TM-specific IgE, IgG1

↑ IgG2a

↓ IL-4, IL-5, IL-13

↑ lymphocytic infiltration in jejunum

↑ IFN-γ

(65)

4 Gracilaria

lemaneiformis

(Red Algae)

Sulfated

polysaccharides

Tropomyosin BALB/c, i.p. - Preventative and

Treatment

- Anaphylactic symptom scoring

- MLN cell re-stimulation for IL-4, IL-13,

IFN-γ, and TGF-β

β-hexosaminidase and histamine by

RBL-2H3 cell

- Proteome Profiler

- TM array for MAPK family, AKT family

- and p70 S6 kinase in KU812 cells

↓ Anaphylactic score

Restored temperature

↓ mMCP-1, Histamine and TM-specific

IgE

↑ Foxp3 and ↓ GATA-3

↓ IL-4, β-hexosaminidase and histamine

↓ p38 MAPK

(66)

5 Oyster-derived

polysaccharides

Polysaccharides Ovalbumin BALB/c, i.p. - Preventative/

Preventative and

Treatment

- Symptomatic Scoring

- IHC Staining (H7E)

- Morphometric analysis

- Mast cell expression by toluidine blue

- IL-4, IFN-γ, T-bet expression levels

↑ Allergic diarrhea

Restored villus/crypt ratio in duodenum

↓ Mast cell infiltration in duodenum

↓ IL-4+ cells in duodenum

↓ IL-4 in splenocytes

↑ IFN-γ and T-bet

(67, 68)

6 Fructo-

oligosaccharides

Fructo-

oligosaccharides

Ovalbumin BALB/c

[OVA23-3(+/–)], mixed

in the diet

- Preventative - OVA-specific and total IgE levels

- IL-2, IL-4, IFN-γ levels

- mMCP-1 levels

↓ IL-2, IL-4, IL-13 and IFN-γ

↓ mMCP-1

↓ Total IgE

(20)

7 Eucheuma cottonii

(Gusô)

Sulfated

Oligosaccharides

Tropomyosin BALB/c, i.p. - Preventative and

Treatment

- Symptomatic Scoring

- TM-specific-IgE, IgG1 and IgG2a

- Histamine levels and mMCP-1 levels

- IL-4, IL-10, Il-13, and IFN-γ levels

Restored temperature

↓ Anaphylactic score

↓ Diarrhea incidences

↓ IgE and IgG1

↑ IgG2a

↓ MCP-1 and Histamine

↓ degranulation of mast cells in intestine

↓ IL-4, L-13

↑ IL-10 and IFN-γ

(69)

(Continued)
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Fucoidan is a sulfated polysaccharide commonly found
in different brown algae species. The anti-allergic activity of
fucoidan fromUndaria pinnatifida in ovalbumin-induced mouse
airway hypersensitivity has been shown to suppress IL-4, IL-
5, and IL-13 release and reduce concentrations of eosinophils
in bronchoalveolar lavage (79). Subsequently, another study
reported the role of fucoidan in reducing OVA-specific IgE
levels by suppressing IgE specific B cell production; thereby
downregulating IL-4 and upregulating IFN-γ expression levels
in mice (Figure 2) (63). However, Yanase et al. also reported
that intraperitoneal administration of fucoidan was more
effective, as compared to orally treated mice, showing lower
levels of OVA-specific IgE and IgG1 levels indicating the
route of administration of fucoidans can influence allergic
reactions (63).

In addition, alginic acid oligosaccharide (ALGO) from brown
algae was shown to reduce serum IgE production in β-
lactoglobulin susceptible mice (80). ALGO was also reported to
suppress the Th-2 cytokine-based responses by downregulating
IL-4 and upregulating IFN-γ and IL-12 production (Figure 2)
(18, 80). Similarly, alginate extracted from Laminaria japonica
demonstrated the prevention of allergic reactions in an OVA-
induced allergy model by inhibiting mast cell degranulation
and subsequent histamine release, lowering total serum IgE and
IL-4 levels. Histological analyses showed improvement in the
structure of intestinal epithelial villi, indicating a protective effect
of alginate in vivo (81). In a passive as well as active cutaneous
anaphylaxis model of ovalbumin and shrimp allergy in Balb/c
mice, brown macroalgae extracts from Sargassum tenerrimum,
Sargassum cervicorne, and Sargassum graminifolium (turn),
when injected peritoneally, suppressed the anaphylactic response
(77). Based on these reports, intraperitoneal administration
of polysaccharides seems to downregulate pro-inflammatory
cytokines, IL-4, IL-5, and IL-13 levels, and suppressing the
anaphylactic response through elevated production of IL-12 and
IFN-γ. However, local administration of algal polysaccharides
provides a significant challenge of extrapolating the required
dose in humans which will be much higher as compared to
the murine model (Figure 2). In a separate study, an in-vitro
treatment using a methanolic extract from brown algae Ecklonia
cava exhibited attenuation of histamine release from human
basophil cells (KU81F cells), inhibiting IgE-FcεRI interaction
to suppress degranulation and histamine release from basophil
cells (78).

Porphyran, a sulfated polysaccharide isolated from
red seaweed, popularly known as “Nori,” inhibited 2,4,6-
trinitrochlorobenzene-induced contact hypersensitivity in mice
through systemic downregulation of serum IgE antibody
and IFN-γ levels, but no change was observed in local
cytokines such as IL-4, IL-10, and IFN-γ when measured in
ear lobes (76). Recently, Sacran, a sulfated polysaccharide from
Aphanothece sacrum has been reported to suppress 2,4,-Dinitro-
1-fluorobenzene-induced atopic dermatitis by ameliorating
edema and restoring water content in the stratum corneum.
The skin barrier function was markedly restored, while specific
cytokines (IL1-β, TNF-α, and IFN-γ) and chemokine (MCP-1)
mRNA levels were suppressed, indicating an overall anti-allergic
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effect in mice. Furthermore, in vitro administration of sacran to
B cells isolated from spleen cells demonstrated no proliferative
effect. However, in vitro sacran treatment in primary mouse T
cells and Jurkat T cells significantly inhibited the proliferation of
T cells, exhibiting immunomodulatory potential (17). Porphyran
and sacran, as reported for contact hypersensitivity, could be
further explored for their immune modulating properties for
food allergy.

In red edible seaweed, specific polysaccharides such as
Carrageenan, are reported to induce low dose antigen-dependent
oral tolerance and lymphocyte anergy in β-lactoglobulin-fed
C3H/HeJ mice. However, oral tolerance was only achieved in
groups where β-lactoglobulin and carrageenan were fed before
sensitization (75). Carrageenan on its own has been the center of
controversy for its reported carcinogenic properties and toxicity
in rodents (82).

