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While the interactions between HIV and various liver cell populations have been explored,

the relevance of these interactions when patients are well-controlled on ART is less clear.

Therefore, we focus this perspective on HIV-related alterations that may drive hepatic

inflammation and fibrosis in aviremic patients, with a focus on Kupffer cells and Hepatic

Stellate Cells. Persistent CD4+ T cell depletion in the gut resulting in increased gut

permeability has been postulated to play a role in systemic immune activation in HIV

patients. The liver, with its unique location, remains the gatekeeper between the gut and

the systemic circulation. The resident liver macrophage, Kupffer cell, is responsible for

clearing and responding to these products. We propose that changes in Kupffer cell

biology, in the context of HIV infection, creates a mileu that drives hepatic inflammation

and fibrosis in response to microbial translocation. Targeting these pathways may be

helpful in improving liver-related outcomes in HIV patients.

Keywords: liver fibrosis, HIV - human immunodeficiency virus, hepatic stellate cell (HSCs), Kupffer cells, microbial

translocation

INTRODUCTION

End-stage liver disease is a major cause of non-AIDS related mortality in HIV+ patients even
with effective anti-retroviral therapy, accounting for almost 15% of deaths (1–7). As a result of
shared routes of transmission, HCV and HBV are the most common liver diseases in HIV-infected
patients, although other chronic liver diseases are emerging (8, 9). Most data, therefore, regarding
fibrosis progression rates is derived from those with coinfection. These patients have a higher
relative risk (RR) of cirrhosis, increased development of decompensated cirrhosis and accelerated
fibrosis progression rates compared with those who are only infected with HCV or HBV (10, 11).
Furthermore, rapid fibrosis correlates with reduced CD4+ T cell counts and detectable plasma
HIV levels. HIV patients are also more susceptible to other liver diseases, which synergize to
accelerative liver fibrosis. Alcohol consumption is associated with increased relative risk of fibrosis
progression in HIV mono-infected patients (12) while NASH is emerging as a major cause of
liver disease, with half of mono-infected patients with unexplained liver enzyme elevations having
NASH (13). While many may have an unrecognized chronic liver injury, a higher frequency of
liver fibrosis was demonstrated in HIV-1–monoinfected patients (range 11–40.9%) compared with

uninfected patients even without coinfection of hepatitis viruses and alcohol abuse, suggesting
a correlation between HIV-1 infection and advanced liver fibrosis (14–19). Therefore, persistent
HIV-1 infection and viral associated liver immune dysfunction may independently contribute
to the progression of liver diseases (20). Lastly, in those on ART, drug-induced liver injury and
increased rates of NASH due to both medications and metabolic derangements common in HIV
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are being observed. While hepatic stellate cells are the
downstream effector of liver fibrosis, this perspective focuses on
the role Kupffer cells play in promoting a mileu conducive to
fibrosis progression in patients with HIV infection, particularly
in aviremic patients.

THE LIVER AS THE GATEKEEPER

Shortly after HIV infection, a severe CD4+ T cell depletion
in the gut-associated lymphoid tissues leads to a disruption
of the intestinal barrier, consequently promoting translocation
of microbial products into the portal circulation. The liver,
which derives the majority of its blood flow from the portal
circulation, is uniquely positioned to protect the systemic
circulation from gut-derived products. In particular, the resident
hepatic macrophage, the Kupffer cell, located within the hepatic
sinusoid is charged with clearing translocated bacterial products
in an immunotolerantmanner. However, when products provoke
a pro-inflammatory response by Kuppffer cells, a cascade of
intrahepatic inflammatory respones is initiated with numerous
secreted cytokines, such as IL-1β, TNF-α, and IL-6, serving as
major drivers in the progression of liver injury and fibrosis.

