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The interaction between microglia and astrocytes significantly influences

neuroinflammation. Microglia/astrocytes, part of the neurovascular unit (NVU), are

activated by various brain insults. The local extracellular and intracellular signals

determine their characteristics and switch of phenotypes. Microglia and astrocytes

are activated into two polarization states: the pro-inflammatory phenotype (M1 and

A1) and the anti-inflammatory phenotype (M2 and A2). During neuroinflammation,

induced by stroke or lipopolysaccharides, microglia are more sensitive to pathogens, or

damage; they are thus initially activated into the M1 phenotype and produce common

inflammatory signals such as IL-1 and TNF-α to trigger reactive astrocytes into the A1

phenotype. These inflammatory signals can be amplified not only by the self-feedback

loop of microglial activation but also by the unique anatomy structure of astrocytes.

As the pathology further progresses, resulting in local environmental changes, M1-like

microglia switch to the M2 phenotype, and M2 crosstalk with A2. While astrocytes

communicate simultaneously with neurons and blood vessels to maintain the function

of neurons and the blood–brain barrier (BBB), their subtle changes may be identified

and responded by astrocytes, and possibly transferred to microglia. Although both

microglia and astrocytes have different functional characteristics, they can achieve

immune “optimization” through their mutual communication and cooperation in the NVU

and build a cascaded immune network of amplification.

Keywords: microglia, astrocyte, neuroinflammation, stroke, LPS, NVU

INTRODUCTION

Neuroinflammation often runs through the entire process of pathological development. There
is a dynamic change over time with the regulation of pro and anti-inflammatory signals (1, 2).
Microglia/astrocytes, part of the neurovascular unit (NVU), are activated by various brain insults.
The local extracellular and intracellular signals determine their characteristics and switch of
phenotypes. Generally, microglia and astrocytes are activated into two states: the pro-inflammatory
phenotype (M1/A1) and the anti-inflammatory phenotype (M2/A2), corresponding to either the
destructive or reparative functions in the NVU, respectively (3–5). The activated microglia and
astrocytes have dynamic phenotypic changes (6–9).

The crosstalk between microglia and astrocytes occurs through a variety of molecule
signals such as adenosine triphosphate (ATP), cytokines, etc. (10). Liddelow et al.
(9) showed that reactive astrocytes (A1) can be induced by the cytokines secreted
from activated microglia (M1), which are induced by lipopolysaccharides (LPS)
in vitro and in vivo (11). Microglia appear to be more sensitive to pathogens or
damage, which stimulate them and promote secretion of “molecular signals” to
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trigger reactive astrocytes. Neuroinflammation, such as in stroke,
may exhibit a similar mechanism and interaction between
microglia, and astrocytes may share the common molecular
language in various diseases. It has been previously shown that
neuroinflammation between the microglia and astrocytes has
a cascade of amplification (12–14), but its mechanism needs
further elucidation. As the pathology progresses, thus causing
environmental changes, it promotes the switch from M1 to M2,
which is also closely associated with A2. While astrocytes, an
essential component of the NVU, communicate simultaneously
with both neurons and blood vessels as versatile cells to
maintain the function of neurons and the blood–brain barrier
(BBB), there seems to be a difference in the communication of
astrocytes from microglia. This review is concerned with the
origin, anatomy, and physiological function of microglia and
astrocytes, particularly their communication and cooperation in
pathological conditions. The activated microglia and astrocytes
may achieve immune “optimization” through their interaction in
the NVU.

