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A comparison of pre-clinical transplant models and of solid organs transplanted in

routine clinical practice demonstrates that the liver is most amenable to the development

of immunological tolerance. This phenomenon arises in the absence of stringent

conditioning regimens that accompany published tolerizing protocols for other organs,

particularly the kidney. The unique immunologic properties of the liver have assisted

our understanding of the alloimmune response and how it can be manipulated to

improve graft function and survival. This review will address important findings following

liver transplantation in both animals and humans, and how these have driven the

understanding and development of therapeutic immunosuppressive options. We will

discuss the liver’s unique system of immune and non-immune cells that regulate

immunity, yet maintain effective responses to pathogens, as well as mechanisms

of liver transplant tolerance in pre-clinical models and humans, including current

immunosuppressive drug withdrawal trials and biomarkers of tolerance. In addition,

we will address innovative therapeutic strategies, including mesenchymal stem cell,

regulatory T cell, and regulatory dendritic cell therapy to promote liver allograft tolerance

or minimization of immunosuppression in the clinic.

Keywords: liver transplantation, immune tolerance, mechanisms, cell therapy, immunosuppression withdrawal

INTRODUCTION

The location and anatomy of the liver, positioned between the gastrointestinal tract and the
systemic circulation, allows it to conduct its functions of digestion, synthesis of plasma proteins
and detoxification (1). Circulating blood from the gastrointestinal tract enriched with food antigens
(Ags) and environmental microbial products, including endotoxin, converge in the liver portal vein
(2). The hepatic artery, which provides about 20% of the liver blood supply, and the hepatic portal
vein mix in the liver to create sinusoids. Liver sinusoidal endothelial cells (LSEC) are located in
the space of Dissé and form an immediate barrier between the hepatocytes and the bloodstream
(1, 3). The non-parenchymal cell populations including dendritic cells (DC), Kupffer cells (KC),
and LSEC constitute the hepatic reticulo-endothelial system, which is responsible for clearing Ags
and degradation of toxins from sinusoidal blood by uptake through endocytic receptors (1). The
cross-talk between T cells and liver parenchymal cells, including LSEC, hepatocytes, hepatic stellate
cells, and cholangiocytes, plays a crucial role in tolerance induction (4).
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“Spontaneous” liver transplant tolerance has been
demonstrated in both animals and humans, however, the
mechanisms that underlie development of tolerance to the liver
but not to other solid organ grafts are still not well-understood.
We will summarize recent research findings, focusing on (i)
the specific contributions of immune cells, mesenchymal stem
cells (MSC) and parenchymal cell subsets that promote a
tolerogenic microenvironment within the liver, (ii) mechanisms
of organ-specific tolerance, and (iii) novel strategies to predict
and promote liver transplant tolerance.

INTRAHEPATIC IMMUNE CELLS
INTERACT WITH LIVER PARENCHYMAL
CELLS TO GENERATE A TOLEROGENIC
MICROENVIRONMENT

Unlike conventional DC in secondary lymphoid tissue, both
mouse and human liver DC display tolerogenic properties (5–8).
Liver DC express comparatively low levels of Toll-like receptor
4 (TLR4) that limits their response to specific ligands, leading
to reduced hepatic adaptive immune response (8). Similarly,
freshly-isolated, unmanipulated murine liver non-conventional
plasmacytoid DC (pDC) express low levels of co-stimulatory
molecules and weakly stimulate T cell responses (9, 10). Liver
pDC prevent oral T cell priming through inducing anergy or
deletion of circulating T cells via a CD4+ T cell-independent
mechanism (11). Monocytes cultured with hepatocyte growth
factor or liver epithelial cells can differentiate into DC that
release high levels of IL-10 (12, 13), suggesting that the hepatic
microenvironment modulates DC differentiation into regulatory
subsets (14).

KC located in the hepatic sinusoids are recognized as
tissue-resident macrophages, originally derived from the blood
monocytes (2). KC can phagocytose apoptotic cells and
microorganisms, and therefore function similarly to other organ-
based macrophages (2, 15). KC are also involved in portal venous
tolerance, where Ag administration into the portal vein induces
specific tolerance to that Ag. The mechanism for this type of
tolerance appears to be KC-based release of IFN-γ-stimulated
nitric oxide (NO) that inhibits T cell proliferation (16). KC
treated with gadolinium chloride prevented the induction
of portal venous tolerance by inhibiting Ag presentation to
lymphocytes, supporting the notion that both Ag presentation
to and stimulation of lymphocyte proliferation are necessary
for tolerance induction (17). In human studies, a greater
number of KC typically found in younger living donors predicts
better hepatic allograft survival compared to elderly living
donors, suggesting that KC in the donor liver are a relevant
prognostic factor influencing post-transplant outcomes (18).
Graft- infiltrating DC and KC were also shown to be increased
during and after rat liver transplant tolerance induction, again
suggesting a possible important role for these cells in shaping the
host immune response toward tolerance (19).

