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Breastfeeding is indicated to support neonatal immune development and to protect

against neonatal infections and allergies. Human milk composition is widely studied

in relation to these unique abilities, which has led to the identification of various

immunomodulating components in human milk, including various bioactive proteins.

In addition to proteins, human milk contains free amino acids (FAAs), which have

not been well-studied. Of those, the FAAs glutamate and glutamine are by far the

most abundant. Levels of these FAAs in human milk sharply increase during the first

months of lactation, in contrast to most other FAAs. These unique dynamics are globally

consistent, suggesting that their levels in human milk are tightly regulated throughout

lactation and, consequently, that theymight have specific roles in the developing neonate.

Interestingly, free glutamine and glutamate are reported to exhibit immunomodulating

capacities, indicating that these FAAs could contribute to neonatal immune development

and to the unique protective effects of breastfeeding. This review describes the current

understanding of the FAA composition in human milk. Moreover, it provides an overview

of the effects of free glutamine and glutamate on immune parameters relevant for allergic

sensitization and infections in early life. The data reviewed provide rationale to study the

role of free glutamine and glutamate in human milk in the protection against neonatal

allergies and infections.

Keywords: human milk, free amino acids, glutamine, glutamate, neonates, immune development, allergies,

infections

INTRODUCTION

Human milk is widely recognized as the best source of infant nutrition. It provides the infant with
a highly diverse mix of nutrients that supports optimal development. The health benefits of human
milk, however, go beyond that of providing nutrients. An increasing body of evidence suggests that
humanmilk provides the neonate with a protection against a variety of immune-related conditions.
For example, it is shown consistently that infants who were exclusively breastfed were less likely to
develop respiratory and gastrointestinal infections than infants who fully or partially received an
infant milk formula (1–5). This protective effect of breastfeeding against infections may extend well
beyond infancy and is indicated to be enhanced upon prolonged breastfeeding (6, 7). Furthermore,
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studies have demonstrated that exclusive breastfeeding protects
against various allergic diseases, including atopic dermatitis
(8, 9), asthma (9–11) and food allergy (12–15), especially if
there is a family history of allergic disease (16). For cow’s
milk allergy, which is one of the most common food allergies
in infants, the incidence rate is reported to be up to seven
times lower in exclusively breastfed infants, compared to infants
fully or partially fed an infant milk formula (17–19). These
unique protective capacities of human milk have driven scientific
research into the underlying mechanisms in the past decades
(15, 20, 21).

At birth, the immune system is immature (22). Compared
to adults, the neonatal immune system is characterized by
diminished innate effector cell functions, suppressed T-helper 1
(TH1) immune responses and skewed T cell responses to antigens
toward T-helper 2 (TH2) immunity. These characteristics
correlate with an increased susceptibility to infections and
allergies in the neonatal period (23, 24). This susceptibility is
further enhanced by an immature intestinal barrier function
and an incomplete intestinal microbial colonization at birth
(23). Various factors in human milk have been identified that
could support the development of these immune functions, and
thus may contribute to the protection against infections and
allergies. For instance, human milk contains immunoglobulin
A (IgA) antibodies, which confer protection against pathogens
and are reported to induce tolerance to food allergens
(25, 26). Moreover, various bioactive oligosaccharides, fatty
acids and proteins have been identified in human milk that
are capable of modulating immune responses directly, e.g.,
by regulating immune responses to pathogens (27–29), and
indirectly, e.g., by shaping the gut microbiome (29–32). In
addition to proteins, human milk also contains protein-
unbound, free amino acids (FAAs). Accumulating evidence
indicates that certain FAAs are bioactive, and more specifically
have immunomodulating capacities (33, 34). Hence, FAAs in
human milk may play an active part in an optimal immune
development of the infant. However, whereas research on
physiological functions of FAAs has made significant progress
in recent years, FAAs are typically overlooked in human
milk research.

Of the total content of amino acids (AAs) in human milk,
5–10% is present in free form. The FAAs glutamate and
glutamine are by far the most abundant, both in absolute sense
and relative to their protein-bound form, together comprising
almost 70% of all FAAs present in human milk (35). Their
levels display unique and consistent patterns over lactation,
suggesting that secretion of these FAAs in human milk is a
regulated process (35, 36). Interestingly, these structurally related
FAAs have been widely associated with immunomodulation,
including the modulation of immune mechanisms relevant for
the development of allergies and infections. This review aims to
describe the current understanding of the FAA composition in
human milk, and to provide an overview of the effects of the
FAAs glutamine and glutamate on immune parameters relevant
for allergic diseases and infections in early life. Ultimately, a
better understanding of the composition of FAAs in human milk
and their immunomodulating capacities may contribute to the

development of new avenues in the prevention of allergies and
infectious diseases in infancy.