MICROGLIA AND ASTROCYTES IN THE
NVU

The NVU, a structural and functional unit, is composed of
microglia, neurons, the BBB, and the extracellular matrix (15).
Its primary function is to meet the brain’s dynamic metabolic
needs by regulating the cerebral blood flow (CBF) in response
to physiological or pathological stimuli in the CNS (16, 17).
The BBB consists of vascular endothelial cells (ECs), tight
junctions, and basement membranes, pericytes, or smooth
muscle cells, and astrocytes. It separates parenchyma of the
central nervous system (CNS) from blood, and it thus maintains
a stable micro-environmental homeostasis of CNS (18, 19). The
BBB maintains the low permeability through the tight-junction
between sendothelial cells with membrane-bound transporters,
and perivascular cells, such as pericytes, astrocytes, and the
extracellular matrix, also contribute to this (17, 20). Astrocytes
promote the maintenance of the BBB via sonic hedgehog and
b-catenin, which strengthen the tight junction and integrity
(21). Meanwhile, reactive astrocytes disrupt the local BBB
by the release of vascular endothelial growth factor (VEGF),
increase permeability, and allow entry of peripheral immune
cells (22, 23).

Astrocytes are considered an indispensable element of
the NVU or extended BBB. In the context of the NVU,

Abbreviations: NVU, Neurovascular unit; LPS, Lipopolysaccharides; CNS,

Central nervous system; ATP, Adenosine triphosphate; BBB, Blood–brain barrier;

ECs, Endothelial cells; VEGF, Vascular endothelial growth factor; MMP-9, Matrix

metalloproteinase-9; CX, Connexin; CBF, Cerebral blood flow; ROS, Reactive

oxygen species; TNF, Tumor necrosis factor; IL-1β, Interleukin 1 beta; IL-1α,

Interleukin-1 alpha; iNOS, Inducible nitric oxide synthase; TGFβ, Transform

growth factor beta; CLCF1, Cardiotrophin-like cytokine factor 1; LIF, Hypoxia

induce factor; C1q, Complement component subunit 1q; SAH, Subarachnoid

hemorrhage; PAMP, Pathogens associated molecular pattern; DAMP, Damage

associated molecular pattern; HMGB1, High-mobility group protein box-1;

COX, Cyclooxygenase; Pb, Plumbum; GFAP, Glial fifibrillary acidic protein; AD,

Alzheimer’s disease; NO, Nitric oxide; MCAO, Middle cerebral artery occlusion.

astrocytes are located in the center between neurons and
ECs. The strategic position of astrocytes enable them to
regulate CBF to adapt to dynamic changes in neuronal
metabolism and synaptic activity (18, 24). Astrocytes co-
originate with neurons and oligodendrocytes and are produced
in the final stages of neurogenesis (25, 26). They are
the most abundant and heterogeneous glia cell type, tiling
throughout the brain in a non-overlapping manner in the
CNS (27).

Astrocytes are closely associated with neurons and blood
vessels as versatile cells (28, 29) and communicate with neuronal
pre- and post-synaptic terminals to help modulate synaptic
transmission by the release of glutamate, D-serine, and ATP.
It has been reported that one astrocyte can supervise over
100,000 synapses (30–33). Astrocytes can be extensively coupled
into syncytial structures of up to 100 units by gap junctions,
composed of connexin (CX) proteins such as CX-43 and
CX−30 subtypes, allowing for the rapid facilitation of long-
range signaling through calcium waves (34–37). Astrocytes
extend end-feet processes to cover the surface of cerebral blood
vessels with a ratio of ∼99% to modulate CBF or the BBB
(24). Furthermore, the end-feet with high levels of aquaporin-
4 water channel proteins promote perivascular clearance by the
newly characterized “glymphatic system” (CNS waste clearance
system) (38, 39).

Astrocytes were, in the past, considered simply as a supportive
or “glue-”like function in the CNS; now, their essential
functions are increasingly being elucidated (28). Besides the
above mentioned effects of “glymphatic system” (39, 40),
astrocytes also have neurotrophic support, promote formation,
and maintenance of synaptic activity, and transmission, regulate
CBF, and determine some functions, and properties of the BBB,
or NVU (27). In physiological conditions, astrocytes restrict the
entry of peripheral immune cells passing through the BBB (41).
While in pathological conditions, astrocytes participate in innate
immune reactions (42) and the adaptive immune responses by
their strategic position (43, 44).

