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Cytokines are soluble factors that play vital roles in systemic function due to their ability

to initiate and mediate cell-to-cell communication. Another important mechanism of

intercellular communication that has gained significant attention in the past 10 years

is the release of extracellular vesicles (EVs). EVs are released by all cells during normal

physiology, in states of resting and activation, as well as during disease. Accumulating

evidence indicates that cytokines may be packaged into EVs, and the packaging

of cytokines into EVs, along with their ultimate secretion, may also be regulated by

cytokines. Importantly, the repertoire of biomolecules packaged into EVs is shaped by

the biological state of the cell (resting vs. activated and healthy vs. disease) and the

EV biogenesis pathway involved, thus providing mechanisms by which EV packaging

and secretion may be modulated. Given the critical role of cytokines in driving acute

and chronic inflammatory and autoimmune diseases, as well as their role in establishing

the tumor immune microenvironment, in this review, we will focus on these disease

settings and summarize recent progress and mechanisms by which cytokines may be

packaged within and modulated by EVs, as a therapeutic option for regulating innate and

adaptive immunity.
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INTRODUCTION

Intercellular communication is an essential biological feature that is mediated through (1) cell-cell
contact, (2) soluble factors (cytokines, growth factors, hormones, neurotransmitters) and (3) the
more recently discovered extracellular vesicles (EVs) that carry cytosolic, nuclear and cell-surface
proteins, lipids, nucleotides, microRNA, and metabolites (1, 2). These three mechanisms of
intercellular communication help to ensure that homeostasis is maintained in a biological system
and that the system can respond appropriately to conditions of stress and disease. Conversely,
dysregulation of any of these mechanisms of intercellular communication may promote altered
physiology leading to disease.

Cytokines are small, non-structural proteins with low molecular weights that are synthesized
and secreted by immune cells: macrophages, B and T cells, dendritic cells, neutrophils, mast cells,
as well as endothelial, epithelial, fibroblasts and stromal cells, as a mechanism to communicate
with each other (3). As soluble factors, they are largely responsible for promoting and regulating
an immune response by acting on receptors at the cell membrane. This results in the downstream
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regulation of signaling molecules that stimulate cells toward sites
of inflammation, infection, and trauma (4). Thus, cytokines have
significant roles in a variety of functions including cell activation,
differentiation, proliferation, trafficking, inflammation, and
tumorigenesis that affect every organ system in the body. Their
pleiotropic function(s) as intercellular messengers allows them
to act at the site they are produced (autocrine), on nearby cells
(paracrine), or on distant cells and tissues (endocrine), which
also enables them to be self-regulating (4, 5). Cytokines act as
extracellular ligands for specific membrane receptors present on
responsive target cells and thus must possess a high affinity for
each other. The high affinity helps to explain why cytokines can
exert their biological effects in picomolar concentrations (4). As
such, it is not surprising that multiple mechanisms have evolved
that allow for the fine-tuning of cytokine secretion that enables an
effective but limited response. This level of control is necessary in
order to prevent excessive and/or dysregulated release that could
drive acute and chronic inflammatory and autoimmune diseases
(5, 6). As a result, it is important to understand the secretory
(exocytic) pathways and endocytic compartments involved in
cytokine transport, along with the regulatory molecules and
cellular machinery that determine the levels and timing of
cytokine release [reviewed in (5–9)]. Although cytokines are
considered soluble factors, recent data indicate that they can
also function as membrane proteins and be packed and stored
in secretory granules, lysosome-related organelles, or secretory
lysosomes and later released at the cell surface (8). Accumulating
evidence indicate that cytokines can also reach the extracellular
space through EVs.