AMINO ACIDS IN HUMAN MILK:
PROTEIN-BOUND AND FREE AMINO
ACIDS

It is well known that protein quality and quantity are key aspects
of the nutritional value of human milk. The total amino acid
(TAA) composition of human milk, including protein-bound
AAs and FAAs, is used to evaluate the quantity and the quality
of the milk proteins and hence is well characterized (36, 37).
However, many studies only report the TAA composition and
do not distinguish between protein-bound and FAAs. As a result,
data on FAAs in human milk are relatively limited.

FAAs in human milk have been reported to account for ∼5–
10% of the TAA content (35, 36). Despite their low abundance
relative to protein-bound AA levels, the relevance of FAAs in
human milk should not be underestimated. Their levels are
approximately 100 times higher than the 0.05% FAA pool in
tissues (38) and up to 30 times higher than the FAA levels
in plasma of infants (39). Moreover, FAAs in human milk
contribute significantly to the initial changes in plasma levels
of FAAs following a feed (40, 41) and are indicated to be
more readily absorbed (42–44), appear sooner in the circulation
and thus might reach peripheral organs and tissues faster than
protein-derived AAs. Indeed, differences in plasma FAA levels
were observed between infants receiving an infant milk formula
containing FAAs and infants receiving an equivalent portion
of AAs in the form of intact protein, suggesting differences in
absorption kinetics between FAAs and protein-derived AAs (45–
47). In contrast to their protein-bound counterpart, FAAs can
interact with specific receptors present on a wide variety of cells in
various parts of the body, including the intestines, where they can
activate specific intracellular pathways and confer physiological
effects (34, 48).

While human milk directly supplies infants with FAAs,
human milk proteins could also provide the infant with FAAs
via proteolysis in the neonatal gastrointestinal tract. However,
the contribution of proteolysis of human milk proteins to the
FAA supply of infants might be relatively low, as (complete)
proteolysis of these proteins in infants is shown to occur to
a minimal extent (49–52). Factors contributing to the limited
proteolysis of human milk proteins are the relatively low output
of pepsin and gastric enzymes observed in infants, the relatively
high gastric postprandial pH which leaves proteases largely
inactive, as well as the high degree of glycosylation of these
proteins (50). Accordingly, it has been argued that the availability
of FAAs in the upper region of the gastrointestinal tract,
including the upper parts of the small intestine, is almost entirely
dependent on the dietary FAA content (48).

The unique abilities of FAAs compared to protein-bound
AAs and the relatively inefficient proteolytic capacity of neonates
underline the importance of understanding the FAA composition
in human milk, separate from the TAA composition.
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The FAA Composition in Human Milk is
Dynamic and Seemingly Regulated
The composition of human milk is known to be dynamic over
the course of lactation. The total protein content has been
consistently shown to decrease in the first 3 months of lactation
(35, 36). It is argued that this decrease correlates with the infant’s
protein requirements for growth and that it prevents overfeeding,
as milk volume intake increases during this period (53, 54).
Not surprisingly, similar dynamics are found for the protein-
bound AA content in human milk. For each individual AA
the protein-bound form decreases to a highly similar extent
during lactation, indicating that the dynamics of protein-bound
AAs in human milk during lactation are not AA-specific (35).
In contrast, levels of FAAs in human milk display dynamics
during lactation that are highly AA-specific: whereas levels of
some FAAs decrease in the first 3 months of lactation, others
remain stable or sharply increase (35, 36). Remarkably, these FAA
dynamics during lactation are consistent in studies across various
ethnic groups and geographical locations, indicating that these
dynamics are globally consistent and thus seemingly regulated
(35, 36, 55, 56).

The underlying mechanisms regulating the dynamics of FAA
levels in human milk are poorly understood. Cells of the
mammary gland secrete proteases and anti-proteases into human
milk that together regulate the cleavage of specific AAs from
human milk proteins, generating FAAs and peptides (57). Thus,
it can be hypothesized that temporal changes in net proteolytic
activity in humanmilk contribute to the FAA dynamics, although
this is unlikely as levels of all major human milk proteases
and anti-proteases decrease during lactation, along with levels
of their substrates (50, 58). Mammary gland cells can also
directly secrete FAAs into human milk via AA transporters
present on their cell membranes. Interestingly, animal studies
have shown that the expression of certain AA transporters in the
mammary gland increases with progressing lactation, whereas
that of others remains unchanged (59–62). These expression
dynamics throughout lactation appear to be tightly regulated
by multiple intracellular signaling pathways (63). Thus, it can
be speculated that the dynamic expression of AA transporters
on mammary gland cells along lactation contributes to the FAA
dynamics in human milk.