Synbiotic formulations are prepared by mixing probiotic or
prebiotics with functional dietary component and are reported
for their efficacy in alleviating milk allergy in mice (20, 83–
85). A mixture of probiotics with oligosaccharides have shown
the ability to dampen allergic responses and alter the intestinal
microbiota by reducing mast cell numbers and suppressing
edema. Synbiotic formulations were also effective in reducing
mast cell degranulation and alleviating anaphylactic symptoms
(83, 84). Recently, dietary fructo-oligosaccharides have been
reported to be involved in modulating oral sensitization to
food allergens by attenuating CD4+ T cells and regulating
Th-1 and Th-2 cytokine expression levels, thereby preventing
OVA-induced food allergy (20). In a recent study, sulfated
polysaccharides from red algae Porphyra haitanensis and
Gracilaria lemaneiformis are reported to upregulate Treg cells
and attenuate symptoms and cytokine release in an OVA-
induced anaphylaxis model in mice (85). Although efficacious in
preclinical studies, these synbiotic formulations are only reported
for milk allergy. Further research using different allergy models
should elucidate the mode of action and establishing possible
translation to humans.

Functional components have also been derived from green
algae and reported to be efficacious for a variety of diseases
such as type-2 diabetes, colitis and hepatocellular carcinoma
(86–92). Reported studies indicate sulfated polysaccharides to
be the most active component of green algae by modulating
gut microbiota, gene expression levels and carcinogenesis in
various mouse models (86, 89). Flavonoids and polyphenols
extracted from green algae have been shown to regulate gene
expression and gut microflora in type-2 diabetes mouse models
(87, 91). Furthermore, alkaloids are shown to attenuate colitis
in murine models (88, 90). A recent systematic review on
ulvan, a cell wall polysaccharide commonly found in green
algae; explored various functional components, their toxicity and
biological significance, indicating that ulvans may prove to be
beneficial for preventing allergic diseases (47). In another study,
it was reported that ulvan isolated from green algae Ulva ohnoi
demonstrated no toxicity, and only mild immunomodulatory
properties through elevated levels of IL-10 and decreased
levels of prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)
stimulated murine macrophages (93). This study also reported

that higher molecular weight components of the isolated
fraction had elevated immunomodulatory response in LPS
stimulated murine macrophages; however a minor elevation in
pro-inflammatory cytokines such as IL-6 and IL-1β was also
noted (93).

Currently, limited research evidence is available
demonstrating the efficacy of green algae to attenuate allergic
symptoms. However, some active functional components
could be utilized in future for further investigations against
food allergy.

Non-algal Polysaccharides

In addition to marine algae, mushrooms and yeasts are
prime sources of non-digestible polysaccharides (58, 94).
Compared to fucoidans or other sulfated polysaccharides,
β-glucans modulate pro-inflammatory cytokines, such as
TNF-α and IL-6 (58, 94–96). β-glucans also play a vital role
in modulating Th-1-inducing cytokine responses including
IFN-γ and IL-12. β-glucans might prove effective in alleviating
food allergies, which are primarily a Th-2 biased response,
by shifting the cytokine expression toward Th-1 cytokines,
thus suppressing clinical symptoms including decreased
body temperature and diarrhea (97). Generally, β-glucans are
considered safe but some side effects have been reported, such
as induction of nitric oxide by inducible nitric oxide synthase
(iNOS) and in some cases the induction of inflammatory
reactions (98).

Chitin and its derivatives are also reported to possess anti-
allergic potential with low to no toxicity (99–101). Chitin, an
abundant natural polymer with β1–4-linkages, is found in the
exoskeleton of insects and crustaceans as well as in the cell walls
of fungi. The deacetylated derivative is known as chitosan (102).
According to Min-Jung Bae et al., mice fed with specialized
diets consisting of chow mixed diet with α-chitin, β-chitin, and
chitosan, reduced the production of allergen specific serum IgE
in a peanut-induced anaphylactic mouse model. In all three
chitin fed groups of mice, the Th-2 cytokine response was
suppressed, leading to reduced levels of IL-5, IL-13, and IL-
10 (101).

Inulin and oligosaccharides have been reported for being
non-toxic and considered safe for human consumption (103).
Human milk derived oligosaccharides mixed with inulin,
have been reported to be effective in suppressing OVA-
induced food allergy in mice (104). For instance, galacto-
oligosaccharides and inulin supplementation (GOS/inulin) aid
in preventing food allergy in mice offspring’s by feeding
GOS/inulin combination to the mother (105). The GOS/inulin
combination altered the gut microbiota, providing long-term
protection from food allergy in the offspring while dampening
allergic symptoms and modulating the Th-1/Th-2 cytokine
balance in the mother’s immune system. However, no direct
evidence was presented that the offspring’s immune system
was influenced in any way due to the administration of
GOS/inulin to the mother only (105). In another study, human
milk oligosaccharides, 2’-fucosyllactose and 6’-sialyllactose, were
observed to suppress mast cell protease-1 expression and
mast cell numbers, with elevated expression levels of Th-1
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cytokines such as IL-10 and TNF-α in an OVA-sensitized mouse
model. A significant decrease in mast cell numbers indicated
downregulated OVA antigen reactivity but total IgE as well
as OVA-specific IgE and IgG1 and cytokines (IL-6 and IL-13)
remained similar or higher as compared to the OVA induced
group (104).

All of the aforementioned studies present preliminary
evidence on the efficacy of natural compounds from algal and
non-algal sources in preclinical studies. However, most of these
studies have inherent limitations related to compounds such as
limited knowledge of in vitro cytotoxicity of compounds, and
dose-response effect for desensitization. In addition, translating
the treatment dose from mice to humans can be difficult, as what
is considered a “safe dose” in mice might not be safe or efficacious
in humans (106).

Various dietary polysaccharides, in addition to some
prebiotic mixtures as discussed above, appear to elicit diverse
immunomodulatory effects in different tissue sites, including
the blood, gastrointestinal tract, MLN and spleen. The exact
mechanism underlying the immunomodulatory activity of
polysaccharides is not fully explored but based on existing
reports the inhibitory effects of polysaccharides on allergic
responses show a close association with immune-potentiating
activity. However, most of the investigated models include only
a narrow range of food allergens, providing the opportunity for
further investigations on the anti-allergic potential of dietary
polysaccharide for additional clinically relevant allergenic
food sources.

Traditional Chinese Medicine (TCM)
One of the most ancient and popular traditional medicinal
practice systems is traditional Chinese medicine. TCM’s are
widely investigated in health research for developing new
therapeutics for different diseases, including allergies, because
of their reported effectiveness, low cost, and fewer side effects
(16). However, the herbal medicinal system still lacks adequate
studies demonstrating efficacy in food allergy treatment. Some
herbal medicines are widely reported to be effective in several
randomized, controlled trials of asthma (107–110), indicating
that TCM has the potential as a natural therapeutic in alleviating
food allergy symptoms. A summary of current research studies
on TCM and other medicinal plants is provided in Table 2.