Microglia, an important partner of the NVU, are the primary
immune cells and account for ∼5–15% of all cells in the human
brain (45, 46). Early in development, microglia derive from
the yolk sac, and seed in the brain as the first glial cells,
and they develop concurrently with neurons into highly plastic
cells with mobility (47–49). Under physiological or pathological
conditions, microglia continuously survey their surrounding
environment and always firstly respond to any insult in the
CNS (50–52).

There is a local network of immune cells via communication
and collaboration in the CNS against pathogenic insults, injury,
or stress (44). Microglia, scattered throughout the brain, wander
more observantly and detect modifications of their environment
as sentinels (42, 53). Whether as the first glial cells seeded in the
brain early in embryonic development or as the first to respond to
insults in CNS, microglia are always the “pioneers” in the NVU.
On the other hand, astrocytes with a more dominant quantity
may be “reserve forces” and amplify the neuroinflammation,
owing to syncytium of the structure and function and strategic
position to mobilize peripheral immunity (54).
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ASSOCIATION OF MICROGLIA,
ASTROCYTES, AND
NEUROINFLAMMATION

Neuroinflammation is constantly present at every different
pathological state in CNS diseases. Neuroinflammation is
induced when the NVU responds to specific stimuli involved
in the activation of microglia and astrocytes, breakdown of
the BBB, infiltration of peripheral leukocytes, and inflammation
factors, etc. (55). Activated microglia and reactive astrocytes play
a crucial role in neuroinflammation. The dynamic phenotypic
changes of microglia and astrocytes determine their detrimental
or beneficial character at particular stages (7, 9). Microglia and
astrocytes in NVU is illustrated in Figure 1.

Microglia
Microglia, the first activated innate immune cells, can be
activated within minutes of tissue damage (56). Activated
microglia, with changes from the ramified morphology into
an amoeboid shape, upregulate the secretion of numerous
inflammation factors, and microglial phagocytosis (57). The
local extracellular and intracellular signals determine their
characteristics and switch of phenotypes, which range from
“M1-like” phenotypes characterized by increase of inflammatory
mediators, such as tumor necrosis factor (TNF), interleukin 1
beta (IL-1β), and reactive oxygen species (ROS) (58), to “M2-like”
phenotypes characterized by upregulation of anti-inflammatory
mediators, such as Interleukin IL-10, transforming growth factor
beta (TGFβ), and glucocorticoids (59). The M1-like phenotype
is considered to be destructive to NVU (60), while the M2- like
phenotype is interpreted to be nerve repair cells in CNS diseases
(61). Moreover, microglia display intermediate phenotypes with
diverse combination of polarization markers ranging from M1
to M2, representing the crossroads of diverse pro- and anti-
inflammatory (62–64). Although the supposed dichotomy of
M1/M2 phenotypes hardly reflect a wide range of microglial
phenotypes, this facilitates understanding of the activated state
of microglia in various CNS disorders (3).

Astrocytes
Astrocytes are another type of glial cells that actively participate
in regulation of neuroinflammation, depending on the
timing and context (65). Following diverse brain injuries,
astrocytes undergo a significant transformation called “reactive
astrocytosis,” whereby they upregulate many genes, increase the
size of cytoskeleton, process extension, increase expression and
immunoreactivity of glial fibrillary acidic protein (GFAP), and
form a glial scar (5, 66, 67). Reactive astrocytes were purified and
genetically analyzed in mice about neuroinflammation induced
by systemic injection of LPS or cerebral ischemia induced by
middle cerebral artery occlusion (MCAO). Neuroinflammation
and ischemia induced two different types of reactive astrocytes,
which correspond to “A1” pro-inflammatory and “A2” anti-
inflammatory, respectively. This nomenclature is similar to
the “M1” and “M2” of microglia (9). Different polarizations of
astrocytes are marked by different biochemical and functional
characteristics (68–70). A1 reactive astrocytes elevate levels of