To better understand the mechanisms underlying the
secretion of FAAs in human milk, several studies examined the
influence of maternal characteristics on the FAA composition in
human milk. Whereas, FAA levels seem to be independent of
the mothers’ age (64), maternal body-mass index is reported to
slightly influence levels of several FAAs (65, 66). Mechanisms
underlying this effect are not known, but may involve the
hormone prolactin, as prolactin is involved in regulating FAA
transport in the mammary gland and levels of prolactin associate
with maternal body-mass index (67–69). Studies investigating
the effect of maternal diet on the AA composition in human
milk indicate that the TAA composition is largely independent
of the AA composition of the diet (70, 71). For FAAs, this
relation remains to be examined in humans. However, studies
across different geographical locations where different diets are

consumed show largely similar levels and ratios of FAAs in
human milk, suggesting that maternal diet is not of major
influence (35, 36, 55, 56). This is supported by the finding that
oral supplementation of a single load of glutamate (6g) in healthy
lactating women did not alter levels of any of the FAAs in their
breastmilk (72). Moreover, several studies reported that there was
no association between maternal plasma levels of FAAs and the
FAA levels in human milk (73, 74). In fact, some FAAs were 1- to
15-fold higher in plasma compared to milk, whereas levels of free
glutamate were 40-fold higher in milk than in plasma.

All together, these findings indicate that selective FAA
transport occurs in mammary tissues during lactation and
that levels of FAAs in human milk might be highly regulated
throughout lactation.

Correlations of FAAs in Human Milk With
Lactation Stage, Gestational Age and
Infant Anthropometrics: A Special Role for
Free Glutamine and Glutamate?
The FAAs glutamine, glutamate, glycine, serine and alanine in
human milk have consistently been shown to increase in the first
3 months of lactation, whereas the levels of most other FAAs
remain relatively stable along lactation (35, 36, 55, 56). Of these,
glutamate is by far the most abundant, accounting for more than
50% of the total FAA content at any stage of lactation. In addition,
glutamate shows the highest absolute increase in concentration
along lactation, increasing from∼1.25 to 1.75mM frommonth 1
to 6 of lactation (35). Glutamine, the second-most abundant FAA,
shows the highest relative increase in concentration, increasing
almost 350% from month 1 to 6 of lactation and reaching a
concentration of up to 0.6mM (35, 64, 75). In addition to the
stage of lactation, the gestational age of the infant has also been
reported to be a determinant of the free glutamine levels in
human milk. A meta-analysis has shown that free glutamine
levels in milk for preterm infants are almost three times lower
than those observed in milk for term infants in the first month of
lactation (36). Levels of all other FAAs were similar in preterm
and term human milk samples, indicating that this difference
was AA-specific.

Studies investigating associations of FAAs with infant
anthropometrics are scarce but do report consistent findings. It
was recently reported that free glutamate levels in human milk
were significantly higher for term infants that had faster weight
gain (76). Moreover, glutamine levels also tended to be higher
for fast growing children. Consistent with these findings, another
study reported a positive association between free glutamine
levels in human milk and infant length at 4 months of age (65).
These findings are in line with studies indicating that milk for
boys tends to have higher levels of free glutamine and glutamate
than milk for girls in the first 3 to 4 months of lactation (35, 76),
as boys are known to gain more weight and length than girls in
this time period (77).

The finding that levels of free glutamine and glutamate in
human milk are relatively high, display unique dynamics along
lactation, and are associated with infant anthropometrics urges
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the need to understand the functions that these FAAs could have
during infant development.

THE DIVERSITY IN PHYSIOLOGICAL
FUNCTIONS OF FREE GLUTAMINE AND
GLUTAMATE

In the last decade, it has been recognized that glutamine and
glutamate are essential AAs at key times in life, including the
neonatal period when rapid growth occurs (78, 79). Although
these two FAAs are structurally related, they appear to be
different in terms of absorption by the infant. Whereas dietary
glutamine supplementation in infants leads to higher plasma
levels of this AA (80, 81), plasma levels of glutamate are
largely unaffected by dietary glutamate (82, 83). This suggests
that free glutamate in human milk is almost entirely used
by splanchnic tissues, limiting its availability for other tissues,
whereas glutamine might also exert direct effects elsewhere in the
body. Despite these differences, most of the dietary glutamine
and glutamate provided to neonates is consistently shown to
be used by the intestines (84, 85). The intestines do not only
form a physical barrier to protect against pathogens but are also
home to the largest immune organ of the body: the gut-associated
lymphoid tissue (GALT). This may explain why glutamine and
glutamate are associated with a wide range of physiological
functions, ranging from energy provision to cells to more specific
immunomodulating functions, many of which could be relevant
in the context of the prevention of neonatal allergies and
infections. Figure 1 provides a summary of the demonstrated
effects of free glutamine and glutamate in (developing) intestinal
tissues, which are described in detail below.