Studies investigating Chinese herbal medicine for the
treatment of food allergy have used the following mixtures
and components: food allergy herbal formula-1 (FAHF-1) (125),
food allergy herbal formula-2 (FAHF-2) (126), Qian Cao (Rubia
cordifolia) (113), and Qu Mai (Dianthus superbus) (127), and are
discussed in more detail (113, 125–127). FAHF-1 and FAHF-2
in particular, are well-investigated as potential therapeutics for
suppressing clinical symptoms, allergen specific IgE, IgG, and
IgG1 antibodies, and associated cytokines such as IL-4, IL-5, IL-
10, and IL-13 in murine models of peanut allergy (112, 125, 126,
128, 129).

A widely used 10-herb based formula, Wu Mei Wan, was
combined with Ling Zhi (Ganoderma Lucidum) and named food
allergy herbal formula-1 (FAHF-1) (125). FAHF-1 was reported
to dampen anaphylactic symptoms by decreasing histamine

levels in a mouse model of peanut-induced anaphylaxis. FAHF-1
alleviated the Th-2 cell response and reduced the levels of pro-
inflammatory cytokines IL-4, IL-5, and IL-13, that are responsible
for T-cell differentiation, activation of eosinophil, and basophil
and goblet cell differentiation, leading to reduced lymphocyte
proliferation in treated mice (125).

Upon further investigation, it was noted that two of the
components in FAFH-1, Xi-Xin, and Zhi-Fu-Zi could be toxic
if not prepared correctly. Therefore, these potentially harmful
herbs were removed from the formula giving the updated 9-herb
food allergy herbal formula-2 (FAHF-2) (130). Allergy treatment
with FAFH-2 was tested in a murine model of peanut allergy,
whereby mice displayed reduced anaphylactic symptoms after
oral peanut challenge (126). In a subsequent study, the C3H/HeJ
mouse model for peanut allergy was established, and FAHF-
2 treated mice presented with no anaphylactic symptoms, and
levels of peanut-specific IgE were reduced. (128). An increase
in IgG2 levels was observed, accompanied by reduced levels of
IL-4 and IL-5 in mesenteric lymph node (MLN) cells, leading
to a Th-1 based response. An increased level of IFN-γ was
also reported, showing modulation of intestinal Th-1 and Th-2
responses (112). There appears to be a synergistic effect of the
FAFH-2 herbal mixture as the individual herbs failed to provide
full benefit in a peanut induced anaphylaxis mouse model. A
highly variable response of histamine levels, Th-2 cytokine such
as IL-4, IL-5, and IFN-γ and peanut-specific IgE, IgG2a levels
were reported whenmice were treated with individual herbs from
themixture (129). Furthermore, in a clinical trial of double-blind,
placebo-controlled oral food challenges (DBPCFCs) conducted
in 68 patients with confirmed allergies ranging from peanut,
sesame, fish or shellfish, FAFH-2 was shown to be safe as a
herbal medication when confirmed using in vitro assays using
patient PBMC’s or by basophil activation; but the efficacy at
chosen dose and duration showed no significant change in
increase of tolerance to allergens when administered in allergic
subjects (131).

Additional to the extensively studied FAFH-1 and FAFH-
2 mixtures, in vitro studies of other TCM’s have also been
conducted. Lopez-Exposito et al. used the human B-cell cell
line to investigate the anti-allergic potential of the medicinal
herbs Rubia cordifolia, and Dianthus superbus, also known
as Qian Cao and Qu Mai (127). The study demonstrated a
decreased production of total IgE in vitro using U266 human
B cells. Subsequently, lower peanut-specific IgE production and
a suppressed anaphylactic response was observed in a peanut
allergy-induced mouse model. The reduced levels of histamine
production were also noted in the peanut challenge group,
indicating a suppressed allergic response (127).

Overall, in vivo and in vitro cell-based studies suggest
that TCMs that incorporate different natural herbs that
were previously unexplored for their anti-allergic effects, have
potential therapeutic value. However, as demonstrated by Wang
et al. the use of FAFH-2 as a therapeutic medicine when
investigated in a clinical study had no effect, indicating that
proper dose selection and duration of the treatment are some
of the limiting factors associated with translating TCM to
therapeutic agents. Further research in elucidating the proper
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TABLE 2 | A summary of studies investigating the immunomodulatory effects of traditional Chinese medicine and other medicinal plants, tested for preventative (prophylactic) or treatment (curative) strategies, using

mouse models of food allergy.

Sr. no. Source of TCM Component of

TCM

Allergen source Strain, route of

exposure

Treatment

strategy

Examined parameters Outcomes References

1 Actinidia arguta

(Hardy kiwifruit)

PG102 Ovalbumin BALB/c, i.p. - Preventative - Levels of IgE, IL6, IL-10

- MCP-1, Mast cell infiltration

↓ Incidences of diarrhea

↓ IgE, IL-6 and MCP-1 in serum

inhibited the infiltration of CD117 hi

FcεRI hi mast cell

(111)

2 Multiple Chinese

medicinal herbs

FAHF-2 Peanut C3H/HeJ, i.g. - Preventative - Clinical symptoms

- Histology scoring

- Histamine levels

- Peanut specific IgE and IgG2a levels

- IL-4, IL-5, IL-13, IL-10, IFN-γ,

and TGF-β

↓ Peanut-specific IgE

↓ Histamine

↓ IL-4, IL-5, IL-13

↑ IgG2a and IFN-γ

(112)

3 Kakkonto Commercially

available Kakkonto

Ovalbumin BALB/c, i.p. - Preventative - Clinical symptoms

- Th-1-cytokines (IFN-g)

- Th-2 cytokines (IL-4, IL-5, and IL-10)

- mMCP-1 analysis

↓ Incidences of diarrhea

↓ IL-4 and IL-10

↓ mMCP-1

(113)

4 Panax ginseng Ginseng Saponins Ovalbumin BALB/c, i.p. - Preventative - OVA-specific IgG, IgG1, and IgA, IgE

- IL-4, IL-12 and IFN-γ in activated

splenocytes

- Immunohistochemistry

↓ IgG, IgG1, IgA and IgE and cytokines

but not significant

(114)

5 Apple Extract Water extract

containing

polyphenols and

flavonols

Ovalbumin BALB/c, i.g. - Preventative - Allergy score

- MMCP-1

- OVA-specific IgE, IgG1, and IgG2a

- IL-4, IL-5, IL-10, and IFN-γ levels

↓ IL-4, IL-5, IL-10, IFN-γ (115)

6 Multiple Chinese

medicinal herbs

Commercial

FAHF-2

Peanut, codfish and

egg (multiple food

allergy)

C3H/HeJ, i.g. - Preventative and

Treatment

- Symptom scoring

- Histamine levels

- IgE, IL-4, IL-5 IL-10, IL13, IFN-γ, and

TGF-β levels

Symptomatic relief, ↓ Histamines

↓ allergen specific IgE

↑ IgG2a

↓ IL-4, IL-5, IL-10, and IL-13

↑ IFN-γ

(116)