KUPFFER CELLS AT THE NEXUS OF
LIVER INFLAMMATORY RESPONSES

Kupffer cells (KCs) are the largest population of resident tissue
macrophages in the liver. They reside within the hepatic sinusoid
in close proximity to hepatic stellate cells, liver sinusoidal
endothelia cells, and intrahepatic lymphocytes. Both the low
flow state of the portal circulation and the uniquely fenestrated
endothelium create a conducive environment for interaction
of KCs with neighboring cells and circulating cells of the
immune system. Physiologically, KCs are the first line of defense
to eliminate macromolecules, immune complexes, senescent
cells, virally-infected cells, and translocated microbial products
from the gut to avoid liver injury and systemic immune
responses (21). Given the dynamic nature of cell surface receptor
expression on macrophage populations and some controversy
regarding their origins, CD163 or CD68, CD14 and CD16
are often used to identify human KCs. However, murine KCs
display phenotypic patterns characterized by F4/80+, MHCII,
and CD11bInt expression. A detailed discussion of markers for
various macrophage subpopulations within the liver is beyond
the scope of this perspective and discussed elsewhere (22). The
focus of this perspective is on the role of CD68+human KCs in
promoting liver inflammation and fibrosis in patients with HIV.

The importance of KCs in liver injury and inflammation
have been established with depletion studies wherein GdCl3
was associated with AST reduction and inflammation in an
alcohol model of liver injury (23). Crosstalk between KCs and
HSCs is also evidenced by KC depletion as mRNA levels of
TGF-β, α-SMA and collagen I are significantly decreased (24).
Although GdCl3 is not specific to KCs, and thus interpretation
is complex, GdCl3 treatment dramatically decreased cytokines
predominantly produced by KCs, TNF-α, IL-6, and IL-1β, in

response to LPS stimulation in murine livers (25, 26). Similarly,
liposome/clodronate can suppress pro-inflammatory responses
through the depletion of KCs (27).

In homeostasis, KCs are central to intrahepatic immune
tolerance through an antigen-mediated induction of functional
arrest of CD4 cells and regulatory T cells. However, in
an inflamed microenvironment this delicate equilibrium is
disrupted resulting in immune dysfunction and tolerance
break (28). Indeed, knockout of TREM-1 (Triggering receptor
expressed on myeloid cells), which is highly expressed on KCs
in liver fibrosis, reduced liver fibrosis through the inhibition
of TNF-α and IL-6 responses in a number of chronic injury
models (29). Similarly, knock down of Jun N-terminal kinase
½ (JNK-1/2) from KCs reversed liver fibrosis in a choline-
deficient L-aminoacid-defined (CDAA) model, with a decline
in inflammatory responses, including TNF-α, IL6, IL-1β, and
TGF-β (30).

While KCs display M1-like features in acute liver injury,
with protracted chronic inflammation, due to exhaustion of
M1-like macrophages and immune cells, M2-like macrophages
emerge and secrete protective cytokines upon chronic cytotoxic
stimulation such as IL-4, IL-10, and TGF-β (31, 32). IL-
10, an anti-inflammatory cytokine, down-regulates macrophage
effector functions and differentiation of neighboring cells to
maintain immune microenvironment homeostasis. For example,
administration of IL-10 decreased TNF-α produced from LPS-
treated KCs (33). While very complex, the manipulation of
KC mediated immune responses or approaches to limit their
stimulation may be exploited therapeutically.

MICROBIAL TRANSLOCATION AND
KUPFFER CELLS

The impact of translocated microbial products on KCs is well-
established. pretreatment with 2.5% dextran sulphate sodium
(DSS) causes increased intestinal permeability and promotes
translocation of microbial products into the portal blood in
mice. The resulting amplified TLR4 mediated inflammatory
responses in KCs resulted in significant livery injury (34). Using
a liver slice model, LPS stimulation increased IL-1β and TNF-
α production compared to the control (35). Consistently, in
mouse models, LPS administration rapidly induces the release of
inflammatory cytokines in the liver with a higher IL-6 production
obtained from LPS stimulated KCs than splenic and alveolar
macrophages (36).