FIGURE 1 | Illustration of microglia and astrocytes in NVU. In the context of

the NVU, astrocytes are located in the center between neurons and endothelial

cells (ECs). Astrocytes are closely associated with neurons and blood vessels

as versatile cells. Astrocytes communicate with neuronal pre- and

postsynaptic terminals to help modulate synaptic transmission. It has been

reported that one astrocyte can supervise over 100,000 synapses. Astrocytes

extend end-feet processes to cover the surface of cerebral blood vessels with

a ratio of ∼99% to modulate CBF or the BBB. Astrocytes can be organized

into syncytial structures of up to 100 units by gap junctions to facilitate

long-range signaling. Microglia account for about 5–15% of all cells in the

human brain. Under physiological or pathological conditions, they scan their

environment through scavenging functions. Microglia firstly react to brain

insults like “pioneers,” monitoring and transmitting “danger.” Astrocytes with

dominant quantity may be “reserve forces” and amplify the neuroinflammation,

owing to their syncytium of the structure, and function, and strategic position

to mobilize peripheral immunity.

many genes of the classic complement cascade, such as C1r, C1s,
C3, and C4, which are harmful for the NVU. Meanwhile, A2
reactive astrocytes upregulate beneficial inflammatory factors,
such as CLCF1 (cardiotrophin-like cytokine factor 1), LIF
(hypoxia induce factor), IL-6, IL-10, and thrombospondins, to
promote the NVU remodeling (5, 9). Reactive astrocytosis also
represents a spectrum of alterations reflecting the specific insults
in the CNS (9, 54).

The association of microglia, astrocytes, and
neuroinflammation is illustrated in Figure 2.

INTERACTION OF MICROGLIA AND
ASTROCYTES IN THE NVU

The Common Molecular Signals of
Interaction
Reactive astrocytes are induced by LPS-activated microglia (11,
56, 71). Liddelow et al. (9) showed that reactive astrocytes
(A1) can be induced by cytokines, such as interleukin-1 alpha
(IL-1α), TNF-α, and the complement component subunit 1q
(C1q), which secreted by activated microglia (M1) both in
vitro and in vivo. (11). Microglia appear to be more sensitive
to pathogens; they activate and secrete “molecular signals”
to trigger reactive astrocytes. Interaction between activated
microglia and astrocytes plays a crucial role in the process of
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FIGURE 2 | Illustration of microglia, astrocytes, and neuroinflammation. Microglia are more sensitive to pathogens/damage such as LPS or stroke, firstly activated into

M1-like phenotypes via PAMP/DAMP and promote the secretion of inflammatory factors such as TNF-a, IL-1, etc. to trigger reactive astrocyte (A1). As the insult

limited and the NVU is remodeling, the local environmental factors change and determine M2-like phenotype to upregulate microglial phagocytosis and secretion of

IL10, TGF, etc. Simultaneously, the local environmental factors may promote the switch to A2. Astrocytes communicate simultaneously with both neurons and blood

vessels as versatile cells to maintain the function of neurons and the blood–brain barrier, and their subtle changes may be captured and responded by astrocytes and

even transferred to microglia. A variety of molecular signals such as ATP, endothelin, etc. trigger reactive astrocytes (A1) and A1 upregulates many genes of the classic

complement cascade such as C1r, C1s, C3, and C4, which communicate with microglia via some corresponding complement receptors; A2 elevates the levels of

neurotrophic factors and cytokines such as CLCF1, LIF, IL-6, IL-10, and thrombospondins to promote neuronal survival and repair; the local environmental factors

promote the switch to M2-like phenotype.

neuroinflammation. Neuroinflammation of diverse CNS diseases
such as stroke may share the common “molecular signals” to
trigger astrocytes reaction, and these inflammation signals may
be amplified (72).