7. Cissampelos

sympodialis

Plant extract and

alkaloids

Ovalbumin BALB/c Wistar rats, i.p. - Treatment - Diarrhea scoring

- OVA-specific IgE

- IL-12p70, IL-13, and IFN-γ

- Flow cytometry of mesenteric lymph

node cells

- Gut histology

↓Diarrhea incidences

inhibition of mast and eosinophil cell

activities

↑ proportion of Treg cells in the CD4+ T

cell population

(117)

8. Arecae semen Polyphenol-

enriched areca nut

extracts (PANE)

Ovalbumin BALB/c, i.p. -

- Preventative

- Diarrhea scoring

- Spleen index and cellularity

- Total IgE production

- Histology

- OVA-specific IgE

↓Diarrhea incidences, ↓ infiltration and

degranulation of mast cells in the

duodenum

(118)

(Continued)
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TABLE 2 | Continued

Sr. no. Source of TCM Component of

TCM

Allergen source Strain, route of

exposure

Treatment

strategy

Examined parameters Outcomes References

9. Formula-3 Mixture of 6

traditional Chinese

herbs

Ovalbumin Brown–Norway rats,

i.g.

- Preventative and

Treatment

- H&E staining of small intestine

- Mast cell staining

- IL-4, IL-10 levels

- Histamine levels

↓ IL-4 and IL-10

↓mast cell number in intestinal mucosa

(119)

10. Scutellaria

baicalensis

Baicalein Ovalbumin BALB/c, i.p. - Preventative - Diarrhea, temperature and anaphylactic

score

- OVA-specific IgE, IgG1, IgG2a level

analysis

- cytokine analysis (IL-4, IL-5, IL-10,

IL-12, IL-13, IL-17, and IFN-γ)

↓Diarrhea score, reduction in anaphylactic

response, restored temperature

↓IgE

↓ IL-4, IL-5, IL-10, IL-13, and IL-17

(120)

11. Curcuma longa Ethanol extract

(dried) of Turmeric

and curcumin

Ovalbumin BALB/c, i.p. - Preventative - Diarrhea, temperature and anaphylactic

score

- OVA-specific IgE, IgG1, IgG2a, and

mMCP-1 levels’

- IL-4, IL-5, IL-13, IL-17 and TGF-β levels

↓ in diarrhea score, ↓ in anaphylactic

response, restored temperature

↓ IgE

↓IL-4, IL-5, IL-13, and IL-17, ↑ TGF-β

(121)

12. Poria cocos Poria cocos bark

(PCB) extract

Ovalbumin BALB/c, i.p. - Preventative - Diarrhea

- Temperature

- Anaphylactic response

- IL-4, IL-5, IL-10, IL-13, IL-17, TGF-β,

and IFN-γ

↓Diarrhea occurrence, ↓ Anaphylactic

response, restored temperature

↓IL-4, IL-5, IL-13

↑ TGF-β

(122)

13. Scutellaria

baicalensis

Baicalein Ovalbumin BALB/c, i.p. - Preventative - Diarrhea

- Temperature

- Anaphylactic response

- Total IgE

- mMCP-1 levels

- IFN-γ, IL-12, IL-4, IL-5, IL-13, IL-17, and

TGF-β levels

- Histological analysis

↓Diarrhea and anaphylactic response,

restored temperature

↓ total IgE and mMCP-1

↓IL-5, IL-10, IL-12, and IL-13

↑ TGF-β

(123)

14. Citrus Tachibana Ethanol extracts of

C. tachibana leaf

extract (CLE),

plant branch

extract (CBE), and

fruit body with peel

extract (CFE)

Ovalbumin BALB/c, i.p. - Preventative - Rectal temperature

- Anaphylactic score

- Diarrhea score

- IL-4, IL-5, IL-12, IL-13, and IFN-γ levels

↓ Diarrhea and anaphylactic response,

restored temperature

↓IL-4, IL-5, IL-13, IL-12, and IFN-γ

(124)

i.p., Intraperitoneal; i.g., Intragastric.
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dose, toxicity and mode of action using humanized mouse model
or ex vivo methods accompanying these natural herbs could be
an essential step for future therapeutic applications.

Other Medicinal Plants
Apart from the numerous studies using TCM, other medicinal
plants and components of plants have been assessed in various
preclinical and clinical studies of food allergy.

Kakkonto, a Japanese herbal medicinal mixture of seven
herbs, is also reported to possess anti-allergic potential. Kakkonto
was analyzed in a mouse model of OVA-induced food allergy
to study changes in gastrointestinal symptoms (113) (Table 2).
Kakkonto-treated mice demonstrated a lower incidence of
diarrhea; however, no significant changes were observed for
OVA-specific IgE compared to untreated mice. Differential
expression and transcription analyses of proximal colon also
revealed downregulation of the Th-2 cytokines IL-4, IL-5, IL-
10, and IL-13, as well as Th-1 cytokine IFN-γ, upon Kakkonto
administration. Histological analyses further indicated that
the suppression was largely due to a decrease in mast cell
numbers in the colon of the Kakkonto treated mice (113, 132,
133). In a separate study, Yamamoto et al. also demonstrated
that Kakkonto administration effectively downregulated early
antigen activation marker T cells (CD69+CD4+ T cells) and
upregulated Foxp3+CD4+CD25− T cells in the lamina propria,
suggesting that Treg cells play a pivotal role in suppressing
the effector T cell response (132). Furthermore, in another
study these claims were supported by administering Kakkonto
through oral immunotherapy with OVA and demonstrated
upregulated Foxp3+CD4+ regulatory T cells (133). Kakkonto,
despite showing promise in downregulating the expression of
Th-2 cytokines locally in the tissue, was unable to reduce the
antigen-specific antibody responses which could be a limiting
factor if used as preventation alternative or in combination with
oral immunotherapy.

A water-soluble extract, PG102 prepared from Actinidia
arguta (Hardy Kiwi), also suppressed allergic diarrhea in an
OVA-induced mouse model, by reducing IgE production and
inhibiting mast cell infiltration in the large intestine. PG102
treated splenocytes expressed lower levels of IL-6 and MCP-1,
ameliorating the allergic response (111).

Red Ginseng extract of Panax ginseng (red ginseng root) was
also investigated in an OVA- induced mouse model (114). Mice
treated with red ginseng extract displayed reduced IgG1 levels,
however no change in OVA-specific IgE levels. The treatment
nevertheless altered the expression levels of IL-12 and IFN-γ in
stimulated splenocytes by upregulating the Th-1 response. Also,
the extract-treated mice demonstrated elevated levels of CD8,
IFN-γ, and IgA-positive cells in the small intestine, indicating
suppression of the allergic response (114).