Mouse LSEC express the mannose receptor and the scavenger
receptor to enhance Ag uptake, and also express co-stimulatory
molecules, including CD40, CD80, and CD86 that facilitate

Ag presentation and T cell stimulatory function (20). Human
LSEC constitutively express CD40, but CD80/CD86 is inducible
and expressed during inflammation (21). Therefore, murine
and human LSECs might function differently. Mouse LSEC
can present circulating exogenous Ags to CD4+ T and CD8+

T cells, resulting in Ag-specific T cell tolerance, but not Th1
responses (22, 23). LSEC synthetic and endocytic function has
been shown to be greater in spontaneously tolerant rat liver
allografts compared to those that were rejected (24). LSEC lectin
uniquely recognizes activated T cells and negatively regulates
their responses (25). In addition, the threshold of Ag expression
within the liver is the dominant factor determining T cell fate,
rather than Ag cross-presentation, since low-level hepatocyte
expression of cognate Ag generates an effector response that
becomes functionally silenced at a high level of the same Ag (26).

Regarding lymphocytes, the hepatic CD8+: CD4+ T cell ratio
is higher compared to peripheral blood (27), and both natural
killer (NK) and natural killer T (NKT) cells are present at a
higher percentage (of total cells) compared to that in secondary
lymphoid organs. In contrast to T cells activated by splenocytes,
T cells activated by hepatocytes lose cytolytic function after 3
days of co-culture and fail to survive (28). The mechanism
of hepatocyte-induced T cell death is neither Fas (CD95)- nor
tumor necrosis factor (TNF) receptor-dependent, suggesting a
type of apoptosis known as passive cell death (29). In bothmurine
and human liver transplantation, T cell infiltration into allografts
is followed by their apoptosis (30, 31). Mouse liver CD8+ T cells
are also programmed to die following intrahepatic activation in
a pro-apoptotic protein Bim-dependent manner (32). However,
the molecular recognition events that induce apoptosis of graft-
infiltrating T cells, and the reason why this phenomenon occurs
within the liver, but not other allografts is unclear (30, 33).

Mesenchymal stem (stromal) cells (MSC) display unique
immunosuppressive and anti-inflammatory properties that may
modulate allograft outcomes. Adult liver-derived MSC are
negative for human leukocyte Ag class II (HLA-II) and the
co-stimulatory molecules, including CD80 and CD86, which
can inhibit the proliferation of T cells activated by mitogen
(34). Interestingly, liver graft-derived MSC have greater capacity
to suppress allo-reactive T cell proliferation and cytotoxic
degranulation than bone marrow-derived MSC (BM-MSC) (35),
as well as significantly higher levels of immune-regulatory genes
than adipose tissue-derived MSC and BM-MSC, that depend on
programmed cell death ligand 1(PDL1) expression (36) for their
ability to subvert T cell response.

COMPARING THE INTRINSIC
TOLEROGENICITY OF THE LIVER GRAFTS
IN ANIMALS AND HUMANS

In the first report showing spontaneous tolerance induction by
liver transplantation, pig hepatic allografts demonstrated long-
term survival without immunosuppression, protecting other
donor-specific tissue but not third-party organs from rejection
(37). This phenomenon was subsequently replicated in pre-
sensitized rats that failed to reject donor liver grafts, inducing
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TABLE 1 | A comparison of the intrinsic tolerogenicity of liver grafts with other transplanted organs in animals and humans.

Species Donor/recipient Graft survival time References

Liver Kidney Heart Skin Co-D-Skin Co-T-Skin

Mouse C57BL/6→BALB/c 70% > 100 d 39.3 ± 3.1 d 8.3 ± 1.6 <10 d 80% > 100 d 18 ± 5 d (42, 44–48)

BALB/c→CBA 57% > 100 d 7.5 ± 1.5 d 8.6 ± 0.9 8.5 ± 1.5 d / /

C57BL/6→C3H/HeN 73% > 100 d 7.5 ± 1.5 d 8.1 ± 0.8 10.6 ± 0.9 / /

Rat DA→PVG 80% > 100 d 12 d 8 d 6 ± 2 d 75% > 100 d 8 ± 1 (38, 49–52)

Pig Landrace→Landrace >18 month 7 d 6.5 ± 1.5d 9 ± 3 d >24d 11 ± 4 d (37, 53, 54)

NHPs Cynomolgus

monkeys→cynomolgus

monkeys

<7 months <2 wks <2 wks 6 ± 1 d / / (55–58)

Human Liver allograft achieved “operational tolerance” (59–63)

Advantage of liver co-transplant: protection to kidney and heart grafts (64–67)

Co-D-Skin, Co-transplant donor derived skin with liver; Co-T-Skin, Co-transplant third-party skin with liver; d, days; NHPs, non-human primates; wks, weeks.

