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The immediate and natural reaction to both infectious challenges and sterile insults

(wounds, tissue trauma or crystal deposition) is an acute inflammatory response. This

inflammatory response is mediated by activation of the innate immune system largely

comprising professional phagocytes (neutrophils and macrophages). Zebrafish (danio

rerio) larvae possess many advantages as a model organism, including their genetic

tractability and highly conserved innate immune system. Exploiting these attributes and

the live imaging potential of optically transparent zebrafish larvae has greatly contributed

to our understanding of how neutrophils and macrophages orchestrate the initiation and

resolution phases of inflammatory responses. Numerous bacterial and fungal infection

models have been successfully established using zebrafish as an animal model and

studies investigating neutrophil and macrophage behavior to sterile insults have also

provided unique insights. In this review we highlight how examining the larval zebrafish

response to specific bacterial and fungal pathogens has uncovered cellular andmolecular

mechanisms behind a variety of phagocyte responses, from those that protect the host

to those that are detrimental. We also describe how modeling sterile inflammation in

larval zebrafish has provided an opportunity to dissect signaling pathways that control

the recruitment, and fate, of phagocytes at inflammatory sites. Finally, we briefly discuss

some current limitations, and opportunities to improve, the zebrafish model system for

studying phagocyte biology.

Keywords: zebrafish, phagocytes, macrophages, neutrophils, infection, sterile inflammation, innate immunity

INTRODUCTION

The zebrafish (danio rerio) is a well-establishedmodel organism used to study a variety of biological
and pathological processes. These studies range from developmental biology, genetics (1), cancer
(2, 3), neurobiological diseases/neurodegeneration (4), cardiovascular diseases (5), to metabolic (6)
and infectious diseases (7–9). Zebrafish embryos and larvae offer unique properties, as they are
externally fertilized, thus allowing easy access to the developing embryo throughout its rapid life
cycle. Moreover, adult zebrafish can generate a large number of offspring on a weekly basis, and the
larvae are optically transparent, a physical trait that can be exploited using transgenic reporter lines
for non-invasive live imaging.With respect to live imaging immune responses, transgenic lines that
label different types of phagocytes (Table 1), enable the observation of the inflammatory response to
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TABLE 1 | Examples of transgenic lines routinely used to visualize phagocytes in larval zebrafish.

Transgenic line(s) Experimental use References

Myeloid-progenitors Tg(spi1:EGFP)pA301 Cell labeling (whole cell) (10)

Tg(zpu.1:EGFP)df5 (11)

Neutrophils Tg(mpx:EGFP)i114 Cell labeling (whole cell) (12)

Tg(zMPO:GFP) (13)

Tg(mpx:Dendra2) Cell tracking (photoconversion) (14)

Tg(mpx:Gal4)i222;UAS-E1b:Kaede)s1999t (15)

Tg(lyz:GAL4.VP16)i252; (UAS-E1b:Kaede)s1999t (16)

Tg(mpx:EGFPCAAX)gl27 Cell labeling (cell membrane) (17)

Tg(lyz:EGFP)nz115; Tg(lyz:DsRED2)nz50 Cell labeling (whole cell) (18)

Macrophages Tg(mpeg1:EGFP)gl22 Cell labeling (whole cell) (19)

Tg(mpeg1:mCherry)gl23

Tg(mpeg1: mCherryCAAX)sh378 Cell labeling (cell membrane) (20)

Tg(mpeg1: mCherry-F)ump2 Cell labeling (cell membrane) (21)

Tg(mpeg1:Dendra2) Cell tracking (photoconversion) (14)

Tg(csf1ra:GFP)sh377 Cell labeling (whole cell) (22)

Tg(mpeg1:tdTomato-CAAX)xt3 Cell labeling (cell membrane) (23)

Tg(mfap4:mTurquoise2)xt27 Cell labeling (whole cell) (24)

Tg(mfap4:tdTomato)xt12

Tg(mfap4:tdTomato-CAAX)xt6 Cell labeling (cell membrane)

Tg(mfap4:dLanYFP:CAAX)xt11

Eosinophils Tg(gata2high:eGFP) Cell labeling (whole cell) (25)

injuries and infections in a living animal. Furthermore, the
concurrent use of fluorescently-labeled pathogens in infection
studies allows the real-time observation of host-pathogen
interactions in vivo. Besides the imaging potential and genetic
amenability, the zebrafish model offers the capacity for high-
throughput drug screening to facilitate antimicrobial discovery
and in-depth studies of virulence factors.