The efficacy of polyphenol-enriched apple extract was
reported in an OVA-induced food allergy model (115). BALB/c
mice fed with apple extract had significantly reduced mouse
mast cell protease (MMCP-1) levels, thus suppressing allergic
symptoms after challenge. Re-stimulated MLN cells had lower
levels of IL-4, IL-5, and IL-10; 2-fold differences in relative

mRNA gene expression of IL-5, IL-13, CCL11, IL-10, and IFN-
γ cytokines in Peyer’s patches as well as IL-13, CCL11, GATA3,
IL-12, and IFN-γ in the ileum, indicated suppression of the
local allergic response in the intestine. The findings indicate that
protein–polyphenol interaction might be the mechanism behind
mitigating the gene expression of cytokines and the production
of mast cell proteases, thereby reducing the allergic response in
mice (115).

Cissampelos sympodialis (Bindweed) and Arecae semen (Areca
Seed) extracts have also been reported as anti-allergic in OVA-
induced food allergy models. In two separate studies, C.
sympodialis derived alkaloids, and A. semen-derived polyphenols
decreased OVA-specific IgE and IL-4 cytokine levels. A. semen
has also been reported to induce functional myeloid-derived
suppressor cells, primarily responsible for the suppression of T-
cell responses. Both extracts have been reported for attenuating
the allergic response by increasing gutmucus production, thereby
reducing antigen retrieval permeabilization and downregulating
pro-inflammatory cytokine levels (117, 118). However, A. semen
has also been reported for its toxic effects in rats if high doses are
administered for extended times which does limits its efficacy if
the dose has to be increased for humans (134).

Previous studies conducted on the anti-allergy effects of
Scutellaria baicalensis (skullcap) extract, purified epicatechin
(natural phenol and antioxidant) and polyphenol-enriched
extract, Curcumin longa (turmeric), Citrus tachibana (tachibana
orange) leaf extract and ethanolic extract of Syzygium formosum.
Here, a modulated Th-1 immune response to counteract
the antigen-specific Th-2 cell immune response in an OVA-
induced mouse model were observed (120, 121, 124, 135,
136). Treatment groups demonstrated a reduced OVA-specific
IgE response, downregulated mast cell function, and decrease
in IL-4, IL-5, IL-10, and IL-13 levels (120, 124, 135, 136).
Allergic symptoms in treated mice were also diminished,
probably through the induction of Th-17 cytokines and IL-
22, indicating an elevated Treg expression (120, 135). Despite
showing promise as an anti-allergic curcumin the base compound
isolated from Curcumin longa (turmeric) is now classified as
a pan-assay interference compounds (PAINS) candidate (137).
PAINS compounds are chemically classified compounds known
to exhibit false positive results in bioassays and are screened
using high throughput screening methods (138). The current
body literature on PAINS is still emerging and adding more
knowledge regarding the compounds that can potentially be
interfering in the process of recognizing truly bioactive natural
compounds (139).

Treg cells are important for maintaining gut homeostasis and
therefore, generated through introducing bioactive compounds
to suppress allergic symptoms (123, 132). One such study
involved Baicalein, a natural flavonoid isolated from Scutellaria
baicalensis commonly known as Chinese skullcap, has been
reported to induce a Treg cell response. Baicalein was also
demonstrated to modulate the intestinal barrier function by
regulating tight junctions, in an OVA-induced mouse model.
Baicalein reduced Th-2 cytokine levels (IL-4, IL-5, IL-10, and IL-
13) and mast cell degranulation. Intestinal barrier function was
restored bymaintaining tight junction protein levels of claudin-1,
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Zonula occludens-1 and the junctional adhesion molecule.
Induction of Treg expression induction, as verified through
CD4+Foxp3+ T cell differentiation-based gene expression levels,
indicated the involvement of the aryl hydrocarbon receptor.
Baicalein acted as a potent agonist leading to suppression of the
allergic response through induction of Tregs (123).

Further research aimed at isolating a single or combination
of bioactive molecules may lead to a targeted therapeutic
approach for treating allergic diseases. Studies reporting clinical
interventions based on natural bioactive compounds from plants
are very limited in terms of food allergy. Future in-depth
investigation could help in establishing plant-derived natural
compounds as potential alternatives for alleviating food-induced
allergic reactions.

HEALTHY GUT AND MICROBIOTA

The human intestine has various types of bacteria that adapt to
the environment of the host’s intestine, creating the intestinal
microbiota. Diet and breast milk plays a significant role during
infancy as they influence the bacterial microbiota in humans
in the early stages of life, and any dysbiosis in microbiota
may contribute to the development of allergy (140). The gut
microbiota is in a constant state of flux dictated by our diet
and lifestyle. Hence, probiotic formulations can be used as
an alternative source of commensal bacterial organisms to
alleviate the dysbiosis of microbiota in diseased conditions
such as food allergy. Administration of probiotics can modulate
the production of secondary metabolites such as SCFA’s, and
protective antibodies (IgA) to counteract the loss of intestinal
immunity (141). Studies investigating the efficacy of probiotic
formulations for different food allergies are discussed below.

Probiotics
The role of intestinal microbiota in the development of the host
immune system and the induction of immune tolerance has
recently gained interest surrounding the consumption of natural
dietary supplements such as probiotics. Probiotics are considered
safe for human consumption if sold as dietary supplements
according to the FDA, as they fall under the broad category
of food items (142). Despite the marked rise in food allergies
and intolerances, probiotics remain underutilized as a treatment
despite an emerging body of research implicating the critical role
of gut microbiota and their metabolites in the treatment of food
allergies and intolerances.

The human gut typically harbors a diverse array of intestinal
microbiota, which is dominated by four bacterial phyla:
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria
(143). During the digestion process, food proteins are hydrolyzed
through biochemical processes involving stomach acid, bile
duct juices and enzymes such as pancreatin and pepsin. These
hydrolyzing processes results in varying sizes of food proteins
being broken down into smaller peptides while some remain
intact. These peptides and intact proteins are then subsequently
presented to gut-associated lymphoid tissue (GALT) (144, 145).
Early life exposure to smaller peptides from hydrolyzed proteins
in the gut tend to aid oral tolerance induction (146). The mucosal

immune system of the gut (GALT) continuously distinguishes
non-allergenic food antigens from allergenic food antigens to
establish oral tolerance to specific food antigens (144, 145).
Commensal bacteria in the gut can aid this immune tolerance
against food allergens by interacting with the mucosal immune
system of the gut (GALT) (23). Immune tolerance seems to
be primarily achieved during the early stages of life when
the mucosal barrier and immune system are immature (26).
Early experiments using germ-free mice demonstrated that
impaired structure and function of CD4+CD25+Foxp3+ Treg
cells within the mesenteric lymph nodes and Peyer’s patches
could be the key mediators for the induction of tolerance (147–
149). Similarly, another study in germ-free mice demonstrated
that early introduction of Bacteroides fragilis can reinstate the
impaired GALT and induce tolerance during the neonatal period
by inducing Treg cells via IL-10 instigated pathways (150). A
number of studies have indicated that alterations in the diversity
of commensal gut microbiota (dysbiosis) could lead to the
development of food allergies or other diseases (23, 26, 28, 151).