THE ROLE OF TLR4 SIGNALING IN
INFLAMMATORY RESPONSES OF
KUPFFER CELLS

TLR4, as one member of Toll-like receptors, belongs to the
pattern recognition receptor (PRR) family. After stimulation by
TLR4 ligands, for example lipopolysaccharides, TLR4 is activated
through conformational changes and interaction with TIR-
domain-containing adapter proteins via hydrophilic interactions.
Intracellular TLR4 signaling is mediated by two classical
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pathways: the TIRAP–MyD88-NF-κB pathway and the TRIF–
TRAM-interferon regulatory factor-3 (IRF3)-NF-κB pathway.
TLR4 signaling participates in the initiation of pro-inflammatory
response, especially TRIF mediated TNF-α and synthesis of
chemokines and have been reveiwed in detail elswhere (37).

In addition to TNF-α, TLR4 signaling also contributes
to the transmission of two priming signals for the IL-1β
pathway through the NLRP3 inflammasome. IL-1β is a crucial
proinflammatory cytokine in response to microbial infection.
IL-1β from LPS-treated KCs can produce a deleterious effect
on hepatocytes and promote the secretion of VLDL apo B
and lipid (38). IL-1β was also found to inhibit IFN-α induced
STAT1 activation in hepatocytes, attenuating the innate immune
response to viral infection in hepatocytes (39). In general,
NLRP3 mediated-cleavage of caspase 1 is the critical step to
promote the maturation of IL-1β. The formation of the NLRP3
inflammasome is initiated by ATP or microbial stimulation (40).
Blockage of NLRP3 activation in KCs decreased IL-1β response
to Ischemia/Reperfusion induced liver injury and improved
survival (41, 42). Administration of MCC950, a small molecule
selective inhibitor of NLRP3, suppressed LPS primed IL-1β
response in NPC cells, subsequently, decreasing liver injury
(43). Given the important role of TLR4 signaling in KCs, the
modulation of this pathway in the context of HIV infection and
persistent microbial translocation is critical.

MODULATION OF INFLAMMATORY
RESPONSES BY HIV-1 INFECTION IN KCS

In addition to CD4, both CCR5 and CXCR4, HIV-1 co-
receptors, are detected on human KCs isolated from non-HIV-
1 individuals, suggesting that KCs are permissive for HIV-1
infection. HIV-1 infection of KCs in viremic patients has been
shown by in situ hybridization for HIV-1 RNA and PCR for
proviral DNA on FACS-purifed KCs from livers of patients
with Acquired Immunodeficiency Sydnrome (AIDs) (44–46).
Moreover, retrieval of HIV-1 from KCs derived from patients
either not on ART (47) or on ART for short durations has been
shown and supported by studies in SIVDH12R-infected macaques
(48, 49). Recently it has been shown that KCs derived from
patients on long term ART, while containing evidence of HIV-
1 transcripts, do not secrete replication competent virus (50).
While macrophages are known to be able to transmit infectious
virus to susceptible CD4+ cells via cell-cell contact (51, 52), the
ability of KCs in patients on long-term ART to do so has not yet
been explored though warrants investigation.

We have shown that Kupffer cells are highly permissive
for HIV-1 infection in vitro with robust and sustained viral
replication (53). HIV-1BaL, a laboratory adapted CCR5-tropic
HIV, infection rendered KCs more sensitive to LPS treatment
through an increase in CD14 and TLR4 expression on the cell
surface, resulting in increased secretion of TNF-α and IL-6, which
was blocked by a small molecule TLR4 inhibitor. Interestingly,
despite AZT and ritonavir abrogated viral replication, KCs
maintained their sensitivity to the pro-inflammatory response
to LPS. These findings suggest that even in patients on

ART, KC biology may be impacted and promote a mileu
supporting hepatic inflammation and fibrosis in response to
microbial translocation. While no change in IFNα or IFNβ