Metabolism of Glutamine and Glutamate in
Intestinal Epithelial Cells and Immune
Cells: Their Function as Energy Substrate
and Protein Precursors
It is well-established that glutamine and glutamate are important
energy substrates for intestinal epithelial cells (IECs) and
immune cells, especially during periods of rapid growth (86).
In fact, studies in young animals and infants have shown that
approximately half of the dietary glutamate and glutamine is
oxidized by intestinal and immune cells, ultimately leading to
the generation of energy for the cells to adequately function and
grow (87). Intestinal cells can convert glutamine into glutamate,
which is crucial for the usage of glutamine for energy purposes
(88). Whereas, human intestinal cells can also convert glutamate
into glutamine, this process is limited due to the low glutamine
synthetase activity in the small intestine (89, 90). In the neonatal
period, this ability may be further limited as studies in young rats
demonstrated that glutamine synthetase activity is particularly
low in the pre-weaning period (91, 92). Remarkably, IECs as
well as immune cells cannot function properly without the
availability of exogenous glutamine (93). This, combined with
their limited capacity to synthetize glutamine suggests that
adequate functioning of these cells in the neonatal period might
be partially dependent on dietary-derived glutamine.

Besides serving as energy substrates, free glutamine and
glutamate are both specific precursors for glutathione, which
is the main antioxidant in IECs and immune cells and critical
for the prevention of cellular damage caused by pro-oxidants
(94). An imbalance in pro- and antioxidants, known as oxidative
stress, stimulates inflammatory responses that can lead to the
development and maintenance of allergic disorders (95, 96).
Hence, antioxidants like glutathione are considered as preventive
or treatment strategy for food allergies (97). It has been
reported that both dietary glutamine and dietary glutamate
enhance glutathione production and, possibly as a result, reduce
oxidative stress in the intestines of weaning piglets (98, 99). In
addition, glutamine, but not glutamate, is an important specific
precursor for the synthesis of mucins, which are critical for the
defense against infections and are suggested to protect against
allergic sensitization (100–103). Accordingly, oral glutamine
supplementation has been shown to enhance mucin synthesis
and to increase the number of mucin-secreting goblet cells in the
small intestine of weaned piglets (104).

Effects of Free Glutamine and Glutamate
on Intestinal Growth and Barrier Function
In the rapidly growing neonate where the intestines are not yet
fully developed, it is crucial to achieve andmaintain rapid growth
of IECs. Moreover, it is well-established that intestinal barrier
function is a crucial factor in the protection against allergies
and infections, by preventing allergen and bacterial translocation
from the gut lumen into the immune cell-populated lamina
propria and mesenteric lymph nodes (105–107). In neonates
where intestinal barrier function is immature, proper availability
of nutrients that contribute to the growth of IECs andmaturation
of the intestinal barrier is critical to support this protective effect.
Interestingly, free glutamine and glutamate have been shown
consistently to influence these processes, by various mechanisms
which are further explained in the following sections.

Impact of Glutamine on Intestinal Functions

Glutamine is by far the most widely examined AA in
relation to growth and function of IECs. This FAA is
known to stimulate IEC proliferation in a variety of ways, as
demonstrated in various neonatal IEC lines in vitro. For instance,
glutamine dose-dependently enhanced cell proliferation and
differentiation of neonatal porcine and rat IECs, through
activating multiple mitogen-activated protein kinases (MAPKs)
(108–110). Moreover, studies in neonatal porcine and adult
human IEC lines have indicated that glutamine also promotes
growth through augmenting the effects of growth factors,
including insulin-like growth factor 1 and epidermal growth
factor (108, 111–113). In addition to promoting growth,
glutamine has been reported to dose-dependently protect against
inflammation-, endotoxin- and oxidant-induced cell death and
damage in these IEC lines (114–116). Remarkably, glutamine
completely blocked inflammation-induced apoptosis in the adult
human epithelial cell line HT-29 when supplied at 0.5mM,
a concentration similar to that of free glutamine in human
milk (115).
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FIGURE 1 | Overview of the potential effects of free glutamine and glutamate, selectively secreted in human milk by mammary gland cells, in the developing infant gut.