Ag-specific tolerance in 50% of recipients (38). To avoid the
toxicities of irradiation in a sick liver failure recipient, delayed
tolerance induction has been promoted when the recipients have
recovered post-operatively. An ACI-to-Lewis rat (allogeneic)
liver transplant model developed chronic rejection, however,
in the same strain combination, liver recipients receiving
100 × 106 T cell-depleted donor BM cells at 3–4 weeks post-
transplant followed by tacrolimus withdrawal became tolerant.
Mechanistically, this delayed tolerance induction is associated
with increased mixed chimerism, Treg generation, and decreased
donor-specific antibody (DSA). However, the authors did not
investigate key mechanisms underlying the development of
delayed tolerance (39). Allogeneic liver transplantation from
DA-to-Lewis rats receiving post-transplant total lymphoid
irradiation, which is a non-myeloablative regimen to induce
graft-infiltrating T cell apoptosis and subsequent accumulation
of Treg, also induced tolerance (40). The micro RNA (miRNA)
profile in these tolerant allografts was similar to syngeneic
grafts, indicating that tolerance potentially returned recipients
to a state of immunological quiescence (40). Tolerance to
liver transplants in rats can subsequently induce tolerance to
intestinal allografts by hampering the expression of IL-2 receptor
on recipient CD8αβ+ lymphocytes in the lamina propria and
reducing recruitment of NK cell and macrophages (41).

Spontaneous liver transplant tolerance between MHC-
disparate murine strain combinations is significantly higher
than that seen with kidney or heart allografts (42–44), and
is summarized in Table 1. In the murine orthotopic liver
transplantation model (68), allografts were accepted in 13
mouse strain combinations that showed evidence of donor
cell chimerism (42). Mouse liver allografts can rescue donor-
specific skin transplants from rejection, either pre- or post-liver
transplant (42).

Human liver allograft “operational tolerance” has also been
described and reviewed by many investigators (59–63, 69).
Hepatic allografts protect simultaneously transplanted kidney
allografts from the same donor from chronic cell- and antibody-
mediated immune injury, resulting in better graft function
compared with kidney transplant alone (64, 65). Combined

liver and heart transplantation shows less evidence of cardiac
allograft vasculopathy than isolated heart transplantation when
detected by coronary three-dimensional volumetric intravascular
ultrasound (66). Simultaneous liver-heart transplantation also
showed reduced T cell-mediated rejection compared with cardiac
transplantation alone (67).

The question of why only the liver displays inherent
tolerogenicity is worthy of consideration. The naïve mouse liver
has a greater number of DC than other parenchymal organs,
such as heart, kidney, and pancreas (70). Recent findings reveal
that DBA2J pDC are more powerful in inducing forkhead
box p3 (Foxp3) expression in C57BL6T cells and promoting
kidney graft tolerance than the reverse combination. This
suggests that the organ- and strain-specific differences exist that
determines tolerance (71). In human studies, donor-reactive T
cell clones were reduced in three tolerant combined kidney
and BM transplant recipients, but not in non-tolerant patients
(72). However, the same group further reported that donor-
reactive T cell clone reduction was not associated with liver graft
tolerance or failure, again highlighting organ-specific tolerance
mechanisms in patients (73).

UNDERSTANDING THE MECHANISMS OF
EXPERIMENTAL LIVER TRANSPLANT
TOLERANCE

The literature on mechanisms that underlie liver allograft
acceptance in rodent models is extensive, but centers
on immunoregulation, and an intrinsic balance between
leukocyte, non-parenchymal-parenchymal cell ratios, effector,
and regulatory T cells, Ag-presenting cell phenotype, and
function, as well as cross-talk between cellular compartments.
The identification of molecular pathways that alter
immunoregulation provides promising potential therapeutic
avenues for clinical application. Liver transplant acceptance
is also characterized by donor-specific hypo-responsiveness,
mimicking the tolerance arising from chimerism following BM
transplantation. The development of liver allograft tolerance
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FIGURE 1 | Mechanisms underlying experimental liver transplant tolerance. Hepatic immune and parenchymal cells interact with each other to generate a tolerogenic

microenvironment. Liver dendritic cells (DC) express low levels of Toll-like receptor 4 (TLR4) and co-stimulatory molecules, but high levels of PDL1, weakly stimulate T

cell responses, and promote regulatory CD4+ T cells (CD4 Treg) induction through TGF-β. Liver DC release high levels of IL-10, but low bioactive IL-12. Liver DC

prevent T cell priming of orally-administered Ag through anergy or deletion of circulating T cells. Graft-infiltrating, cross-dressed DC over-express PDL1 and subvert

anti-donor T cell proliferation to promote liver graft tolerance. The DNAX-activating protein of 12 kDa (DAP12) negatively regulates liver DC IL-12 production, but

positively regulates liver DC IL-10 production and T cell allostimulatory capability. Kupffer cells can release IFN-γ-stimulated nitric oxide (NO) to inhibit T cell

proliferation and produce IL-10 and TGF-β to promote tolerance. Liver sinusoidal endothelial cells (LSEC) present circulating exogenous antigens to T cells, resulting in

Ag-specific T cell tolerance. LSEC and hepatic stellate cells (HSC) induce T cell apoptosis through PDL1/PD1 pathway interactions. The mechanism of

hepatocyte-induced T cell death occurs through a type of apoptosis known as passive cell death (PCD). Exosomes derived from hepatocytes may also be critical to a

tolerogenic phenotype. Mesenchymal stromal cells (MSC) suppress T cell proliferation and differentiation through cell-cell contact that is mediated by PDL1.

appears to be independent on the thymus (74, 75). Current
experimental results favor deletion of alloreactive T cells
occurring within the organ and secondary lymphoid tissue,
leading to a reduced burden of effector cells. Hepatic DC differ
in their maturation state and allostimulatory capacity compared
to DC isolated from other solid organs (76), and their capacity
to modulate T cell function is well-known. However, the relative
contribution of innate immune subsets like DC and NK cells has
not been characterized.