Another major advantage lies in the fact that the human and
zebrafish genomes share high homology and the immune system
is highly conserved. Even though the developmental origin of
the zebrafish immune system differs to some extent from their
mammalian counterparts, all major relevant immune cell types
have been described in the fish including phagocytic myeloid cells
of the innate immune system (26, 27). The innate immune system
provides the first line of defense against invading pathogens and
is comprised of physical barriers, biochemical effector molecules
such as complement factors, antimicrobial peptides, cytokines
(chemokines, interferons, and interleukins) and phagocytes. A
major effector function of the complement system is to opsonize
pathogens and to recruit professional phagocytic cells, such as
macrophages and neutrophils (28).

Macrophages and neutrophils are highly migratory cells,
which are both capable of phagocytosis and subsequent
killing of pathogens. Phagocytosis plays a central role in the
defense against invading pathogens and in tissue inflammation
and the successive process of healing, where macrophages
and neutrophils remove cell debris and restore tissue
homeostasis (29, 30). Besides the recognition of opsonins,
phagocytosis can also be triggered by the direct binding of
pathogen-associated molecular patterns (PAMPs) to pattern

recognition receptors (PRRs) on macrophages and neutrophils
(29, 30). Once pathogens are internalized, they reside in an
intracellular vacuole, the phagosome, which further matures
to the phagolysosome where effective killing mechanisms are
initiated (31). Additionally, membrane-bound or intracellular-
residing Toll-like receptors (TLRs), which belong to the group
of PRRs, contribute to the effective recognition of pathogens
and the activation of phagocytes (32). The activation of TLRs
activates downstream signaling pathways such as nuclear factor
kappa-light-chain-enhancer of activated B cells NF-κB, which
results in the production and release of pro-inflammatory
cytokines by professional phagocytes (33). Transgenic zebrafish
reporter lines have been generated utilizing NF-κB recognition
sequences and promoters of immune-response genes (including
pro-inflammatory cytokines) enabling the differentiation of
neutrophil and macrophage activation states (Table 2). These
lines have been instrumental in beginning to reveal that the
functional heterogeneity of larval zebrafish phagocytes is similar
to that of their mammalian counterparts (42).

The roles of neutrophils and macrophages are often
complementary to each other during inflammatory responses,
however, the kinetics of their recruitment can be variable,
depending on the source of the insult. Neutrophils are usually
the first responders after tissue injury and invasion of pathogens,
except if patrolling tissue-resident macrophages encounter the
microbes first (43). Regardless of the source of the insult,
the second professional phagocyte population is commonly
recruited shortly thereafter. Both phagocytes react to tissue
damage and infection primarily by phagocytosis of foreign
particles or tissue debris. Whereas, neutrophils have a higher
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TABLE 2 | Examples of transgenic lines routinely used to visualize and differentiate phagocyte activation states.

Activation marker Transgenic line(s) Expression confirmed in References

il1b expression TgBAC(il1b:egfp)sh445 Neutrophils and macrophages (34)

Tg(il1b:EGFP-F)ump3 Neutrophils and macrophages (35)

TgBAC(il1b:NTR-EGFP)tyt205 Defined as myeloid cells* (36)

irg1 expression Tg(irg1:EGFP)nz26 Macrophages only (37)

nfkb expression Tg(Nf-kB:EGFP)nc1 Macrophages (38, 39)

Tg(8xHs.NFκB:GFP,Luciferase)hdb5 Defined as immune cells* (40)

tnfa expression TgBAC(tnfa:GFP)pd1028 Macrophages (41)

Tg(tnfa:eGFP-F)ump5 Macrophages (42)

*Yet to be confirmed as neutrophils or macrophages.

TABLE 3 | Examples of transgenic lines routinely used to manipulate phagocyte

numbers.