EVs are a heterogeneous collection of small membrane-bound
organelles that are naturally released from all cells [recently
reviewed in (10)]. Originally, they were described as small vesicles
that selectively remove excess and unnecessary components of
cells in order to maintain homeostasis. However, subsequent
studies over the past 10 years reveal that EVs play an important
and targeted, functional role in cell-to-cell communication (11).
Studies from multiple labs show that the packaging of cellular
components within EVs are determined, in part, by the cell
type they are secreted from and the physiologic status of the
parental cell (12–15); the latter involving mechanisms that can be
manipulated to potentially alter the cellular components within
EVs and the secretion of EVs.

Based on biochemical and microscopic characterization
of EVs, they can be broadly separated into two classes—
exosomes and microvesicles—that are primarily distinguished
by the mechanisms of biogenesis, as well as size (11). Details
of the mechanisms of EV biogenesis have recently been
reviewed (10). Briefly, exosomes range in size between ∼50
and 150 nm in diameter (∼100 nm on average) and arise from
the endo-lysosomal trafficking pathway during the formation
of multivesicular bodies (MVBs). Exosomes are released
extracellularly when MVBs fuse with the plasma membrane.
Microvesicles, on the other hand, are organelles generated by
pathways that direct the outward budding or shedding of the
plasma membrane and range in size between ∼50 nm to 1µm.
More recent data in the field of EVs indicate that these two
classes also differ by the cellular components that are packaged

inside, likely resulting in different biological functions (11). The
unique profile of cellular components that are packaged in EVs
and secreted from a cell represents a molecular, biological, and
cellular code that contains information about the parental cell at
the time of secretion and how the EVs may reprogram recipient,
adjacent cells and tissues during normal homeostasis and disease
(14). However, precise identification of the origin of EVs is made
difficult by the fact that there is substantial commonality in size,
external markers, and internal content between exosomes and
microvesicles. As a result, it is often not possible to definitively
establish the method of biogenesis of isolated EVs, underscoring
the importance of clearly defining the parameters used to identify
specific EV populations (16). In this review, we provide an
overview of cellular states and mechanisms by which cytokines
may be packaged within and their release controlled by EVs.

PACKAGING OF CYTOKINES IN EVS

While all innate immune cells have the capacity for constitutive
exocytosis, their release can also occur through regulated
secretory pathways [reviewed in (9, 14)]. The constitutive and
induced secretion of cytokines as soluble factors provides a
systemic release that helps to maintain normal homeostasis.
Regulated secretion, on the other hand, provides the ability
to orchestrate the rapid delivery of a concentrated amount of
cytokines to a specific site in response to a specific signal (9).
Recent work by Fitzgerald et al. revealed that cytokine packaging
into EVs was a general biological phenomenon that occurs in
vitro, ex vivo and in vivo from multiple cell types and tissues.
Somewhat surprising, they found that all cytokines could be
packaged into EVs. However, depending on the biological system
and cell type, they reported that a cytokine could be released
either in soluble or EV-associated form. Analysis across multiple
biological systems (placental villous explants, tonsil explants,
amnion explants, cervix explants, plasma, T cells, amniotic fluid,
monocytes) revealed that 9 cytokines—Interleukin 6 (IL6), IL8,
IL13, IL16, IP10, MCP1, MIP1α, MIP1β, and MIP3α–were more
often found in soluble form. Conversely, 11 cytokines—IL2, IL4,
IL12p70, IL17, IL21, IL22, IL33, IFNγ, ITAC, TGFβ, and TNFα–
were found in greater levels in EVs. An interesting aspect of this
study that is relevant to disease was the finding that cytokines
packaged into EVs are not detected by standard cytokine assays,
such as ELISA or other multiplexed immunoassays, since they
are hidden from antibody detection by the EV membrane. Thus,
methods to determine cytokine production from EVs will be
important for our understanding of their role(s) in health and
disease (12, 17).