The activation of microglia occurs early in the timeline
of neuroinflammation following stroke besides LPS-induced
inflammation. Microglial activation within the perihematomal
region, by immunofluorescence staining, was seen within 1 h of
intracerebral hemorrhage (ICH) in a model of ICH (73, 74). In
a clinical study of perihematomal brain tissue, TNF and IL-1β
levels increased within 1 day of ICH (75, 76). After collagenase-
induced or autologous blood-induced ICH, IL-1β, TNF, IL-6
(77, 78), and inducible nitric oxide synthase (iNOS) (25), mRNA
levels were generally upregulated in the acute phase, starting
to rise in the first 3 h after ICH and peaking at 3 days (79,
80). Changes in the protein levels corresponded to the timeline
(25, 80, 81). Similarly, in the acute phase of ischemic stroke,
microglia were activated first and invaded the peri-infarct and
infarct core to orchestrate the post-stroke neuroinflammatory
response and communicated with astrocytes through soluble
and membrane-bound signaling molecules (82–84), including
the cytokines IL-1β, TNF, and IL-1 receptor antagonist (IL-
1Ra) (82, 83, 85). These studies imply that microglia in stroke
are more sensitive to pathogens/damage; which are activated
and produce then produce the common “molecular signals,”
such as IL- 1 and TNF, to trigger reactive astrocytes (11, 86).

Meanwhile, another study showed highly enriched astrocyte
cultures produced only a very few inflammatory factors, such as
TNF-α, reactive oxygen species (ROS), and nitric oxide (NO),
in response to LPS stimulation. Astrocytes seem to be sluggish
in response to pathogens stimulation and fail to be completely
activated in the absence of microglia (87).

TNF-α is a multi-effect cytokine mostly released from
microglia/macrophages (88) and neutrophils (89). The IL-
1 cytokine family has a large number of members, and
the most important are IL-1α, IL-1β, and the natural
receptor antagonist IL-Ra (90). Further, IL-1β is mainly
derived from microglia/macrophages (91). Both TNF-α
and IL-1 primarily produced by microglia/macrophages
are overexpressed within the first 2 h after experimental
ICH (92–94) and as early as 24 h after ischemic stroke in
mice (82).

Microglia are firstly activated via TLR4 by the pathogens or
damage and release the inflammation mediators TNF-α (95).
Sansing et al. (96) showed that activated microglia express
high levels of TLR4, which result in neuroinflammation after
ICH. Meanwhile, astrocytes respond through activation of TLR2,
TLR3, and TLR4, almost depending on the presence of microglia
(97). In the case of TLR4 activation in response to LPS, microglia
directly trigger or promote astrocytic responses by upregulating
the expression levels of soluble mediators. The results indicate
that microglia play a critical role in astrocytic activation via
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FIGURE 3 | The communications of microglia and astrocytes.

Pathogens/damage trigger M1-like microglia via TLR4. During the

neuroinflammation induced by LPS or stroke, Microglia are more sensitive to

pathogens/damage, firstly activated, and secrete the common “molecular

signals,” such as IL-1 and TNF-a, to trigger reactive astrocytes. Different types

of insults release different combinations of these molecules, which in turn

trigger different responses. It has been demonstrated that inflammation factors

induced by LPS, such as TNF-α, IL-1a, and C1a, can trigger reactive

astrocytes. In stroke, however, the inflammatory factors secreted by activated

microglia(M1), such as TNF-α, IL-1β, and IL-6, are significantly elevated.

Recombinant human HMGB1 (rhHMGB1) can trigger microglial activation via

the TLR4 and increase production of TNF-α, which in turn stimulates microglia

to release large amounts of HMGB1 to active more microglia. There seems to

be self-feedback loop in the activation process of microglia.

TLR4 in response to insults, injury, or inflammation in CNS
disorders (14, 97).

It is observed that human astrocytes are highly sensitive
to IL-1β but unresponsive to LPS stimulation, and reactive
astrogliosis is also induced by IL-1β alone (98). Within 24 h of IL-
1β induction, large numbers of reactive astrocytes are observed,
and elevate the matrixmetalloprotease (MMP)-9 expression (98–
100). Although astrocytes produce certain pro-inflammatory
factors, microglia are the main source of cytokines (101). Primary
mediators, such as TNF, IL-1β, and IFNγ, promote the produce

of secondary mediators, such as MMP, nitric oxide(NO), and
arachidonic acid (72).