Regardless of strain combination in rodent liver
transplantation models, spontaneous tolerance appears to
be induced by the graft itself, with liver-derived cell populations
silencing the host immune response (77) (Figure 1). This
feature is strain- and organ-specific: Lewis rat liver allografts
demonstrate prolonged survival in DA recipients, although
the reverse combination results in acute rejection. Rejection
has been characterized by hepatocyte death, but allograft
acceptance is associated with apoptotic mononuclear cells and
upregulated FasL parenchymal expression. Irradiated Lewis
rat donor livers lost tolerogenic capacity highlighting the
role of hepatic passenger leukocytes (77). Donor passenger

leukocytes, particularly T cells, but not B cells and macrophages,
prolong irradiated donor liver allograft survival in the PVG-
to-DA combinations, but reject transplanted heart grafts
(78). Adoptive transfer of donor leukocytes or splenocytes
re-establishes recipient tolerance, but not following T cell
depletion. Interestingly, when two kidneys and two hearts of
PVG rats were transplanted into each DA recipient, along with
adoptive transfer of high dose donor leukocytes (1.5 × 108),
transplanted organs were accepted, suggesting that liver-derived
spontaneous transplant tolerance may be determined by the ratio
of donor leukocytes to the quantity of donor tissues (78). Donor
passenger leukocytes from transplanted liver grafts migrate
rapidly into recipient lymphoid tissues, but their numbers
decrease dramatically within the first 48 h (79), accompanied
by deletion of alloreactive CD8+ T cells. Higher levels of
apoptosis of infiltrating leukocytes within liver allografts are seen
compared to renal allografts in the same rat strain combination
(PVG-to-DA) (80). T cell clonal deletion (81, 82) was initially
proposed as the cause of liver allograft acceptance. However,
lymphocytes from long-term survival recipients demonstrate
vigorous Ag-specific responses in vitro (83). Donor liver
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leukocyte-induced recipient T cell death by neglect also appears
to be responsible for liver acceptance (77, 84). Deletion of donor
passenger leukocytes by irradiation of the donor rat followed by
liver transplantation breaks allograft acceptance (85). However,
other studies have failed to confirm that the presence of donor
passenger leukocytes is associated with allograft tolerance (86).

T cell apoptosis in the liver graft plays a crucial role in
tolerance. Interferon (IFN)-γ is a key inflammatory cytokine
produced by effector T cells. Surprisingly, IFN-γ knockout
liver allografts are acutely rejected (87), suggesting that intact
signaling is necessary for graft tolerance. T cell-derived IFN-
γ signaling results in hepatic stellate cell and LSEC expression
of PDL1, inducing T cell apoptosis through the PDL1/PD1
pathway (88). Functional assessment of these cells isolated
from tolerated liver grafts demonstrated inhibition of T cell
proliferative responses, particularly those of CD8+ T cells. These
findings were replicated in human CD45− non-parenchymal
cells that limited peripheral blood mononuclear cell (PBMC)-
derived T cell proliferation. Blocking this pathway using anti-
PDL1 antibody (Ab) or using PDL1 knockout mice as donors
resulted in allograft rejection, highlighting the essential role of
PDL1 expression in the liver parenchyma to regulate apoptosis
of alloreactive cells (89). Cytotoxic T-lymphocyte-associated
protein 4 (CTLA4) blockade prevents T cell apoptosis and
induces acute rejection, suggesting such signaling is also a
pre-requisite for spontaneous mouse liver transplant tolerance
(90). Anti-CTLA4 treatment enhances NK cell cytotoxicity, and
augments IL-2 and IFN-γ in both graft and recipient spleen,
in keeping with lack of alloreactive T cell death. Galectin-1, an
endogenous lectin expressed in lymphoid organs, is upregulated
in liver allografts and administration of recombinant protein
significantly prolongs liver allografts. This was associated with
enhanced CD4+ and CD8+ T cell apoptosis in the graft
itself and recipient spleen and suppression of Th1/Th17 cell
responses. There was no suggestion of modulation of regulatory
effects by altering CD4+CD25+FoxP3+ T cell numbers (91).
Overexpression of galectin-1 in T cells promotes the activation
of hepatic stellate cells that contribute to tolerance (92).