Cell type ablated Transgenic line(s) References

Macrophages Tg(mpeg1:Gal4FFgl25;UAS-E1b:nfsB-

mCherryc264)

(19, 48)

Tg(cfms:Gal4.VP16)il86;UAS:nfsB.

mCherry)i149
(49)

Neutrophils Tg(lyz:ntr-p2A-LanYFP)xt14 (23)

Tg(-8.mpx:KalTA4 gl28;

UAS-E1b:nfsB-mCherry)c264
(50)

microbicidal activity through degranulation, the production of
reactive oxygen species (ROS), and are capable of neutrophil
extracellular trap formation (44, 45); macrophages destroy
pathogens and debris intracellularly in the phagolysosome for
antigen-presentation, and additionally release cytotoxic factors
and initiate chemokine and cytokine production (31, 46). All
of the described pathways and the downstream components
related to the innate immune response against pathogens
or injuries are remarkably conserved between zebrafish and
mammals. One interesting property of the zebrafish larval
immune system is that the adaptive arm of the immune system
takes ∼3–4 weeks to develop (47). This creates the exclusive
opportunity to study the innate response without interference
of adaptive immunity in the early embryonic and larval
stages. Furthermore, pharmacologic and genetic techniques exist
to specifically deplete phagocyte subsets in larval zebrafish,
including the use of liposomal clodronate for macrophage
ablation (21) and transgenic lines for nitroreductase-mediated
ablation of neutrophils or macrophages (Table 3). Using these
ablation techniques, the specific contribution of neutrophils and
macrophages to inflammatory responses can be dissected.

Over the last 20 years, the zebrafish has evolved as a
model organism for many infectious diseases, including bacterial
[reviewed in Neely (7)], fungal [reviewed in Rosowski et al., (9)],
viral [reviewed in Varela et al., (8)] and parasitic infections (51).
Here we focus on studies examining the phagocyte responses
to specific bacterial and fungal infections that have revealed
fundamental insights into a spectrum of phagocyte responses,

from those that are host protective to those that are detrimental.
We also discuss how modeling sterile inflammation in larval
zebrafish has enabled a deeper understanding of the signaling
systems that regulate the directed movement of phagocytes
druing inflammation.

PHAGOCYTE RESPONSES DURING
BACTERIAL AND FUNGAL INFECTION

There is a constant need to study infectious diseases and develop
novel treatment strategies, especially in the context of growing
antibiotic resistance, nosocomial infections, superinfections, and
(re-)emerging new pathogens. In many cases, patients rely on
a proper innate immune response as a first line of defense,
particularly immunocompromised patients. This qualifies the
zebrafish as a suitable model due to temporal segregation
in the development of innate and adaptive immunity. In
addition, infectious challenges can be readily delivered to
different anatomical sites within larval zebrafish depending
on the microorganism being used and the particular innate
immune cell response under investigation (Figure 1A). Many
significant studies have utilized the zebrafishmodel to further our
understanding of the host response to important viral [reviewed
in Varela et al., (8)] and parasitic infections (51). For the purpose
of this review, we have chosen to focus on examples of bacterial
and fungal infections that illustrate the heterogenous nature of
phagocyte responses. These include host protective phagocyte
functions and those that are detrimental, such as facilitating the
dissemination of infection or promoting tissue damage.

Bacterial Infections
Modeling bacterial infections in zebrafish has contributed
significantly to our understanding of the early innate immune
response toward numerous bacterial infections in humans
[reviewed in Neely (7)]. Professional phagocytes play an essential
role in limiting bacterial growth and eradicating infection.
However, bacteria have evolved different strategies to delay or
avoid efficient killing mechanisms in phagocytes. In the following
section, we focus on the zebrafish response to Mycobacterium
marinum (M. marinum), as well as studies usingMycobacterium
leprae (M. leprae), Burkholderia cenocepacia (B. cenocepacia), and
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FIGURE 1 | Schematic illustration of the different delivery routes in larval zebrafish for pathogens. (A, left side) and to model sterile inflammation (B, right side). In the

sterile injury section, the stimulus is specified by blue writing. All delivery routes show an exemplary reference, with the ones covered in this review highlighted in bold.

Staphylococcus aureus (S. aureus) that show different ways in
which the phagocyte response can be host protective or harmful.