Clinical interventions to analyze the effects of such alterations
have been mostly performed in infants and children. Decreased
abundance of Lactobacilli and an increased abundance of
Staphylococcus aureus seem to be associated with egg and milk
allergies in children (152). Recently, S. aureuswas also implicated
as bacterial allergen in allergic diseases that may exacerbate
symptoms of asthma, atopic dermatitis and allergic rhinitis (153).
Another study on infants showed that decreasing the levels of
the genera Lactobacillus and Bifidobacterium made infants up
to 2 months of age susceptible to the development of allergy to
egg white, cow’s milk, and inhalant allergens (154). In infants,
oral administration of L. salivarius, L. paracasei, B. animalis,
and B. bifidum significantly reduced the occurrence of atopic
sensitization to common food allergens (155). This alteration
in microbial diversity not only leads to an increased risk of
food allergies but may also enhance the possibility of non-
immunological food intolerances to gluten, and indigestible
polysaccharides (Fermentable Oligo-, Di-, Mono-saccharides
And Polyols, or FODMAPs) (156). Probiotic administration has
been shown to significantly alter the gut microenvironment
through promoting changes in the local microbial diversity, and
holds therapeutic potential for the treatment of food allergy and
induced intolerance (23).

Preclinical studies using probiotics have investigated the
mechanisms leading to the amelioration of food allergic
outcomes (Table 3). In an OVA-sensitized murine model, the
introduction of Bifidobacterium infantis upregulated commensal
gut bacteria including Coprococcus and Rikenella at the
genus level, which are usually responsible for maintaining
immune homeostasis. Subsequently, mice that were orally
administered with probiotics were reported to have low levels
of allergen-specific IgE and IgG1, suppressed diarrhea and
lowered IL-4, IL-5, and IL-13 levels (Figure 3) (151). A recent
study reported the role of commensal bacteria, colonized
in germ-free mice from healthy infants and cow’s milk
allergic infants, exhibiting different transcriptome signatures
in ileum measured using 32 differently expressed genes
(28). This study also reported protection against cow’s milk
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TABLE 3 | A summary of pre-clinical studies investigating the role of probiotics tested for preventative (prophylactic) or treatment (curative) strategies, in reducing the progression or clinical symptoms in various mouse

models of food allergy.

Sr. no. Source of probiotics Bacteria (genera or

strain)

Allergen source Strain, route

of exposure

Treatment

strategy

Examined parameters Outcomes References

1 VSL#3 Lactobacillus

acidophilus, L.

delbrueckii subsp.

bulgaricus, L. casei, L.

plantarum,

Bifidobacterium longum,

B. infantis, B. breve,

Streptococcus salivarius

subsp. thermophilus

Shrimp tropomyosin C3H/HeJ, i.g. - Treatment - Clinical symptoms

- Histamine (fecal)

- Cytokines (IL-5, IL-10, IL-13, and IFN-γ)

- FACS (anti-CD3 and anti-CD4)

- Intracellular cytokine staining (IL-4, IL-10,

IL-17, and IFN-γ)

- Tropomyosin specific IgE, IgG1, and IgG2a

- Total IgA (feces)

- Tropomyosin specific IgA (feces)

- Foxp3, IL-17, and IL-27 expression

(jejunum)

- IL-10, TGF-β, IL-4, IL-5, IL-13, and IFN-γ

levels (jejunum extract)

↓ Clinical symptoms

↓ Histamine levels

↓ in tropomyosin-specific IgE

↑ in tropomyosin-specific IgG2a

↓ IL-5 and IL-13

↑ IL-10 and IFN-γ

↑ IFN-γ+ and IL-10+ CD4+ T cells

No change in IL-4+ T cells

IL-17+ cells not induced

↑ in total IgA and tropomyosin-specific IgA

↓ IL-4, IL-5 and IL-13

↑ FOXP3, IL-10, IL-17, IL-27, and

TGF-β expression

(157)

2 Lactobacillus brevis

HY7401, L. casei

YIT9029 strain Shirota,

Bifidobacterium longum

HY8001

Lactobacillus brevis, L.

casei and

Bifidobacterium longum

Ovalbumin OVA-TCR

transgenic, i.g.

- Preventative - Clinical symptoms

- OVA-specific IgE, IgG1 and IgG2a

- Total IgE, IgG1 and IgG2a

- Cytokines (IL-4, IL-5, IL-6, IL10-, IL-12,

and IFN-γ)

Mild relief in clinical symptoms

↓ in total IgE, IgG2a

↓ in OVA-specific IgE, IgG1 IgG2a

↑ IFN-γ

↓ IL-5, IL-5, IL-6, and IL-10

(158)

3 Purina Mouse Lab Diet

5015 supplemented with

Primalac 454 Feed

Grade Microbials

L. acidophilus,

Lactobacillus casei,

Bifido bacterium bifidium,

and Enterococcus

faecium

Peanut extract C3H/HeJ, i.g. - Preventative - Body weight

- Total plasma IgE levels

- L. acidophilus quantity in feces

- Flow cytometry for lymphocyte cells

- PCR array for Th-1 and Th-2 cells

gene expression

No observable clinical symptoms

↑ count of L. acidophilus

No change in body weight of treated group

↑ IgE levels

↑ CD4+CD25+ splenic lymphocyte

↑ CD4+CD25+FoxP3+ positive Treg cells

↓ CCL11, IL-13, IL-6, IL-9, TNF-α and

IL-17 expression

(30)

4 Extracellular vesicles or B

longum KACC 91563

and E faecalis KACC

91532 mixture

Bifidobacterium and E

faecalis

Ovalbumin BALB/c, i.p. - Preventative - Clinical symptoms

- Apoptosis assay

- In situ TUNEL assay

- Confocal microscopy

- Proteomic analysis

- Flow cytometry

- ELISA for IL-4, IL-5, IL-10, IL-13, IL-17A,

IFN-γ, and MCPT-1

- Ova-specific IgE ELISA

↓ in diarrheal occurrence upon feeding B longum

KACC 91563

↑ in diarrheal occurrence upon feeding E faecalis

KACC 91532

No effect on OVA-specific IgE levels

↑ in IL-4, IL-5, IL-9, Il-10, and IL-13

IL-17 ND

↓ in MCPT-1

↑ apoptosis by B longum KACC 91563

↑ uptake of extracellular vesicles by BMMC’s

(159)

5 Lactobacillus,

Bifidobacterium,

Lactococcus,

Streptococcus

21 Lactobacillus species,

6 Bifidobacterium

species, 2 Lactococcus

species, and 2

Streptococcus species

strains

β-Lactoglobulin BALB/cByJ

mice, i.g.