The ↑ and ↓ indicate an upregulation and downregulation, respectively, of the corresponding target following in vitro and/or in vivo supplementation with glutamine (•)

or glutamate (•). Effects are limited to those that are relevant in the context of allergic sensitization and infections. FAA, Free amino acid; IEC, Intestinal epithelial cell;

IEL, Intraepithelial lymphocyte; GC, Goblet cell; TH1, T-helper 1 cell; TH2, T-helper 2 cell; IgA, Immunoglobulin A; F. prausnitzii, Faecalibacterium prausnitzii.

Multiple lines of evidence indicate that glutamine also
specifically stimulates intestinal barrier function. For instance,
in vitro studies with neonatal porcine and human adult IEC
lines have revealed that glutamine restriction reduces the
expression of the major tight junction proteins, including
claudin and occludin proteins, which are vital for intestinal
barrier function (110, 117, 118). This was accompanied by a
reduced distribution of these proteins at the plasma membrane
and an increase in IEC permeability. Remarkably, glutamine
supplementation in these in vitromodels completely reversed this
process, suggesting that sufficient availability of free glutamine
is crucial for optimal epithelial barrier functions. These effects
were mediated through enhanced AMP-activated protein kinase
signaling and diminished PI3K/Akt signaling, indicating that
glutamine supports intestinal barrier function via modulation of
specific intracellular pathways (110, 118).

Consistent with in vitro studies in neonatal cells, studies
in young animals also suggest a potential role of glutamine
in promoting a healthy intestinal development. In rat pups
and young piglets, dietary deprivation of glutamine has been
reported to diminish intestinal integrity, through breakdown
of epithelial junctions and shortening of microvilli (119, 120).
Conversely, dietary supplementation of glutamine in young
piglets has been consistently reported to increase villus height,
inhibit apoptosis and boost proliferation of IECs, increase
tight junction protein expression and improve epithelial barrier
function (98, 121–123). In addition, glutamine is shown

to protect against pathogen-induced intestinal damage in
vivo. For instance, weaning piglets fed a glutamine-enriched
diet prior to challenge with E.coli completely maintained
villus morphology and tight junction protein expression (124,
125). Moreover, oral supplementation of glutamine prevented
endotoxin-induced intestinal damage in suckling piglets (114).
Consistent with the ability of glutamine to promote intestinal
barrier function, glutamine supplementation is reported to
prevent bacterial translocation in various adult animal models
of intestinal obstruction (126–131). Whether glutamine can also
prevent bacterial translocation in neonatal animals remains to
be examined.

Impact of Glutamate on Intestinal Functions

A growing body of evidence suggests that next to glutamine
also glutamate has effects on IEC growth and intestinal
barrier function. A recent in vitro study in neonatal porcine
IECs has demonstrated that supplementation of glutamate
dose-dependently enhances cell proliferation (132). Moreover,
this study showed that glutamate supplementation prevented
oxidative stress-induced changes in IEC viability, barrier function
and membrane integrity by increasing the abundance of tight
junction proteins (132). The ability of glutamate to improve
intestinal barrier function is also demonstrated in a study using
adult human IEC lines, where glutamate addition significantly
reduced phorbol-induced hyperpermeability (133). Remarkably,
these effects were observed at a glutamate concentration three
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times lower than that present in human milk, highlighting
the potency of free glutamate in human milk to exert
physiological effects.

In addition to in vitro studies, in vivo studies in young
animals also indicate that free glutamate can promote intestinal
development. Supplementation of dietary glutamate to healthy
weaning piglets led to an increase in overall intestinal health,
as evidenced by higher villus height and enhanced intestinal
mucosal thickness and integrity (122, 134). Furthermore, dietary
glutamate dose-dependently enhanced the weight of the small
intestine, increased the depth of the crypts and the lamina
propria, and improved intestinal antioxidative capacities in
healthy weaning piglets (99). Finally, dietary glutamate prevented
mycotoxin-induced impairments in intestinal barrier function
and morphology in young piglets, suggesting that free glutamate
may also play a role in the prevention of intestinal damage (135).

As glutamate can be converted into glutamine by IECs,
although at limited rates, the effects observed for glutamate
may be attributable to the effects of glutamine. However,
studies examining effects of both glutamine and glutamate
demonstrated differential effects of these FAAs on functions of
IECs and intestinal morphology. For instance, weaning piglets
supplemented with dietary glutamine alone had higher villi than
those piglets supplemented with a combination of glutamate and
glutamine, whereas the combination led to the deepest crypts
(136). Moreover, glutamine was observed to have protective
effects against oxidant- and endotoxin-induced death of porcine
neonatal IECs in vitro, whereas glutamate had no effect (114).
This indicates that the effects of glutamate on intestinal function
are not solely exerted through conversion into glutamine.