Regulatory T cells (CD4+CD25+FoxP3+ Treg) have been
demonstrated to increase significantly in the recipient liver
graft and spleen. Moreover, depletion of recipient CD4+CD25+

T cells using anti-CD25 (IL-2Rα) Ab reduces apoptosis of
graft-infiltrating CD4+ and CD8+ T cells, leading ultimately
to liver allograft rejection (93). These findings highlight the
roles of both CD4+ Tregs (94, 95) and apoptosis of graft-
infiltrating T cells in liver transplant tolerance induction.
The CD8+CD103+ T cell subset possess suppressive function
and also contributes to spontaneous liver graft tolerance,
but the specific mechanism of action remains unclear (96).
IFN-γ deficient liver allografts that reject around day 15
post-transplant show similar levels of Tregs but less T cell
apoptosis compared to wild-type allografts, suggesting that T
cell elimination may be the more critical factor (88). These
data are further supported by observations in a B10-to-
C3H mouse liver transplant model which showed that T cell
deletion, not regulation, was responsible for spontaneous graft
acceptance (30).

The role of NK cells in organ transplantation is still
controversial (97–100). NK cells have been identified as a
potential predictor of liver transplant tolerance (101). There are
multiple potential mechanisms of action including direct lysis
of recipient CD4+ and CD8+ T cells (102), deletion of Ag-
presenting cells (103), and CD8+ T cell hypo-responsiveness
(104) which have been summarized elsewhere (99). However,
NK cells in rat liver allografts can also promote rejection by
producing IFN-γ in the early post-transplant period (105).

Host DC acquire donor major histocompatibility complex
(MHC) molecules after mouse orthotopic liver transplant, to
appear as “cross-dressed” DC (CD-DC). Graft-infiltrating CD-
DC expressed PDL1 and IL-10 that subvert anti-donor T cell
responses and promote death of graft-infiltrating CD8+ T cells
to promote liver graft tolerance (106). The transmembrane
immuno-adaptor DNAX-activating protein of 12 kDa (DAP12)
has been shown to negatively regulate conventional liver myeloid
DC maturation, migration to host lymphoid tissue, and T cell
allo-stimulatory capability (107, 108). DAP12−/− liver grafts
exhibit low levels of Tregs and fail to induce liver transplant
tolerance (107).

The balance of pro- and anti-inflammatory cytokines as
well as other molecules within the hepatic microenvironment
can crucially influence adaptive immune responses. Intrahepatic
IL-4 transcripts were significantly lower in tolerated rat liver
allografts compared to rejected allografts, however, no significant
differences were observed for other cytokines (including IL-1α,
IL-2, IL-6, IL-10, TNF-α, TNF-β, and transforming growth factor
β (TGF-β) (109). IL-4 injection after rat liver transplantation
converts allograft tolerance to rejection partially through a graft-
specific antibody response (110). In the murine tolerant liver
allograft, expression of miRNA-146a, 15b, 223, 23a, 27a, 34a, and
451 is upregulated compared to syngeneic grafts, suggesting a
role for miRNA in tolerance induction (111). Expression of lectin
galactose-binding soluble 1, fibrinogen-like protein 2 (Fgl2), the
ectoenzyme CD39, phosphodiesterase 3B, killer cell lectin-like
receptor G1 (Klrg1), Foxp3, and TGF-β, have all been shown to
increase at 8–14 days following murine liver transplantation and
promote tolerance to the allografts (112). However, the cellular
origins of these factors are non-specific and may represent
a combined signal from hepatocytes, infiltrating leukocytes,
and non-parenchymal cells. The use of cutting-edge single-
cell sequencing techniques will allow us to improve on these
preliminary findings.

MONITORING AND PREDICTION OF
CLINICAL LIVER TRANSPLANT
TOLERANCE

Development of non-invasive biomarkers as diagnostic tools to
define graft tolerance remains an important area of research in
liver transplantation (113). Reliable, non-invasive biomarkers to
predict graft rejection are not currently available, but are urgently
needed (63). A prospective, longitudinal, international multi-
center cohort study on immune monitoring after pediatric liver
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transplant is ongoing (114), and will provide much-needed data
discovery and validation.

In order to investigate immunologic mechanisms elicited by
immunosuppression (IS) withdrawal, 24 operationally tolerant
recipients and 14 non-tolerant recipients were selected for
analysis of T cell subset infiltration and gene expression
pattern in protocol liver biopsy specimens prior to weaning,
as well as 1 and 3 years after IS withdrawal. Treg reduction
to baseline levels in liver biopsies, in addition to down-
regulation of immune activation-associated genes at 3 years
post-withdrawal in the context of no graft damage, suggested
a balanced immune response in tolerant recipients (115). The
dynamic profile of Treg in liver transplant recipients during
IS weaning was explored by monitoring the frequency of Treg
and Foxp3 mRNA expression in PBMC in 12 liver transplant
patients undergoing IS withdrawal. A progressive increase
in circulating CD4+CD25+Foxp3+ Treg and Foxp3 mRNA
expression was associated with operational tolerance in liver
transplant recipients (14, 116). The expression of adenosine
deaminase, which degrades adenosine to evoke stronger Treg
activation, was higher in five tolerant liver transplant patients
compared to the 12 non-tolerant recipients. These data indirectly
indicate that adenosine deaminase potentially predicts liver
transplant tolerance through targeting Treg (117). Using single-
cell mass cytometry to detect immune profiles in peripheral
blood of seven operational tolerant pediatric recipients and eight
pediatric recipients on low dose single agent IS, a specific CD4+

T cell subset that is CD4+CD5+CD25+CD38−/lowCD45RA−,
distinct from Treg, correlated with liver allograft tolerance. This
specific T cell subset lacks both CD45RA and stable Foxp3
expression, but expresses CD5 that has been shown to be crucial
in promoting Treg induction (118).