- Preventative - Human PBMC’s stimulation by probiotics

- Total IgE, Total IgG1, Total IgG2a

- BLG-specific IgE

- Anti-BLG IgG1 and IgG2a

- Plasma levels of MCP-1

- Cytokines (IFN-γ, IL-12p70, IL-4, IL-5, and

IL-10) in BLG-stimulated splenocytes and

MLN’s

- Th-1,Th-2,Th-17 and Treg gene expression

- Cecal-microbiota analysis

↓ IL-4, IL-9, IL-17A, and IL-22 (PBMC’s)

↑ IL-6, IL-10, IL-12p70, and IFN-γ (PBMC’s)

(160)

(Continued)
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TABLE 3 | Continued

Sr. no. Source of probiotics Bacteria (genera or

strain)

Allergen source Strain, route

of exposure

Treatment

strategy

Examined parameters Outcomes References

6 Milk, Probiotic Dahi

(La-Dahi and LaBb-Dahi)

and Normal Dahi

Lb. acidophilus LaVK2,

Bifido. bifidum BbVK3,

Lactococcus lactis ssp.

cremoris NCDC-86, and

Lc. lactis ssp. Lactis

biovardiacetylactis

NCDC-60

Casein/Whey

protein

Swiss albino,

i.p.

- Preventative - Whey protein specific IgA in intestinal fluid

- Whey protein specific IgE in serum

- IL-4, IL-10, IL-12, and IFN-γ

- RT-PCR for IFN-γ , β-microglubulin, TGF-β,

IL-4 and IL-10

↓ total IgE (La-Dahi and LaBb-Dahi)

↓ specific-IgE (LaBb-Dahi)

↓ IgG (La-Dahi and LaBb-Dahi)

↑ specific-IgA (Dahi, La-Dahi and LaBb-Dahi)

↓ IL-4 (Dahi, La-Dahi and LaBb-Dahi)

↑ IL-10, IFN-γ, IL-12 (Dahi, La-Dahi and

LaBb-Dahi)

↑ IFN-γ and IL-10 expression (Dahi, La-Dahi and

LaBb-Dahi)

↓ IL-4 expression (La-Dahi and LaBb-Dahi)

(161)

7 Bifidobacterium infantis

CGMCC313-02 powder

Bifidobacterium infantis β-Lactoglobulin BALB/c, i.g. - Preventative - β-Lactoglobulin-specific IgE and IgG1

- Total IgE

- IL-4, IL-10, IL-13, and IFN-γ in serum

- Histology of intestine

↓ total IgE and IgG1 (prevention and pre-treated

groups)

↑ Body weight

↓ signs of inflammation (prevention and

pre-treatment groups histology)

↓ IL-4, IL-10 and IL-13

(162)

8 Bifidobacterium infantis Bifidobacterium infantis Ovalbumin BALB/c, i.g. - Preventative - Ova-specific IgE and IgG1

- 16s rRNA sequencing

- Bioinformatics analysis

↓ OVA-specific IgE and IgG1

↓ IL-4, IL-5, and IL-13

Positive correlation between operational taxonomic

units(OTU’s) between groups

Abundant Bacteroidetes and Firmicutes (Phyla

level)

Abundant Lachnospiraceae

S24-7, Rikenellaceae, and Ruminococcaceae

(Family level)

Abundant Coprococcus and Rikenella (Genus

level)

143 unique KEGG Orthologs (KOs)

(151)

9 Korean traditional

fermented foods and

Kimchi

Lactobacillus pentosus

KF340, Lactobacillus

paracasei

698, Lactococcus lactis

KF140, Pediococcus

pentosaceus KF159 and

Bacillus subtilis 26N

Ovalbumin BALB/c, i.p. - Preventative - Clinical Symptoms

- Total IgE

- Ova-specific IgE

- Cytokine levels (IFN-γ, IL-12, IL-4, IL-5,

IL-13, IL-10, and IL-17)

- Immunofluorescence staining

(CD4+Foxp3+ lymphocytes)

↓ anaphylactic response

↓ diarrhea

Restored temperature

↓ total IgE

↓ OVA-specific IgE

↑ IL-12 and IFN-γ

↓ IL-4, IL-5, IL-10, IL-13, and IL-17

↑ CD4+Foxp3+ T-cell population and TGF-β

(163)

10 Lactobacillus plantarum

ZDY2013, L. plantarum

WLPL04, L. rhamnosus

GG

Lactobacillus plantarum,

Lactobacillus. rhamnosus

β-Lactoglobulin BALB/c, i.p. - Preventative - Clinical symptoms

- Total IgE, IFN-γ, IL-4, IL-17A, and TGF-β

- Histology (colon)

- IL-12A, IFN-γ, IL-4, IL-10, TNF-α, TBX21,

GATA3, RORC, Foxp3, OCLN, CLDN1, and

TJP1 expression in Ileum

- 16s rRNA sequencing

↓ anaphylactic response

↓ total IgE

↑ IFN-γ

↓ IL-4 and TGF-β

↑ TBX21, IFN-γ, IL-12, IL-10, FOXP3 (LGG)

↓ GATA3, RORC, TBX21, IFN-γ (ZDY2013)

↓ IL-4 and GATA3 (WLP104)

↑ FOXP3 (WLP104)

↑ CLDN1 (LGG, ZDY2013) and OCLN (ZDY2013)

Prevent histological changes (LGG, ZDY2013,

WLP104)

Abundant Firmicutes, Bacteroidetes,

Proteobacteria, and Actinobacteria (phyla level)

Significant taxonomic differences

(164)

i.p., Intraperitoneal; i.g., Intragastric

F
ro
n
tie
rs

in
Im

m
u
n
o
lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

1
5

M
a
y
2
0
2
0
|V

o
lu
m
e
1
1
|
A
rtic

le
9
9
6

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pratap et al. Natural Therapeutics for Food Allergy

allergy in germ-free mice colonized with fecal matter from
healthy infants, and reported Anaerostipes caccae, a clostridial
species as being responsible for preventing food allergy
development (28).

Disruption to the barrier function of intestinal epithelium
increases the permeability of the mucosal lining, increasing
exposure to allergens, pathogens, and toxins. Tight junction
integrity plays a vital role in preventing antigen uptake from the
intestinal lumen to the blood and is responsible for maintaining
the structural integrity of the lumen. Probiotics are mainly
comprised of Lactobacillus, Bifidobacteria and Saccharomyces
genera which release metabolic molecules such as SCFA’s,
including butyrate, that up-regulates the expression of tight
junction proteins (165).