What exactly is the biological meaning of packaging cytokines
in EVs? Given that cytokines can exert their biological effects in
picomolar concentrations, packaging cytokines into EVs is one
mechanism whereby cytokine expression may be concentrated
at the surface of other cells that might not otherwise be targeted
by cytokines in soluble, circulating form. Further, EV packaging
may facilitate cytokine delivery and targeting to distant cells.
This could be mediated by binding of EV-surface cytokines to
cells that express specific cytokine receptors. Another possibility
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is that EVs protect cytokines from environmental degradation.
Indeed, Fitzgerald et al. found that EV-associated cytokines
were protected from trypsin digestion, as compared to soluble
cytokines (12). This protection extends to cytokines bound to
the surface of EVs as well, since an 189 amino acid isoform
of VEGF was found to associate with heparin on the surface
of small cancer-derived EVs, resulting in reduced recognition
by the VEGF antibody bevacizumab (18). Interestingly, these
data suggest a mechanism by which vesicle surface-bound VEGF
contributes to bevacizumab resistance in cancer patients that is
likely different than soluble VEGF function. Further, synovial
fibroblasts from patients with rheumatoid arthritis were shown
to release EVs that express membrane-associated TNF that
reduces the activation-induced cell death of CD4+ T cells (19).
Differences in biologic function between soluble and membrane-
bound cytokine receptors have been relatively well-characterized
in the literature, showing that soluble receptors will often act
as antagonists to membrane-bound forms (20, 21). However,
comparatively little is still known regarding the different biologic
functions of soluble vs. vesicle membrane-bound cytokines. As a
result, themechanism(s) by which cytokines are packaged in EVs,
by internalization as vesicle cargo or expression on the vesicle
surface, and how they are released from EVs, through lysis or
uptake by a target cell, all contribute to the complex mechanisms
of normal (healthy) and disease-related cytokine signaling.

Although the previous 5–10 years have shown rapid
advancements in the field of EV research, there remain a
number of unanswered questions regarding differential biological
outcomes from cytokines (and other proteins) released by EVs
into the microenvironment. For instance, Rana et al. reported
that poly(I:C) could induce the release of both soluble and EV-
secreted IL36γ from keratinocytes (22). The authors postulated
that these two mechanisms of cytokine release may modulate
both local and systemic immune responses to viruses and other
pathogens. However, it remains unknown whether soluble and
packaged IL36γ have different biological functions on target cells.
Moreover, it is not currently knownwhether cytokine signaling in
a target cell is altered dependent on how the target cell “sees” the
cytokine. This lack of knowledge is partially due to the fact that
multiple mechanisms exist for how target cells interact with EVs,
thus adding to the complexity of our understanding of differential
function [reviewed in (23)].

CELL TYPE AND PHYSIOLOGIC STATUS
DETERMINE CYTOKINE PACKAGING

As alluded to above, Fitzgerald et al. recently reported that
medium from cultured cells and tissue explants, as well as
body fluids, contained different amounts of EVs with different
levels and types of cytokines. Importantly, they found that the
distribution of cytokines between soluble and EV-associated
forms was largely dependent on the cellular system rather
than the cytokine being secreted. For example, tissue explants
that contain cells in close proximity to other cells normally
found in their in vivo microenvironments tended to release
more cytokines in soluble form than were found in T cell or

monocyte suspensions or in plasma. Indeed, a greater proportion
of EV-associated cytokines were found from the cells and plasma.
However, upon stimulation of cells, they found that the number
and pattern of cytokines packaged in EVs changed depending on
the stimulus, suggesting that the packaging of cytokines in EVs
is not simply the property of a particular cytokine, but rather
a tightly controlled biological process. For instance, stimulation
of tonsillar explants with pokeweed mitogen resulted in a drastic
change in the pattern of cytokine release with a shift toward more
soluble secretion rather than EV-associated secretion. In contrast,
human primary monocytes stimulated with either LPS or polyI:C
resulted in more EVs being secreted with different patterns of
cytokines associated with EVs; distinct patterns of soluble vs.
EV-associated cytokine secretion were also detected between the
two stimuli (6, 12).