Immune cell ratios and their balance can predict tolerance
vs. rejection. A comparison of 19 liver transplant patients
on IS, operationally tolerant liver transplant recipients or 24
age-matched healthy volunteers demonstrated an increased
frequency of CD4+CD25+ T cells and B cells, altered Vδ1/Vδ2γδ

T cell ratio, but decreased NK cells in PBMC in operationally
tolerant patients (119). The ratios of Treg/Th17, Th1/Th17, and
CD8+/Th17 cells were increased in tolerant patients compared
with non-tolerant patients during immunosuppression tapering.
The elevated Treg/Th17 ratio continued over 60 months follow-
up in tolerant patients, indicating a reciprocal balance between
Treg and Th17 that may contribute to the development and
maintenance of tolerance (120). Tolerant liver recipients also
exhibit greater numbers of CD4+CD25+ T cells and Vδ1+ T
cells in the circulation compared to non-tolerant patients and
healthy individuals (121). Adult liver allografts also contain
a small population of hematopoietic stem/progenitor cells
(Lin−CD34+CD38−CD90+) that may promote long-term (6
months to 8 years) chimerism in the graft (122). The ratio of
DC precursors CD11c−CD123hi (pDC2) to CD11c+CD123−/low

(pDC1) was also significantly higher in 36 patients undergoing
successful drug weaning compared to those 21 patients on
maintenance immunosuppression, regardless of the dose of
prednisone or tacrolimus. These data suggest that pDC2
that can polarize naïve Th cell toward a Th2 phenotype

may drive tolerance induction (123). In a further study, 13
tolerant liver transplant recipients showed an elevated ratio of
plasmacytoid DC (pDC) to myeloid DC compared to those 12
patients remaining on immunosuppression. Additionally, a high
PDL1/CD86 ratio on pDC correlated with increased Treg and
correlated with pediatric liver allograft tolerance (124).

Gene expression of sentrin-specific peptidase 6 (SENP6)
and Fem-1 homolog C (FEM1C) were shown to be predictive
biomarkers of liver transplant tolerance in a single cohort of
17 liver transplant recipients (125). At least 13 unique gene
sets, including SENP6 that is associated with NK cells, were
significantly expressed in adult and pediatric liver transplant
patients, which showed a prediction for tolerance (126). This
conclusion was supported by previous findings of differential
gene expression between tolerant and non-tolerant transplant
recipients within the NK cell compartment despite no clear
differences in absolute cell number between these patient groups
(101). The intra-liver allograft gene expression involved in the
regulation of iron homeostasis is more active in operationally
tolerant patients compared to non-tolerant recipients and
independent of baseline immunosuppression (127). However, the
iron-related markers were poor predictors for drug withdrawal
in hepatitis C virus (HCV)-infected liver transplant recipients
(128), which could be due to inhibition of hepcidin expression
by HCV (129). Regardless, the blood gene expression was not
sensitive enough to distinguish rejection vs. HCV-infection (130).
However, type I IFN-stimulated gene overexpression within
liver allografts of HCV-positive recipients, along with circulating
PD1/CTLA4/2B4-positive HCV-specific CD8+ exhausted T
cells, were associated with liver graft operational tolerance
induction (128).

Single-cell RNA sequencing (scRNAseq) can provide a
comprehensive map to characterize human hepatic immune cell
populations and also non-parenchymal cells (131), and it is
anticipated that it may prove helpful in predicting liver transplant
rejection vs. tolerance capacity in the near future. However,
before validated accurate, non-invasive biomarkers are available,
histopathological findings remain the gold standard to determine
the management of immunosuppression (132).

ONGOING AND NOVEL THERAPEUTIC
APPROACHES TO PROMOTE LIVER
TRANSPLANT TOLERANCE IN PATIENTS

Life-long immunosuppression and its accompanying burden of
increased morbidity and mortality has prompted interest in
immunosuppressive drug withdrawal (133). In the first multi-
center trial of drug withdrawal in adult liver transplant recipients,
41.84% of evaluated recipients were successfully weaned from
immunosuppression at least 3 years post-transplantation (134).
In the first multi-center immunosuppression withdrawal trial in
pediatric recipients of parental living donor liver transplantation,
complete cessation of immunosuppressive agents for at least 1
year showed normal graft function and stable liver graft biopsies
(60). The majority of these promising clinical trials have been
documented in detail elsewhere (132, 135).
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TABLE 2 | Strategies to promote liver transplant tolerance using cell therapy in the clinic.