Effects of Free Glutamine and Glutamate
on Immune Cell Functions
In addition to epithelial cells, the immune cells of the GALT
also play a crucial role in the prevention of neonatal allergies
and infections. The immature neonatal GALT is characterized
by the production of higher levels of pro-inflammatory cytokines
(137, 138), whereas anti-inflammatory capacities are diminished
(139). The pro-inflammatory milieu in the neonatal intestines is
indicated to induce T-helper 2 (TH2) immune activity (140, 141).
In contrast, T-helper 1 (TH1) immunity is highly limited and
gradually develops during the postnatal period (142–144). The
resulting TH2-dominant immune milieu is known to increase the
susceptibility to allergic sensitization, whereas the minimal TH1
function correlates with the increased susceptibility of neonates
to infections (144, 145). Thus, components in human milk with
anti-inflammatory capacities, or components that enhance the
development of TH1 immunity or suppress TH2 activity might
contribute to the prevention of neonatal allergies and infections.
Free glutamine and glutamate both have been associated with
these immunomodulatory capacities, as described in detail below.

Impact of Glutamine on Immune Cell Functions

The importance of glutamine for the development and function
of the immune system is well recognized. Although in vitro
studies in neonatal cells are lacking, numerous in vitro studies
in adult cells showed that various immune cells fail to develop

and function without adequate glutamine availability (146).
For instance, glutamine restriction impaired the growth and
differentiation of B and T cells (147) and diminished antigen
presentation and phagocytotic capacities of macrophages and
neutrophils (148, 149). Conversely, glutamine supplementation
dose-dependently enhanced phagocytotic capacities of human
neutrophils in vitro (150, 151). Consistent with these findings, in
vivo studies in young animals indicate that glutamine availability
modifies intestinal immune cell populations. For example,
dietary glutamine dose-dependently increased the number of
neutrophils and macrophages in weaning piglets following an
LPS-challenge (123, 152), suggestive of enhanced antimicrobial
capacities. Moreover, in newly weaned piglets, dietary glutamine
decreased the proportion of antigen-naïve T cells in the
mesenteric lymph nodes (153), which are reported to be elevated
in allergic patients and are proposed as an early life marker
for future development of allergies (154, 155). Finally, dietary
glutamine increased the number of IgA-secreting B cells in the
small intestine of youngmice (156) and enhanced intestinal levels
of IgA in various weaning animals (157–161). Together, these
results indicate that glutamine availability influences immune cell
populations in developing intestinal tissues, which in turn may
influence antimicrobial and anti-allergic immune processes.

A consistent body of evidence shows that glutamine
also exhibits anti-inflammatory capacities. In vitro studies
demonstrated that glutamine supplementation decreased
the production of pro-inflammatory cytokines IL-6, IL-
8, and/or TNFα, while increasing the production of
anti-inflammatory/regulatory cytokine IL-10 in various
activated adult human immune cells, including intra-
epithelial lymphocytes (IELs), intestinal mast cells, peripheral
mononuclear cells (PBMCs) and monocytes (162–165). Similar
findings are reported in healthy young animals. For instance,
dietary glutamine reduced levels of pro-inflammatory cytokines
(including IL-1 and IL-8) while increasing levels of anti-
inflammatory/regulatory cytokines (including IL-10) in the small
intestine of healthy weaning piglets (123, 124, 166). Furthermore,
in LPS-challenged piglets, dietary glutamine reduced intestinal
expression of inflammatory markers, including Toll-like
receptor-4 and the nuclear factor NF-κB, suggesting that
glutamine might also have potent anti-inflammatory effects in
immune-compromised conditions (114).

Glutamine has also been indicated to play a regulating role
in the balance between TH1 and TH2 immunity, however, in
vitro studies examining this aspect in neonatal immune cells
are lacking. It is reported that adult murine naïve T cells are
able to differentiate into TH2 cells under glutamine-restricted
conditions, but not into functional TH1 cells, indicating that
glutamine deprivation may favor TH2 differentiation (167).
Conversely, supplementation of glutamine is reported to enhance
TH1 and/or diminish TH2 responses of various activated adult
immune cells in vitro. For instance, glutamine increased the
production of TH1 cytokines IL-2 and IFNy by activated
murine IELs and by human lymphocytes and PBMCs, while
TH2 cytokines were unaltered (168–171). In activated human
intestinal mast cells, glutamine did not alter the release of TH1
chemokines, but reduced the release of TH2 chemokine ligand 2
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and leukotriene C4, which are both involved in the pathogenesis
of various allergic diseases (164, 172). Although data are limited,
in vivo studies in young animals also suggest a regulating role
of glutamine in the TH1/TH2 immune balance. In young mice,
dietary glutamine increased the expression of IL-2 and the IL-
2 receptor by lymphocytes, indicative of increased activity of
and responsiveness to TH1 stimuli (173). Moreover, dietary
glutamine in healthy weaning piglets lowered the production
of TH2 cytokine IL-4 and increased the IFNγ/IL-4 ratio in
mesenteric lymph node cells (153). Finally, in weaning rabbits,
dietary glutamine upregulated IL-2 and IL-10 expression by
IELs, while inhibiting expression of IL-6, an inducer of TH2
differentiation of naïve T cells (174, 175). Although further
confirmation in neonatal animals is critical, these data may
indicate that glutamine plays a role in promoting amore balanced
TH1/TH2 immune system in the neonatal period.