Stimulation of human umbilical cord blood-derived mast cells
by cross-linkage of FcIgE receptors (FcεRI) induces the release
of granule-associated mediators such as histamine, metabolites,
and cytokines (24–26). Kandere-Grzybowska et al. found that
stimulation of human mast cells with IL1 rather than FcεRI
cross-linking resulted in the exclusion of IL6 from secretory
granules, and instead found that IL6 was secreted in 40-80 nm
vesicular structures (27). Similarly, a number of reports have
been recently published showing that exosomes from the plasma
of HIV-infected individuals have distinct levels and types of
cytokines as compared to exosomes from healthy donors (28–30).
Interestingly, in patients with diabetes, the association of specific
cytokines with EVs was found to be strongly influenced by disease
duration and treatment outcome (31). Altogether, these data
support that EV-associated cytokine loading and secretion may
be directed in a cell type- and stimuli-dependent manner.

BIOLOGICAL ACTIVITY OF
EV-ASSOCIATED CYTOKINES

In the mid-1990s, EVs secreted from B cells were shown to
have an immunological function in antigen presentation and as
vesicles that can induce T cell responses (32–34). We now know
that one of the mechanisms by which EVs elicit immunological
function is that they can serve as alternate carriers for the delivery
of cytokines. Immunologically, EVs maintain characteristics of
the antigen presenting cell (APC) that they were derived from,
exposing the extracellular domain of major histocompatibility
complex (MHC) molecules at the vesicle surface. Thus, EVs
released by APCs carrying surface MHC Class I and MHC Class
II can directly stimulate CD8+ and CD4+ T cells, respectively
[reviewed in (33)]. Of note, EVs are also generated from
immunosuppressive APCs. For instance, autologous EVs isolated
from plasma shortly after antigen (Ag) stimulation could be used
to induce Ag-specific immunosuppression (35, 36). Further, EVs
isolated from bronchoalveolar lavage fluid following Ag-specific
exposure could be used to prevent Ag-specific allergic responses
(37, 38). Last, EVs present in human breast milk and colostrum
were found to increase the number of T regulatory (Treg) cells
and thus could be used to suppress immune responses (37). In
this context, pregnancy has been shown to alleviate the severity
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of some autoimmune diseases, such as rheumatoid (RA) arthritis
and multiple sclerosis (MS) (39).

Given the small size of EVs, they are capable of crossing
major biological barriers such as the blood-brain barrier, and
thus provide interesting prospects for therapeutic packaging and
regulation (40–42). It is now well-recognized that EVs have
a wide range of pleiotropic functions in multiple biological
processes. For example, in an in vitro model of cardiovascular
disease, EVs isolated from TNFα-induced human vascular
endothelial cells (HUVEC) were taken up by monocytes and
un-induced HUVEC, promoting an inflammatory response (13,
43, 44). Hosseinkhani et al. reported a select increase in IL6, IL8,
and ICAM1 levels in un-induced HUVEC after co-incubation
with EVs isolated fromTNFα-inducedHUVEC, while THP1 cells
showed an increase in ICAM1,MIP1β, CCL5, and CXCL10 levels
(13). The change in THP1 inflammatory mediators by EVs led
to an increase in monocyte adhesion and migratory function.
Another interesting study reported that exosomes isolated from
mesenchymal stem cells (MSCs) of human umbilical cord treated
with interferon (IFN)γ or a combination of TGFβ plus IFNγ

contained increased levels of TGFβ, IDO, IL10, and IFNγ that,
when incubated with PBMCs, resulted in increased numbers of
Tregs (45).

In HIV-positive individuals, cytokines were found to be
markedly enriched in exosomes and exposure of these exosomes
to purified naïve peripheral blood mononuclear cells (PBMCs)
resulted in the induction of CD38 expression on naïve and
central memory CD4+ and CD8+ T cells, likely contributing
to viral propagation via activation of bystander cells (30). An
independent study characterizing plasma EVs from HIV-positive
individuals found increased oxidative stress markers that
correlated with an IFN gene signature and immune activation
(28). Another interesting immunologic function for EVs was
discovered in the placenta as a mechanism to regulate immunity
against the fetus during pregnancy. Holder et al. reported
that macrophage-derived exosomes containing IL6 and IL8
were actively transported into the human placenta to stimulate
placental cytokines (46).