Allergic disorders are the result of IgE antibody isotype
switching by IL-4, and moderately by IL-13, leading to the
upregulation of pro-inflammatory cytokines including IL-5, IL-
6, and the subsequent allergen-specific IgE response. Such
responses occur as a result of a shift in the Th-1/Th-2 balance
that leads to an elevated Th-2 response. Probiotics can diversify
the local microbiota and thus modulate immune dysbiosis by
enhancing the Th-1 response (Figure 3) (166). A diversified local
microbiota can potentially activate Toll-like receptors such as
TLR-2 that are responsible for the differentiation of IgA from
naïve B cells. In turn, increased IgA production can assist in the
development of immune tolerance against IgE mediated allergic
responses (167) (Figure 3).

Treg cells play a vital role in the acquired immune response by
suppressing the action of mast cells and basophils, which results
in downregulation of the IgE-mediated response. In a mouse
model of OVA-induced food allergy, Treg-associated TGF-β
production was induced by oral administration of Lactobacillus
acidophilus strain L-92 (168).

These promising findings in a preclinical scenario indicate
that probiotics can improve the homeostasis of intestinal
microbiota and reduce intestinal inflammation. Most of
the aforementioned studies have provided a promising
outlook on the potential of probiotics, but more empirical
evidence and clinical data is needed for recommending the
use of probiotics against food allergy. Currently no official
guidelines or clinical recommendations are in place for the
use of probiotic formulations as a preventative or treatment
regimen for food allergy. However, the current body of
literature present a strong case for probiotics as a potential
therapy in preclinical studies for food intolerances and
allergic diseases.

Probiotic use in randomized clinical trials have resulted
in mixed and inconsistent data showing little efficacy for
preventing food allergy (169). Different systematic reviews
and meta-analyses of randomized control studies, reporting
on the use of probiotic formulations or specific bacterial
strains and concluding that the current body of evidence
has technical fallacies, biasness and imprecise estimated
effects. The overall conclusion of these systematic reviews
was that supplementing probiotics to infants, pregnant
women or children does not reduced the risk of food
allergy (169–171). However, more stringent and rigorous

research approaches could be designed, based on already
available studies, to identify probiotic supplementations that
still holds a promising position to help individuals with
food allergy.

CURRENT PITFALLS AND FUTURE
PERSPECTIVES

Current research into natural products and probiotics has
demonstrated potential beneficial effects on the human immune
system and gut, with promising results in the prevention
and treatment of various diseases. The current literature
also demonstrates positive effects of these natural sources in
suppressing allergic symptoms, mostly through reducing the
generation of allergen-specific IgE antibodies, downregulation
of effector cell activation (e.g., mast cells) or expression of Th-
2 cytokines assisting in the progression of allergic reactions.
However, the majority of investigations analyzing various natural
sources have been conducted in small animal models or using
in vitro cell-based assays. Most studies discussed in this review
are lacking the assessment of in vitro cytotoxicity of the reported
bioactive compounds or extracts before being investigated in
preclinical studies (172). Another limiting factor affecting the
design of these preclinical and clinical studies is that they lack
PAINS compound screening as discussed earlier (138). Screening
for PAINS compounds using electronic filters can limit false
positive discoveries of certain compounds. However, PAINS
filters should be implemented with utmost care as over simplistic
approaches can lead to the selection of inactive compounds,
which however can be addressed by following recommendations
discussed by Baell et al. (139).

Screening for an alternate therapeutic approach is an
important avenue and preclinical research serves as a crucial
stepping-stone in the identification of potential therapeutic
candidates for human use. It is essential that efficacy is
investigated in a streamlined manner (e.g., in vitro, in vivo
and phase 1 and 2 clinical trials) to reaffirm the safety and
usefulness of such compounds. In general, mouse models that
are currently being used for inducing food allergy have some
intrinsic limitations. Presently, mouse models of food allergy
are developed with the help of adjuvants (e.g., alum, freund’s
complete adjuvant and cholera toxin B) in genetically distinct
mouse strains (e.g., Balb/c or C3H/HeOuJ) using different routes
of sensitization (e.g., intraperitoneal and intragastric) (173–
175). Hence, most studies reporting the efficacy in murine
systems tend to fail or show no efficacy when replicated in
clinical studies (106). Proper reporting of studies by following
the ARRIVE guidelines set for reporting research conducted
in animals can help overcome some of these issues that are
plaguing the reproducibility and translation issues in preclinical
research (176).

Probiotic formulations also have several limitations such
as risk of sepsis, overstimulation of the immune system and
microbial resistance (177). Regulatory standards on the use of
probiotics by the FDA are very relaxed as selling the formulations
as dietary supplements is considered safe. However, if they are to
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be sold as a drug, probiotics would then need to go through the
rigorous FDA drug screening and approval process (142, 178).
Due to these ambiguous regulations, probiotics remain to be
sold as dietary supplements thereby increasing the possible risks
discussed earlier.

AIT, primarily based on the whole extract, purified proteins
or peptides, are designed to be very specific to the implicated
food allergen source, for e.g., peanut allergens. However, natural
product or probiotic-based approaches appear to reduce the
symptoms and/or target specific pathways independent of the
implicated food source. This is a major advantage of such type
of approaches for two reasons, (a) a single therapeutic approach
can target several different types of food allergens, a medical
state which is observed in most allergy sufferers with multiple
co-sensitization and allergy to different types of foods, and (b)
the cost of research and development for such broad range
therapeutics is much lower as compared to AIT, which has
to be established and validated for every single source of an
allergenic food.

A combinatorial approach using probiotics and peanut
oral immunotherapy has successfully demonstrated long-
lasting clinical effects and suppression of allergic responses
(179). Such innovative strategies combining allergen-specific
immunotherapy with natural bioactive compounds into a
suitable dosage regimen may hold the potential to have a safe and
effective treatment strategy for food allergies.

CONCLUSION

Food allergy is an ever-increasing health issue that can
significantly impact the socio-economic status, diet and well-
being of affected individuals (1, 2). Currently, there is only one
curative treatment in the form of OIT specifically for peanut
allergy, with only palliative treatments available for other food
allergies to relieve clinical symptoms. Most cases of food allergies
to peanut, tree nuts, shellfish or fish, are not outgrown, frequently
resulting in life-threatening reactions. There is an urgent need to
develop novel treatment approaches to tackle the growing rate of
food allergy worldwide.

Natural products are a rich source of compounds with
therapeutic potential for a wide range of human health-
related diseases. While a variety of natural product-derived
lead compounds have entered clinical trials and are used for
treating diseases such as cancer and microbial infections, none
are currently cleared for use to treat allergic diseases. Currently,
AIT remains the frontline treatment option that is heavily
investigated and recently implemented in clinical studies to
suppress or treat food allergies. Natural products or probiotics
can be used either in combination or separately as preventative
therapeutics if proven efficacious. Current research outlined in
this review highlightsmainly preclinical data obtained for various
natural bioactive compounds and their immunomodulatory
effects against food allergy. Future research needs to be directed
toward translating these preclinical findings into clinical trials
aimed at establishing the safety, efficacy and dosage regimen for
natural product-based therapies.
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