These evidences suggest that, in the process of
neuroinflammation induced by stroke or LPS, microglia
are more sensitive to pathogens/damage and activated via
PAMP/DAMP and release the common “molecular signals”
or primary mediators, such as IL- 1 and TNF-α, to trigger
reactive astrocytes, while astrocytes are unresponsive to
pathogens/damage in the absence of microglial cells.

HMGB1
High-mobility group protein box-1(HMGB1), a highly
conserved non-histone DNA-binding protein, is involved
in pro-inflammatory cytokine gene transcription in diverse
inflammatory diseases (56, 102–104). In a rabbit subarachnoid
hemorrhage (SAH) model, the Murakami group found that the
HMGB1 protein are located in microglia and macrophages with
a ratio >90% (105). In a collagenase-induced mode of ICH in
rats, the release of HMGB1 into the cytoplasm in the brain was
detected within 1 h, and express levels of HMG1 protein was
substantially elevated at 24 h after ICH (106–108). These suggest
that HMGB1 also primarily arise from microglia/macrophages
and seem to be produced concurrently with cytokines such as IL-
1 and TNF-α.

In vitro, microglia stimulated by TNF-α release large amounts
of HMGB1 (109), and recombinant humanHMGB1 (rhHMGB1)
can activate microglia, increase NF-κB activity, and promote
inflammation factors including TNF-α, IL-1β, cyclooxygenase
(COX)−2, and NO (110). However, these effects disappeared
in TLR4–/– microglia treated with rhHMGB1 (110). These
observations indicate that not only pathogens/damage but
also HMGB1 can ignite microglial activation via TLR4 and
promotes the produce of TNF-α, which in turn stimulates
microglia to release large amounts of HMGB1 to active more
microglia. There seems to be self-feedback loop in the process of
microglial activation.

Signal Can be Amplified
Molecular languages, such as TNF-α and IL-1 is not only the
proinflammatory factors of M1-like phenotypes, but more like
“signals” to trigger reactivity astrocytes, and these inflammatory
signals may be amplified by the unique physiological structure
of astrocytes. A rat model experiment indicated that primary
microglia are more sensitive to lead (Pb) exposure; compared
to astrocytes, Pb is more likely to reduce microglial viability,
while astrocytes have greater uptake of Pb (111). Similarly,
the Kirkley group found that microglia can amplify the
inflammatory activation of astrocytes by the release of cytokines
and chemokines (12).

ATP and analogs interacts with G protein-coupled P2Y
receptors to promote astrocyte proliferation and the growth of
long, branched processes (101). It has also been shown that
microglial cells quickly released small amounts of ATP, and
astrocytes in turn amplified this release, increasing the frequency
of excitatory postsynaptic currents through P2Y1 (14). This
response can be blocked by inhibitors of connexin channels. In
the case of connexin channel inhibitors, microglial movement
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is also significantly impeded (112). These results reveal that
microglia as upstream partners ignite the response and astrocytes
with the syncytium coupled by connexin channels magnify this.

In conclusion, microglia firstly react like “pioneers” in the
NVU, initiate immune cascades, release inflammatory mediators,
and form network regulation. Meanwhile, astrocytes with
dominant quantity may be “reserve forces” and amplify the
neuroinflammation, owing to their syncytium of structure and
function. In addition, the amplification of neuroinflammation
may be also related to astrocytic strategic position to mobilize
peripheral immunity.

Communication Between M2 and A2
As mentioned above, the M1-like microglia secrete some pro-
inflammatory mediators to induce A1 astrocytes, which amplify
the cascaded neuroinflammation. With the process of the insults
limited and the NVU remodeling, the local environmental factors
change and determine the switch of microglial and astrocytic
phenotypes. Activated microglia-Derived Cytokines (TNF-α, IL-
1β and IL-6) induced the switch of astrocyte phenotype after
brain trauma (113). The interaction of microglia and astrocytes
plays a vital role in the switch of phenotypes. In addition,
activated M2-like microglia produce the anti-inflammatory
cytokine IL-10, which matches the IL-10 receptor (IL-10R)
primarily expressed in A2 astrocytes, and this allows astrocytes
to secrete TGF-β, which reduces microglial activation (114).
The communication between M2 and A2 significantly promotes
neuronal survival and repair and is even amplified by the unique
anatomy structure of astrocytes.