EV-ASSOCIATED CYTOKINES IN
AUTOIMMUNE DISEASE

Recent evidence supports that EVs can mediate immune
stimulation or suppression and can drive inflammatory,
autoimmune and infectious disease pathology (47–49). One
of the mechanisms by which EVs can drive autoimmune
disease is that they serve as carriers of pathogen-associated and
damage-associated molecular patterns (PAMPs and DAMPs,
respectively), as well as cytokines, autoantigens and tissue-
degrading enzymes (48). Indeed, synovial EVs from patients
with RA were found to contain citrullinated proteins and, in
the autoimmune disease systemic lupus erythematosus (SLE),
EVs could serve as autoantigens in the formation of immune
complexes (50–54). In addition, cytokines, such as IL6, are highly
implicated in the development and progression of multiple
autoimmune diseases whose production can be regulated by EV

packaging and secretion. The role of IL6 in autoimmune disease
pathogenesis is due in part to its influence on CD4+ T cell
lineage and regulation [reviewed in (55)]. We provide examples
in the above sections of how IL6 packaging and secretion in EVs
can be regulated by different stimuli.

Another cytokine that contributes to autoimmune disease
pathogenesis is TNFα. High levels of circulating TNFα are a
major driver of RA. Interestingly, a membrane-bound form of
TNFα was recently detected from individuals with osteoarthritis
(19). The premise that EVs package cytokines that contribute to
the amplification of an immune response was supported by work
from Obregon et al. revealing the presence of large amounts of
TNFα packaged into EVs derived from LPS-activated dendritic
cells (DCs). These EVs also contained MHC II, CD40, CD83,
TNFR1, and TNFR2 and were internalized by epithelial cells
that became activated to release cytokines and chemokines such
as IL8, MCP1, MIP1β, RANTES, and TNFα (56). In another
related study, Zhang et al. identified a membrane bound form
of TNFα on exosomes produced from synovial fibroblasts of
patients with RA. These exosomes were found to activate Akt
and NFκB pathways and rendered T cells resistant to undergo
apoptosis; the authors proposed that this contributed to T cell-
mediated pathology in RA (19). Figure 1 provides an overview
of these mechanisms through which EVs expressing TNFα
modulate autoimmunity.

IL1β is a pro-inflammatory cytokine that has stimulatory
effects and helps promote the differentiation of CD4+ T cells
into T helper 1 (Th1) and Th17 lineages, both of which are
known to contribute to autoimmune disease pathogenesis (57,
58). The release of the active form of IL1β follows a finely
regulated process [(59); reviewed in (60)] and we now know
that EV production plays a role in the maturation process
of IL1β (61–66). This is dependent on the formation of the
inflammasome, a multiprotein complex of innate immunity
that is also involved in the secretion and loading of proteins
associated with vesicles (67, 68). Different types of stimuli have
been reported to promote inflammasome activation resulting in
IL1β secretion via EVs, such as extracellular ATP that serves
as a strong activator of the NRLP3 inflammasome, resulting
in increased release of EVs (65, 69). Another stimulus is ionic
fluxes that cause membrane polarization. It has been well-
established that Ca2+ influx causes inflammasome activation and
vesicular production. Ca2+ influx also induces the activation
of different calcium-dependent proteins involved in membrane
and cytoskeletal modification, thus facilitating the release of EVs
(70). Last, a non-canonical route for inflammasome activation
and the maturation of IL1β involves caspase 4/5, which directly
recognize intracellular LPS. Caspase 4/5-mediated activation of
the inflammasome strongly induces the release of IL1β, IL18, and
other EV-associated cytokines (63).