expression in HIV-1 infected KCs was observed, IL-1β mRNA
and both intracellular and secreted IL-1β was increased by
HIV-1BaL infection. Similar to the IL-6 and TNF-α response,
this HIV-related sensitization was found to be TLR4-dependent
and further determined to be via the NLRP3-caspase 1
pathway. Immunostaining on liver tissue derived from aviremic
HIV+ patients demonstrated an increased expression of IL-1β
compared to normal liver with a high degree of colocalization
in CD68+ macrophages (54). These studies show that TLR4
mediated NLRP3 activation is critical for the inflammatory
responses to microbial products in KCs. Importantly, liver injury
and resulting damage-associated molecular patterns (DAMPS)
also activate TLR4 signals in KCs and thus may play a role in
other forms of liver injury in HIV patients such as drug-induced
liver injury. Interestingly, it has also been shown that CCR5 and
TLRmay co-cluster onmonocyte-derived macrophages (MDMs)
as secretion of CCL2 and CXCL8 in response to either R5 gp120,
recombinant envelope protein from CCR5-tropic HIV-1, or LPS
can be blocked by either a CCR5 inhibitor or TLR4 blocking.
These results suggest another mechanism for synergistic effects of
HIV and LPS on macrophage biology and should be specifically
examined in human KCs (55).

INFLAMMATORY RESPONSES TO HIV-1
INFECTION IN OTHER LIVER
IMMUNE CELLS

While beyond the scope of this perspective, HIV-1 infection
impacts a number of other cells critical to the inflammatory
response in the liver. In line with circulating CD4+ T cells, HIV
infection leads to a depletion of CD4+ T cell in the liver with
relative reversal of CD4/CD8 ratio typically seen. Viral infection
also makes IL2+ CD4+ T cells dysfunctional and attenuates
hepatic immune response to microbial infection (56–58). CD4+
T cells fromHIVmono-infected patients exhibit a low regulatory
effect on Natural killer (NK). Co-cultured with NK cells, CD4+ T
cells fromHIV-1+ individuals greatly reduced anti-fibrotic effect
of NK cells on HSCs (59). Therefore, reduction in CD4+ T cells
influences progression of liver fibrosis in HIV+ patients (10, 60)
while increased relative CD8+T cells correlates with a higher
fibrosis scores in HIV-1 infected patients (61).

NK cells, which account for up to 30–50% human liver
lymphocytes, play an important role in clearing virally infected
cells trough NK cell antibody dependent cell cytotoxicity
(ADCC). The activation and NK cellular numbers are
spontaneously increased early in response to HIV-1 infection
but with chronic infection exhaustion results in NK dysfunction
with persistent viremia (62).

While the role of DCs in HIV-1 infection and progression and
ability to transmit infectious virus to CD4 cells by cell-cell contact
has been shown, HIV interaction with DCs in the liver is less
studied. TLR7 is constitutively expressed by human pDCs. The
delivery of HIV-1 viral nucleic acids in early endosome of pDCs
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can be blocked by TLR7 inhibitor (63), suggesting that TLR7 is
involved in the antigen presentation by pDCs. In addition, mDC
express TLR4 and the frequency of mDCs, especially CXCL16-
producing mDCs has been shown to be associated with the level
of microbial products in the liver of HIV+ patients (64).

INTERACTIONS BETWEEN HIV AND
HEPATOCYTES AND IMPLICATIONS FOR
HEPATIC INFLAMMATION AND FIBROSIS

In vitro studies have shown that the envelope protein, HIV
gp 120, which binds either CXCR4 (X4) or CCR5 (R5) on its
target cell can promote hepatocyte apoptosis (65) and along with
the HCV glycoprotein E2 promote the secretion of the pro-
inflammatory cytokine IL-8 (66, 67). It has been known that
Kupffer cells play a primary role in the clearance of apoptotic
hepatocytes/cellular debris within the liver and thus play a key
role in sterile inflammation and repair (68). More recently,
Ganesan et. al demonstrated that ethanol exposure promotes
HIV accumulation within hepatocytes, ultimately leading to
increased oxidative stress and apoptosis. These apoptotic
hepatocytes then stimulate inflammasome activation in KCs and
pro-fibrogenic genes in hepatic stellate cells (69). Moreover,
hepatic stellate cells can also engulf apoptotic hepatocytes
resulting in NAPDH oxidation, stellate cell activation, and
fibrogenesis (70). Therefore, effects on HIV on hepatocytes can

promote both KC and HSC activation, synergistically driving
hepatic inflammation and fibrosis.