Impact of Glutamate on Immune Cell Functions

Despite dietary glutamate being almost completely used in
intestinal tissues, studies investigating the effects of glutamate
on intestinal immune cells are lacking. Yet, receptors for
glutamate are found on a variety of immune cells, including
lymphocytes and dendritic cells, suggesting that glutamate
has a role in immune cell functioning (176). Studies using
adult human peripheral T cells demonstrated that glutamate at
low concentrations (<100µM) dose-dependently increases the
proliferative response of T cells to various stimuli (176, 177). At
higher concentrations (>1mM), however, this effect reversed,
indicating that glutamate tends to have immunosuppressive
properties at higher concentrations (176, 178). Accordingly, it is
postulated that the high glutamate concentration in the intestinal
microenvironment, which may reach the millimolar range, could
prevent inappropriate responses to dietary antigens by exerting
immunosuppressive effects on intestinal T cells (178).

Besides regulating T cell proliferation, glutamate availability
is also indicated to influence the TH2 and TH1 cytokine
production by T cells. Glutamate is released by dendritic cells
during T cell interaction, where it has dual roles (179). In
cases of non-specific antigen presentation, glutamate inhibits
T cell activation. However, upon specific antigen presentation
glutamate stimulates T cell proliferation and the production of
IL-2, IFNγ and IL-10, thereby promoting a TH1 response (179).
This latter process depends on glutamate released from dendritic
cells, but also on extracellular glutamate concentrations,
suggesting that this process could be influenced by dietary
glutamate (179). Accordingly, it is reported that glutamate
supplementation of up to 1-2mM enhanced IFNy and IL-10
secretion by activated adult human peripheral T cells in vitro,
whereas secretion of TH2 cytokines IL-4 and IL-5 was unaffected
(180). When supplied at even higher concentrations (>5mM),
however, glutamate inhibited IFNy and IL-10 secretion by these
cells. Unfortunately, in vitro studies in neonatal cells and in vivo
studies investigating the effects of glutamate on immune cell
functions are lacking. Nevertheless, the findings in adult immune
cells suggest an immunoregulating role for glutamate, with effects
that are highly dependent on the context and the concentration.
At concentrations present in human milk, glutamate could

be involved in promoting TH1 immunity and subsequently in
reducing the susceptibility to allergic sensitization, although this
remains speculative due the lack of evidence in neonatal cells
or animals.

Effects of Free Glutamine and Glutamate
on the Intestinal Microbiota
Accumulating evidence indicates that the gut microbiota plays
a vital role in tolerance induction to dietary antigens (181–
183). Accordingly, clinical studies have provided evidence for
a link between the microbiota composition in the neonatal
period and the development of allergic diseases. It is reported
that a higher intestinal bacterial diversity in early life is
associated with a lower risk of developing various allergic
diseases, including food allergy (184–187). Moreover, infants
with an increased colonization of Firmicutes and a decreased
colonization of Bacteroidetes (corresponding to an increased
Firmicutes-to-Bacteroidetes ratio), or a decreased colonization of
Proteobacteria and Bifidobacteria are shown to be at increased
risk of developing food allergies (188–191). Mechanisms by
which gut microbes modify the susceptibility to allergies are
poorly understood but may involve specific modulation of TH2
and TH1 immunity (192, 193). The colonization of intestinal
microbiota is far from complete at birth and is influenced by
various environmental factors, including breastfeeding duration
(189). Thus, humanmilk components that shape the neonatal gut
microbiota composition may play an active part in modifying the
susceptibility to allergic sensitization. Although data are limited,
several studies have shown that glutamine and glutamate can
modulate the abundance of gut bacteria that have been associated
with the protection against allergic diseases.