High serum levels of type I (IFNα), II (IFNγ), and III (IFNλ1)
are observed in patients with SLE and have been associated
with high disease activity; thus, IFNs are considered to be key
molecules in the pathogenesis of SLE (71–74). Interestingly,
before EVs were identified as entities with physiologic function,
it was well-known that IFNs were able to affect enveloped virus
budding, release, and infectivity by increasing the expression
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FIGURE 1 | Modulation of autoimmunity by extracellular vesicles expressing TNFα. (A) Fibroblast-derived EVs containing TNFα modulate T cell function in the

synovium of patients with rheumatoid arthritis. (B) Stimulation of dendritic cells with LPS induces the packaging and secretion of specific EV-associated cytokines that

themselves, induce a downstream effect(s) on cytokine production from epithelial cells.

of genes encoding restriction factors, such as ISG15 that
has regulatory functions in EV packaging and secretion (75).
ISG15 is an IFN stimulated gene (ISG) and an ubiquitin-like
modifier (76–78). It has been identified in microvesicles and
exosomes originating from TLR3 (polyI:C)-activated human
brain microvascular endothelial cells (79). Importantly, ISG15
was found to ISGylate TSG101, which is a component of the
ESCRT-I complex that mediates ESCRT-dependent EV secretion
[reviewed in (10, 14, 80)]. Thus, not surprisingly, ISGylation
was reported to influence exosome secretion. Villarroya-Beltri
et al. revealed that type I IFNs trigger TSG101 modification via
ISG15 that results in TSG101 degradation and impaired exosome
secretion (81, 82). They reported that ISGylation of TSG101
triggers MVB co-localization with lysosomes, thus promoting the
aggregation and degradation of MVB proteins, and the ultimate
impairment of exosome secretion (81). Relevant to type I and
II IFNs, the transcription factor interferon regulatory factor 1
(IRF1) was found to regulate select GTPases, such as Rab27a
that is a key factor in EV secretion. Yang et al. found that IFNγ-
induced IRF1 upregulation promoted Rab27a expression and EV
secretion; conversely, knockdown of IRF1 or Rab27a resulted in
reduced EV secretion (83). In addition to contributing to the
regulation of EV secretion, IFNs also contribute to the packaging
of its cellular components [reviewed in (6)].

EV-ASSOCIATED CYTOKINES IN CANCER

In cancer, tumor-derived EVs have been shown to play roles
in immune evasion and metastatic progression (84–87). One
of the first studies revealed that vaccination of mice with
exosomes isolated from tumor peptide-pulsed DCs primed
tumor-specific cytotoxic T cells and suppressed tumor growth
in a T cell-dependent manner (88). Similarly, Seo et al. found
that EVs released from activated CD8+ T cells of healthy mice
were capable of attenuating tumor invasion and metastasis
by apoptotic depletion of mesenchymal tumor stromal cells
(89). Subsequent studies of EVs secreted from melanoma and
prostate cancer cells revealed that they express programmed
death-ligand 1 (PD-L1) on their surface, which suppresses the
function of CD8+ T cells and facilitates tumor growth (90–
93). The level of PD-L1 expression was found to correlate
with disease stage, and was increased by IFNγ stimulation (94).
Importantly, the associated suppression of CD8+ T cell response
by exosomal PD-L1 could be abrogated by treatment with PD-
1 or PD-L1 inhibitors to induce immune-mediated reduction of
tumor growth.

Most solid tumors exhibit increased release of EVs,
accompanied by alterations in their composition of proteins,
lipids, and genetic material (95, 96). As a result, tumor-derived
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EVs have diverse effects on tumor growth, invasion, metastasis,
and immune response, in part, through their modulation of
cytokine production by cells of the innate and adaptive immune
system (86). The complex interplay between the diverse array of
cells in the tumor microenvironment and the pleiotropic factors
that are secreted, is the subject of extensive current research, and
our knowledge of exactly how these cells and mediators interact
is incomplete. Nonetheless, it is clear that EVs promote tumor
growth and progression in most solid tumors, highlighting the
importance of these mediators in tumor-immune regulation.