DIRECT INTERACTIONS BETWEEN HIV
AND HUMAN STELLATE CELLS

HSCs express both HIV CCR5 and CXCR4 co-receptors. We
have shown that HIV and its envelope protein gp120 promote
HSC activation, collagen I production, and CCL2 secretion
through interactions with CXCR4 (71) and others have shown
that the envelope protein on HIV that preferentially uses CCR5
for cellular entry (R5 gp120) promotes HSC chemotaxis and
CCL2 secretion (72). While HIV can infect HSCs in vitro,
infection in vivo has not been established. Similar to what has
recently been shown for KCs, in vitro infected HSCs do not
secrete replication competent virus though, like DCs, may be
able to transmit virus by cell-cell contact (71, 73, 74). Similar to
what has been shown on MDMs, CCR5 and TLR4 seem to co-
cluster on HSCs and result in increased CCL2 and CXCL8 in
response to gp120 and LPS, with effects of ligands blocked by
inhibiting either receptor alone (55). As CCL2 is an important
chemokine for attracting circulating monocytes into the liver,
this may be important for propagating hepatic inflammation.
R5 gp120 also promotes IL-6 secretion from HSCs through
Jun-NF-kB activation (75). These studies suggest that HIV
promotes inflammation and fibrosis by interacting with CXCR4
and CCR5 via gp120 and synergizes with TLR4 signals. While the

FIGURE 1 | Role of HIV and associated microbial translocation in driving hepatic inflammation and fibrosis through kupffer cell and stellate cell interactions. HIV

infection causes early CD4 gut depletion which promotes increased microbial translocation and the delivery of pathogen-associated molecular patterns to the liver

(PAMPs). At the same time, patients with HIV have multiple secondary chronic liver injuries (NAFLD, DILI, HCV, HBV, Alcohol) which promote direct injury to

hepatocytes and give rise to damage-associated molecular patterns (DAMPs) or endogenous TLR ligands. HIV infected KCs are sensitized to effects of both the

translocated microbial products as well as DAMPs. These signals converge on the HIV-infected KCs resulting in the secretion of a number of pro-inflammatory (IL-6,

TNF-α) and pro-fibrogenic cytokines (IL-1β and TGFβ1). Additionally, TLR ligands have pro-inflammatory effects on HSCs and sensitize them to KC-derived TGFβ1.

Used with permission from @Mount Sinai Health System.
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latter is important in viremic patients, relevance for those onART
are not clear. For those on ART, the impact of HIV on microbial
translocation and KC biology may be more important.

INTERPLAY BETWEEN KUPFFER CELLS
AND HEPATIC STELLATE CELLS

While the ultimate effector cell in liver fibrosis is the hepatic
stellate cell, the signals generated by KCs are critically important
in promoting the activation of HSCs and then perpetuating
the activated state. TLR4 activation on HSCs results in
downregulation of the TGFβ1 pseudoreceptor, BAMBI, which
sensitizes HSCs to the pro-fibrogenic effects of TGFβ1 (76), much
of which is derived by KCs. Therefore, in the context of HIV-
1 and associated microbial translocation, the effects on both
KCs and HSCs are compounded and drive hepatic inflammation
and fibrosis (Figure 1). Overall association between microbial
translocation and liver fibrosis progression has been shown in
a variety of liver diseases and thus HIV simply compounds
this effect.

CONCLUSION

As patients with HIV live longer, liver disease will continue
to emerge as a leading cause of morbidity and mortality.

Understanding how HIV may set the stage for hepatic injury,
inflammation and fibrosis may lead to novel therapeutic
strategies. While treatment of underlying diseases, ranging
from viral hepatitis to NASH or alcohol, remains the most
imporant strategy, the alterations unique to this population
need to be kept in mind. With this perspective, HIV related
alterations in KC biology and microbial translocation may
be at the nexus of creating a milue conducive to hepatic
fibrosis. Targeting either the KC response to TLR4 ligands,
PAMPs or DAMPS, decreasing the burden of microbial
products from reaching the portal circulation, or blocking
downstream pro-inflammatory or pro-fibrogenic effects on
stellate cells are important to consider. Much will be learned
from current treatments undergoing investigation for non-HIV
related liver fibrosis that may be additionally leveraged for this
special population.
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