Cell type:

Authors

Phase NCT number Date* Donor Number of

Patients

Infusion

time

Cell

dose(s)

Cell

source

Outcomes/status References&

MSC

Popp et al. (149) I NCT01841632 Nov.

2011

DD 3–24 POD

1 and 3

2 doses,

300 × 106
Third Party

BM-MAPC

The study objective is to evaluate the safety

and clinical feasibility

(149)

Detry etal. (150) I–II NCT01429038 Mar.

2012

DD 10 POD

3 ± 2

3 doses,

1.5–3 × 106/kg BW

Third Party

MSC

No side effect of infusion. Tolerance was

not observed

(150)

Zhang etal. (151) I NCT02223897 Jan.

2013

& 12

with ITBL

Weeks 1, 2, 4, 8,

12, 16 after

recruitment

6 doses,

1 × 106/kg BW

UC-MSC No MSC-related side effects. Better graft

survival than the control group

(151)

Qi Zhang et al. I–II NCT01844063 Jul.

2013

& 210 with

graft failure

& & UC-MSC Recruiting &

Yang et al. I–II NCT02706132 Feb.

2014

& 15 & 6 doses,

1 × 106/kg BW

MSC Recruiting &

Lorini et al. I NCT02260375 Oct.

2014

& 20 & 1 dose,

1–2 × 106/kg BW

Third Party

BM derived

MSC

Recruiting &

Soeder et al. (152) I NCT01841632 Jun.

2015

Living 1 POD

0 and 2

2 doses,

300 × 106
MAPC No acute complications with cell infusion.

Normal liver function.

(152)

Rutgers et al. I NCT02557724 Sep.

2015

Living & & & & Recruitment completed &

Sturm et al. I NCT02957552 Mar.

2017

Living 7 POD

0 and 2

2 doses,

1 × 106/kg BW

Donor

BM-MSC

Recruiting (153)

Shi et al. (154) I–II NCT01690247 Sep.

2017

DD 13

with ACR

Rejection

time

1 dose,

1 × 106/kg BW

UC-MSC No side effects. ALT decreased with

increased Treg/Th17 ratio in the grafts

compared with no infusion control

(154)

Treg

Todo et al. (155) I–II UMIN000015789 Nov.

2010

Living 10 POD 13 1 dose,

0.23–6.37 × 106/kg

BW

Donor

Lymphocytes

No side effects; Normal graft function in all

patients. Seven patients withdrew IS and

three patients developed ACR during

weaning IS. No control group data.

(155)

Lombardi et al. I–II NCT02129881 May.

2014

Living 15 POD 5 1 dose,

1 × 106/kg BW

Host blood

derived Treg

Recruitment completed &

Feng et al. I NCT02188719 Dec.

2014

& 15 & & darTregs Terminated &

Lu et al. (96) I NCT01624077 Dec.

2014

Living 1 POD

0–2 years

1 × 106/kg BW Host blood

derived Treg

Active, not recruiting &

Feng et al. II–III NCT02474199 Jun.

2016

Living 14 POM 24–84 300-500 x106/kg BW Host blood

derived Treg

Recruitment completed &

Curry et al. II NCT02739412 Nov.

2016

& 7 & & & Active, not recruiting &

Sanchez-Fueyo

et al. (156)

IV NCT02949492 Dec.

2017

& 6 POY 2–6 & & Terminated &
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Several factors could potentially affect the outcomes of
drug withdrawal. The interval between transplantation and
initiation of drug withdrawal appears to be one of the most
powerful clinical predictors of success (136, 137), as a longer
post-transplant period (131 ± 43 vs. 83 ± 40 months) may
establish better host-graft adaptation (134). Over 60% of liver
transplant recipients with a longer time interval (156 months
post-transplant) and a lower lymphocyte proliferation index
became clinically tolerant at a median of 14 months of follow-
up (138). Younger recipients at the time of transplantation
had better outcomes and a higher possibility of successful
weaning compared to older recipients (139, 140), suggesting
that an “adapted” or “inexperienced” immune system was
important in drug withdrawal (141). Immunosuppression,
including high-dose antithymocyte globulin (ATG) induction
followed by short-term rapamycin withdrawal at an early time-
point (4 month post-transplant) failed to induce operational liver
transplant tolerance, which was associated with CD8+ memory T
cell expansion and elevated IL-17+ cell infiltration in liver grafts
(142). Moreover, fewer donor-recipient human leukocyte antigen
(HLA)-A-, B-, and DR-mismatches, and a lower incidence of
early rejection were associated with successful drug withdrawal
in a 3 year follow-up of 18 liver transplant recipients (143).