Astrocytic Dialogue to Microglia
In physiological conditions, astrocytes communicate
simultaneously with both neurons and blood vessels as
versatile cells to maintain the function of neurons and the
blood–brain barrier (27). In pathological conditions, reactive
astrogliosis, and astrocytic proliferation become dominant, and
the process is triggered by diverse molecular signals, such as
cytokines, ATP, endothelin, sonic hedgehog, fibroblast growth
factor2 (FGF2), thrombin, and bone morphogenic proteins
(BMP) (27, 115). The communications among neurons, BBB and
microglia/macrophage mostly rely on these molecular signals
(11, 13, 21, 116). Early triggers contain nucleotides released
from damaged cells and pro-inflammatory cytokines as well
as purines/pyrimidines such as ATP and elevated excitotoxic
transmission, as ATP is co-released with neurotransmitters
(101). In physiological or pathological conditions, astrocytes
seem to primarily sense the signals derived from neurons
and blood–brain barrier components including microglia in
the NVU.

During development, astrocytes can sense subtle changes in
neurons to induce the production of C1q in neuronal synapses,
which interacts with the microglial C3a receptor (C3aR) to prune
the neuronal synapses through the classic cascade complement
pathway (117). In the context of Alzheimer’s disease (AD)
pathology, overproduction of AD promote the release of C3 from
astrocytes, which simultaneously communicate with microglial
C3aR and neuronal C3aR to dynamically regulate microglial

phagocytosis and impair dendritic morphology as well as
synaptic function, subsequently deteriorate cognitive function.
The damaged neurons in turn trigger more astrocytes and active
more microglia. Complement-dependent intercellular crosstalk
is critical to promote the pathogenic cycle, and the feedforward
loop can be blocked effectively by C3aR inhibition (118, 119).

Astrocytes are major sources of many chemokines, such as
CCL2, CXCL1, CXCL10, and CXCL12 (120–122), and microglia
express some corresponding chemokine receptors, such as CCL2,
CXCL12 (123, 124), and so on. This implicates a strong
association between microglia and astrocytes.

In summary, astrocytes, one of the important components
of the NVU, communicate simultaneously with both neurons
and blood vessels as versatile cells to maintain the function of
neurons and the blood–brain barrier, whose subtle changes are
captured and responded to by astrocytes, and even transferred
to microglia. In early mild cognitive impairment, astrocytes may
be the primary responsibility for this, but, in moderate or severe
cognitive impairment such as AD, amounts of accompanied
neurons death or apoptosis may also directly activate microglia,
as microglia are more sensitive to pathogens/damage and trigger
more reactive astrocytes via inflammatory signals, which can be
amplified not only by the self-feedback loop of HMGB1 but also
by the unique anatomy structure of astrocytes. Although both
microglia and astrocytes own their functional characteristics,
they can achieve the immune “optimization” through their
mutual communication and cooperation in neuroinflammation.

The communications of microglia and astrocytes is illustrated
in Figure 3.

Different Pathogens/Damage and Different
Effects
The inflammatory effects of the central nervous system depend
on several parameters, including the types and severity of
pathogens/damage, glial cell types, a variety of combinations
of signal molecules (including chemokines, cytokines, etc.), and
timeline of the response, etc. (112, 125, 126).