Tumor-associated macrophages (TAMs) are major
regulators of inflammation and immune response in the
tumor microenvironment and are thus important targets of
tumor-derived EVs. Crosstalk between tumor-derived EVs
and macrophages can polarize them toward a more M2-like,
pro-tumor TAM (97), which is associated with higher levels
of the immunosuppressive cytokines IL10, IL4, and TGFβ.
However, EVs can also promote tumor progression through
an increase in pro-inflammatory functions of macrophages.
Wu et al. found that exosomes secreted by gastric tumors were
capable of inducing pro-inflammatory signaling in macrophages
via activation of NF-κB, thereby promoting tumor growth and
invasion (98). Similarly, breast cancer exosomes were found
to induce macrophage-mediated secretion of the cytokines
TNFα, IL6, and MCP1, which stimulate tumor progression
and metastasis (99, 100). Increased IL6 production mediated
by tumor-derived exosomes results in suppressed dendritic cell
activity and attenuated immune response, resulting in enhanced
tumor growth (101).

Tumor-derived exosomes also promote tumor growth
through the stimulation of myeloid-derived suppressor cells
(MDSCs), which have immunosuppressive effects in tumors.
Multiple cancer types have been found to secrete exosomes
containing heat shock proteins, Hsp72 and Hsp90, which activate
Stat3 in MDSCs via IL6 and promote immunosuppression and
tumor growth (85). Exosomes isolated from B16 melanoma
tumors in mice were shown to stimulate MDSCs to produce
TNFα, MCP1, and IL6 in a MyD88-dependent manner, which
promotes immunosuppression, tumor growth, and metastasis
(23). Not surprisingly, these same pro-inflammatory cytokines
were implicated in ovarian cancer, in which exosomes isolated
from the body fluids of patients induced production of IL1β,
TNFα, and IL6 by THP-1 monocytes (102).

Last, tumor-derived EVs have been implicated in the
development of pre-metastatic niche (PMN) formation in a
variety of cancers [recently reviewed in (103)]. Results from
pancreatic cancer, breast cancer, ovarian cancer, and melanoma,
among others, highlights the importance of EVs in regulating
intercellular communication at sites distant from the primary
tumor (104). For example, in a well-characterized model of
pancreatic cancer, tumors were found to secrete exosomes
containing macrophage migration inhibitory factor (MIF), which
induces TGFβ signaling in Kupffer cells in the liver. This
resulted in increased production of fibronectin by hepatic
stellate cells, creating an environment that is more permissive
to metastatic colonization by tumor cells (105). In response
to the hypoxic microenvironment that is present in most

solid tumors, many types of cancers were found to promote
endothelial growth through the release of pro-angiogenic factors,
such as VEGF, that can also be packaged inside exosome (18,
106, 107). A summary of EV-mediated regulation of cytokine
production by cells in the tumor microenvironment is provided
in Figure 2.