Due to immunosuppressive drug non-specificity, drug
toxicity, inconsistent outcomes, and the difficulty of early
complete immunosuppression withdrawal, other strategies,
including the use of stem cells, regulatory dendritic cells
(DCreg) and Treg therapy have emerged to promote liver
allograft tolerance (144–148). Published trials are summarized
in Table 2. The pivotal role of many of these cellular subsets
in immunomodulation makes them ideal candidates for use as
therapeutic agents. Mesenchymal stem cells have the advantage
of being sourced from diverse tissues, but they lack a definitive
marker to enable isolation. They display low immunogenicity
and have been shown to modulate other immune and non-
parenchymal cells (157, 158). Immature or regulatory DC
have a well-established capacity to induce Ag-specific hypo-
responsiveness, Th1 cell apoptosis, and Treg development.
Indeed, this phenotype may be enhanced in hepatic DC (6). Treg
have the capacity to migrate to sites of inflammation and exert
immunosuppressive effects on CD4+ and CD8+ T cells directly
or through elaboration of inhibitory cytokine production.
Several studies have reported increased frequency of Tregs
in operationally tolerant liver transplant recipients (121) and
following weaning of immunosuppression (116). Chimeric Ag
receptor or CRISPR/Cas9 technology has recently been applied
to modify Treg to enhance their regulatory function in vitro
(159, 160), and their safety and longevity in vivo (161).

A phase I–II study enrolled 10 liver transplant recipients
who received 1.5–3× 106/kg third-party MSC on post-operative
day 3 ± 2, and were compared with 10 liver transplants
without MSC. This study demonstrated safety, but did not
promote tolerance (150). A phase I study of MSC in liver
transplantation showed that two infusions of 1.5 × 108 third-
party, multi-potent adult progenitor cells into a living-related
liver transplant recipient at day 0 and 2 post-transplant was
feasible and safe. However, no further follow-up data was
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reported (152). An open-label, prospective pilot trial of two
intravenous infusions of 1 × 106 cells/kg of donor-derived MSC
in pediatric living-donor transplant recipients who will receive
standard immunosuppression is currently ongoing (153).

A first-in-human clinical trial of donor-derived DCreg
infusion to achieve early complete immunosuppression
withdrawal and potentially tolerance induction in living
donor liver transplant patients is ongoing at the University
of Pittsburgh (146, 162, 163) and shows no side effects of cell
infusion (published as an abstract in the American Journal of
Transplantation 2019). Five registered clinical trials of Treg cell
therapy have previously been detailed (144) and are summarized
in Table 2. Infusion of ex vivo-generated host-derived donor
Ag alloreactive Tregs into 10 consecutive adult recipients early
post-liver transplant following cyclophosphamide showed safety
and efficacy for immunosuppression withdrawal and clinical
tolerance induction in 7 out of 10 patients (155).

In vitro study shows that targeting primary human
hepatocytes by silencing their HLA class I expression can
alleviate alloreactive T cell proliferation without impairing
metabolic function (164). In contrast to this human finding,
adeno-associated viral vector transfer of donor MHC-I molecule
to recipient hepatocytes can induce allospecific CD8+ Treg
expansion, and promote allogeneic pancreatic islet graft
tolerance (165). However, targeting of HLA expression is
currently far from progressing to clinical practice.

CONCLUSIONS

The liver, an atypical immune and metabolic organ, may
be accepted spontaneously following transplantation in
experimental animals. In humans, it may be possible to withdraw
immunosuppression in carefully selected stable patients without
rejection and liver grafts may also confer protection on other
grafts from the same donor (strain). Current information on
liver allograft acceptance suggests hepatic resident immune
cells (DC, T cells, KC, and potentially NK cells) cross-talk with
parenchymal LSEC and hepatocytes, in conjunction with specific
anti-inflammatory cytokines and signaling molecules to create
a tolerogenic microenvironment. The phenomena of infiltrating
T cell apoptosis in liver transplant recipients may be crucial to
operational allograft tolerance, but underlying mechanisms are
not well-understood. Recent findings reveal that MSC, especially
liver graft-derived MSC, can suppress T cell-based immune
responses. Fundamental differences in immune cell number,

subset proportions, and responsiveness to tolerogenic cues
may offer some explanation as to why liver allografts, but not
other solid organ transplants, are readily accepted, and deserve
further investigation.

Currently, non-invasive biomarkers to predict liver graft
tolerance or rejection are promising. However, there are no
definitive diagnostic criteria that have been widely validated and
approved. Cutting-edge technologies, such as scRNAseq, provide
a potential novel approach to predict liver transplant tolerance vs.
rejection in the future. However, until accurate and non-invasive
biomarkers are available, histopathological findings remain the
gold standard to monitor the status of liver allografts.

To minimize side effects related to life-long
immunosuppression, drug withdrawal has been advocated.
Yet, drug withdrawal is not suitable for every patient. The
development of novel cellular therapeutics, including MSC and
regulatory cell therapy, is currently under evaluation in multiple
trials worldwide to establish feasibility, safety, and efficacy.
However, there are significant limitations to this approach,
including cost, low cell yield, unpredictable function in vivo, and
the dependence on the immunological status of each recipient. A
combinatorial approach of CRISP/Cas9, chimeric Ag-receptor or
gene-edited cellular therapy, combinedwith immunosuppression
minimization is a possible strategy to promote clinical liver
transplant tolerance, but will require the presence of adequate
monitoring tools.
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