Zamanian et al. showed that reactive astrocytes induced
by LPS or ischemic stroke upregulate over 1,000 genes, and
genomic profiling has shown that both gene representation and
fold induction correspond to individual injuries. Some of the
upregulated genes are unique to the LPS subtype (A1) or the
middle cerebral artery occlusion (MCAO) subtype (A2). For
example, the three genes, including Ptx3, S1Pr3, and tweak, are
markers for the MCAO subtype (A2), while H2-D1 and Serping1
are markers for the LPS subtype (A1) of reactive astrocytes.
H2-D1 was induced 30-fold by LPS but only 3-fold by MCAO.
Serping1 was induced 6.5-fold after MCAO and 34-fold after
LPS (5). These data indicate that different pathogens/damage
can induce different phenotypes of astrocytes. This may closely
relate to the different interaction between the activated astrocytes
and microglia, which contain different combinations of molecule
signals. It has been demonstrated that inflammation factors
induced by LPS, such as TNF-α, IL-1a, and C1al, can trigger
reactive astrocytes (11). In stroke, the inflammatory factors
secreted by activated microglia (M1), such as TNF-α, IL-1β,
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and IL-6, are significantly elevated (77, 78, 127). Furthermore, a
recent clinical inflammatory factor test is about the relationship
of inflammatory markers and severity of ICH, and this test
displayed that high TNF-a is closely associated with the size of
edema around the hematoma and increase of early hematoma,
leading to poor functional recovery and high mortality (128).
These studies imply the different types and severities of insults
release different combinations or levels of these molecule signals,
which in turn trigger different responses.

Thus, different pathogens/damage correspond to different
phenotypes of glia cells. Even the same pathogens/damage with
the different levels of stimulation, the activated levels and
phenotypic timeline of glia cell are also different. In the pathology
of neuroinflammation induced by LPS, the pathogen is stronger,
M1/A1 are primary, and it is critical to suppress the pro-
inflammatory or shorten the phase. While sterile inflammation
induced by stroke, such as cerebral infarction or hemorrhage, it
may be beneficial to moderately attenuate the activation levels
and shorten the timeline of M1/A1 or strengthen A2/M2, some
studies and experiments have confirmed this (85, 129–131).
In degenerative disease, such as AD, it may be beneficial to
enhance the A2/M2 for brain repair and functional recovery.
While in autoimmune diseases such as multiple sclerosis,
autoimmune encephalitis, attenuating M1/A1 in time may be
more beneficial (132–139).

SUMMARY AND OUTLOOK

Neuroinflammation is dynamic with the regulation of pro and
anti-inflammatory signals. The activation and interaction of
glial cells play a crucial role at different stages of pathology in
CNS disorders. Microglia are more sensitive to pathogens or
damage, firstly activated (M1) like “pioneers,” monitoring and
transmitting “danger” via the commonmolecule signals to trigger
reactive astrocytes (A1). Astrocytes with dominant quantity
may be “reserve forces” and amplify the neuroinflammation,
owing to their syncytium of the structure, and function, and

strategic position to mobilize peripheral immunity. Although
inflammation signals betweenmicroglia and astrocytesmay share
the common inflammatory signals, such as IL- 1 and TNF-α,
different pathogens and pathological conditions may correspond
to different inflammatory signals (TNF-α, IL-1β, and IL-6 are
significantly elevated in stroke, while TNF-α, IL-1a, and C1a
induced by LPS can trigger markedly reactive astrocytes), and
different strategies may be required. As the pathology further
progresses, the communication between M2 and A2 significantly
promote neuronal survival and repair. In addition, astrocytes,
as one of the essential components of the neurovascular unit
(NVU), communicate simultaneously with both neurons and
blood vessels as versatile cells to maintain the function of neurons
and the BBB; their subtle changes are identified and responded
by astrocytes and even transferred to microglia. Activated
microglia and reactive astrocyte may achieve the immune
“optimization” through mutual communication and cooperation
in neuroinflammation. Inflammation signals between microglia
and astrocytes can be amplified not only by the self-feedback
loop of microglial activation but also by the unique anatomy
structure of astrocytes in the immune network (140–148). With
advancements in technology, the interaction of microglia and
astrocytes may be an effective and accurate therapeutic target in
the future.
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