MODULATING EV SECRETION AS A
MECHANISM TO CONTROL CYTOKINE
RELEASE

Although EVs are released in resting cells, stimulating events,
such as cell activation, leads to increased intracellular calcium
levels, resulting in cellular membrane remodeling and
enhanced EV secretion (108). Pharmacologic modulation
of EV output can be achieved through treatment with agents
that interfere with cytoskeletal remodeling that is required for
the formation of MVBs and trafficking of proteins into vesicles
for their subsequent release (10, 80). Calpains are a family
of calcium-dependent cysteine proteases that are important
for unconventional protein secretion and inflammasome
activation (65). Inhibition of calpain with a small-molecule
inhibitor, such as MDL28170, blocks vesicular formation
and the subsequent release of EVs (65). Given the role of
caspase 4/5 in inflammasome activation and release of IL1β-
associated EVs, the use of a caspase 4 inhibitor was found to
block EV secretion from LPS-stimulated human macrophages
(63). Treatment of cells/tissues with the microbial metabolite
Manumycin A, a farnesyltransferase inhibitor, resulted in
decreased EV biogenesis and secretion via modulation
of ESCRT machinery (12, 109). A similar pharmacologic
approach is to inhibit the formation of MVBs by inhibiting
sphingomyelinase activity. Sphingomyelinases are required for
the inward budding and eventual release of MVBs through
an ESCRT-independent pathway. GW4869 is a neutral
sphingomyelinase inhibitor that inhibits vesicle formation
(110). Last, simvastatin was recently identified as an inhibitor
of EV secretion based on the rationale that cholesterol is
necessary for the formation of vesicle membranes. However,
simvastatin’s function as an HMG-CoA reductase inhibitor does
not entirely explain the mechanism, as supplementation with
mevalonate did not fully restore EV output to baseline levels
(111). Given that different mechanisms of EV biogenesis exist,
we may utilize this knowledge to selectively target (inhibit)
specific populations of EVs while leaving other subsets of
EVs untouched.

As our current understanding of the mechanisms that
differentially regulate the packaging of cytokines in EVs from
resting and activated cells expands, this knowledge may be also
used to preferentially drive the packaging of distinct groups
of cytokines into EVs for therapeutic use. For instance, DCs
can be stimulated to secrete EVs that induce the differentiation
of immunosuppressive Tregs for the treatment of autoimmune
disease (112–116). The regulation of T cell differentiation
to immunosuppressive states is already under consideration
for the treatment of autoimmune disease (49, 117, 118).
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FIGURE 2 | Regulation of cytokine signaling by tumor-derived extracellular vesicles.

Last, determination of the molecular machinery required for
EV-associated cytokine secretion, such as ESCRT-dependent or
-independent and autophagy-dependent, will provide critical
information on select treatments that may target specific
pathways [recently reviewed in (119)].

ENGINEERING EVS TO
THERAPEUTICALLY DELIVER CYTOKINES

EV encapsulation of cytokines may facilitate their delivery and
targeting to distant cells (34). Recent work has demonstrated the
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feasibility of engineering EVs to take up proteins as cargo (120–
122), presenting a number of techniques by which EVs could
be artificially generated to carry cytokine payloads to distant
sites. An advantage to this method is that it does not require
a priori knowledge of the biogenesis pathway resulting in EV
cargo loading and secretion. Alternatively, EVs may be targeted
to specific cells via binding of EV surface cytokines to cells that
express the specific cytokine receptor (123). Sialic-acid binding
immunoglobulin lectins, C-type lectins, lactadherin, MHC I,
and II receptors, transferrin receptors, tetraspanins, and viral
proteins have all been identified as molecules that may promote
EV targeting (124–129). Thus, enrichment of exosomes on the
basis of their surface ligand expression or ligand enrichment
on engineered EVs may be used to induce or inhibit signaling
events in recipient cells or to develop receptor-mediated tissue
(and cell) targeting (80). Here, we provide two examples of how
EVs can be therapeutically modulated for packaging of specific
cytokines that drive an immune response. The first example
is treatment of bone marrow-derived mast cells with IL4 to
drive secretion of exosomes that express MHC II, CD86, LFA-1,
and ICAM1, resulting in activation of the adaptive immune
arm by inducing proliferation of B and T cells in vitro and
in vivo (130). The second example is from engineering tumor

cells to overexpress CD40L, resulting in tumor-derived exosomes
that overexpress CD40L to promote dendritic cell maturation,
resulting in increased T cell proliferation and antitumor activity
in vivo (131).

While technological advances in isolating, characterizing,
and now engineering EVs to deliver therapeutic payloads and
immune modulators are being made [recently reviewed in (80)],
it is not until the biological mechanisms by which cytokines
are selectively packaged into EVs and the molecular machinery
required for secretion determined, that we will be able to fully
harness the potential of this natural, physiologic mechanism for
cytokine modulation in the context of disease.
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