Impact of Glutamine on the Gut Microbiota

Composition

The ability of dietary glutamine to modify the microbiota
composition is shown in various young animals. A study in
weaning mice demonstrated that dietary glutamine decreased the
content of Firmicutes in the jejunum and ileum, and decreased
the Firmicutes-to-Bacteroidetes ratio in the ileum (194). Similar
findings are reported in studies in adult pigs and human
(195, 196). In weaning rabbits, dietary glutamine specifically
reduced the presence of Clostridium spp. in the ileum, of which
colonization in early life has been associated with increased
risk of allergic diseases (197, 198). Finally, a glutamine-enriched
diet is also shown to increase the abundance of beneficial
Bifidobacteria in the jejunum of healthy weaned mice (194),
and to decrease potentially harmful microorganisms in adult
pigs (196). The mechanisms underlying the effects of glutamine
on the gut microbiota composition are poorly understood. It is
postulated that glutamine supplementation regulates utilization
and metabolism of a variety of AAs in a niche-specific manner,
affecting the activity and number of specific microbes (157, 199).

Impact of Glutamate on the Gut Microbiota

Composition

To our knowledge, only two animal studies examined the effects
of dietary glutamate on the intestinal microbiota composition to
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date, both of which used animals in their post-weaning phase. It
has been reported that dietary glutamate markedly enhanced the
bacterial diversity in the intestinal flora of healthy post-weaning
pigs (200). Moreover, the glutamate-enriched diet decreased
the Firmicutes-to-Bacteroidetes ratio in the ileum, although this
effect was only seen when given in combination with a high fat
diet and was not observed in other intestinal sections. Perhaps
more interestingly, dietary glutamate specifically promoted the
colonization of prausnitzii and Faecalibacterium prausnitzii in
post-weaning pigs (200, 201). The colonization of Roseburia in
early life has been positively associated with the acquisition of
tolerance to cow’s milk (202), and Faecalibacterium prausnitzii
is indicated to play a role in the prevention of food allergy
(203–205). These intestinal microbes are some of the main
producers of the short-chain fatty acids butyrate and propionate.
Accordingly, a glutamate-enriched diet significantly increased
colonic concentrations of these fatty acids in adult pigs (206).
Butyrate and propionate both have been associated with the
prevention of various allergic diseases and, consequently, high
faecal levels of these fatty acids in early life have been associated
with a decreased risk of developing atopy (207–209).

CONCLUDING REMARKS

Research indicates that breastfeeding during the first months
of life provides protection against immune-related conditions
in neonates and later in life. These conditions include
gastrointestinal infections and several allergic diseases including
food allergy. It is indicated that the transfer of specific
immunomodulating components, such as bioactive proteins,
from mother to infant through human milk contributes to this
protective effect. In addition to proteins, human milk contains
FAAs, which have unique characteristics. They are more readily
absorbed than protein-derived AAs and can be recognized by
specific receptors on various cells. Moreover, whereas protein-
bound AAs decrease during the lactation period in a non-AA-
specific manner, temporal changes of FAAs in human milk
are highly AA-specific. These dynamics in FAA levels are
globally consistent and thus seemingly independent of ethnicity,
demographics and maternal diet. This suggests that selective
FAA transport occurs in the mammary gland, that FAA levels in
human milk are strictly regulated and, consequently, that FAAs
are likely to be of physiological relevance in the developing infant.

With regards to individual FAAs in human milk, free
glutamine and glutamate display particularly remarkable
characteristics. They account for almost 70% of the FAA
content in human milk, they both drastically increase in
the first 3 months of lactation and their levels have been
shown to positively correlate with infant growth, suggestive of
important functions in the developing neonate. In neonates,
dietary glutamine and glutamate are mainly used by the
intestines. Remarkably, studies in neonatal immune cells
and young animals demonstrate that these FAAs can have a
wide range of effects on cells in developing intestines, also
at concentrations similar to their levels in human milk. In
short, they are reported to increase the growth of intestinal
epithelial cells, enhance intestinal barrier function, influence
immune cell development and populations in the gut-associated
lymphoid tissue, exert anti-inflammatory and potentially
TH1 promoting and/or TH2 inhibiting effects on various
intestinal immune cells, and modify the abundance of gut
microbiota that might play a role in allergic sensitization
(Figure 1). Together, these effects could potentially support
neonates in the protection against allergic sensitization
and infections.

All together, the findings described in this review warrant
further research into the contribution of free glutamine and
glutamate in human milk to the protection against neonatal
allergies and infections. Levels of free glutamine and glutamate,
in addition to that of other bioactive factors that could influence
early life immune development, are considerably higher in
human milk than in standard infant milk formulas, leading
to significant differences in the intake of these FAAs between
breastfed and formula-fed children (210–212). As many of the
effects of glutamine and glutamate described in this review
were concentration-dependent, future studies should address
whether this differential intake contributes to the differential
occurrence in immune-related conditions between formula-fed
and breastfed children.
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