The Macrophage Response to Mycobacterium

marinum Is Largely Host Protective
A classic example of how phagocytes, particularly macrophages,
provide a host protective function has been shown in the
tuberculosis-like zebrafish disease model using the closely related
natural fish pathogenM.marinum. Tuberculosis, which is caused
by Mycobacterium tuberculosis (M. tuberculosis), is a persistent
major health threat worldwide and remains astonishingly
successful in infecting millions of people every year (52). Long-
existing conventional views on human tuberculosis pathogenesis
have been challenged in the last decade using the closely related
pathogen M. marinum, to model a tuberculosis-like disease
in zebrafish.

Granulomas are clinical hallmark features of tuberculosis
and are highly organized structures consisting of infected
macrophages at their cores surrounded by lymphocytes, necrotic
cell debris (the caseum) and a fibrotic cell layer (53). The
granuloma has been generally viewed as a compact barrier and
static structure, which restricts bacterial growth and thereby
limits their spread (54, 55). Elegant studies in M. marinum-
infected larval zebrafish have revealed that early granuloma-
like structures can form independent of an adaptive immune
response, where mycobacteria are predominantly engulfed by
macrophages. This initiates the expansion of the granuloma-like
structure through the recruitment of uninfected macrophages
(56, 57). The recruitment of macrophages is thereby dependent
on the bacterial secreted protein ESAT6 (encoded by the RD1
virulence locus) that drives matrix metallopeptidase 9 expression
in epithelial cells neighboring infected macrophages (58, 59).
Infected macrophages then quickly undergo cell death and are
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engulfed by newly arriving uninfected macrophages resulting
in accelerated M. marinum proliferation and cellular expansion
of the granuloma (60). Tracking of individual macrophage
responses has also revealed that some infected macrophages
leave the granuloma to disseminate the infection by establishing
secondary granulomas (60). A more recent study has also shown
that when macrophage supply becomes limiting there is a
transition from a granuloma that supports mycobacterial growth
within macrophages to one favoring macrophage necrosis and
the discharge of mycobacteria into the extracellular granuloma
milieu (61).

Studies in zebrafish have also revealed several cues that
contribute to the onset of macrophage necrosis, including
alterations in levels of the pro-inflammatory cytokine tumor
necrosis factor (TNF). Transient knockdown experiments using
Morpholinos against the TNF-receptor were able to dissect the
pleiotropic role of TNF duringM.marinum pathogenesis (62). In
this study, decreased TNF levels induced a hypo-inflammatory
state accompanied by augmented mycobacterial growth and
accelerated granuloma formation, which ultimately led to
enhanced necrosis of macrophages, granuloma breakdown and
extracellular proliferation of M. marinum (62). Surprisingly,
a similar outcome was achieved when excessive TNF levels
were present (63). While co-injected recombinant TNF
in M. marinum-infected zebrafish larvae initially reduced
mycobacterial burden, macrophages underwent necroptosis
(programmed necrosis) induced by a RIPK1-RIPK3-dependent
mechanism, which in turn enhanced mitochondrial ROS
production (64). Exploiting the relative ease of exposing larval
zebrafish to chemical inhibitors, it was shown that two pathways
cooperate to induce this ROS-dependent macrophage necrosis
via an inter-organellar circuit (65). Initially, mitochondrial
ROS activates ceramide production via the lysosomal enzyme
acid sphingomyelinase (aSM). Ceramide, in turn, activates
the cytosolic protein BAX, which promotes calcium flow
through ryanodine receptors (RyR) from the endoplasmatic
reticulum back into the mitochondria. The influx of calcium
overloads the macrophage mitochondria, ultimately leading to
the activation of the mitochondrial matrix protein cyclophilin
D, which induces necrosis (65). This TNF-mediated necrosis
mechanism was shown to be conserved for M. marinum
and M. tuberculosis-infected human macrophages (65). The
detailed molecular dissection of these TNF-responsive pathways
offers a wide array of potential new druggable targets, which
have already been applied and validated in the zebrafish
tuberculosis model. Promising novel treatments involve
inhibitors for cyclophilin D (such as Alisporivir), aSM-blocking
drugs (the tricyclic antidepressant Desipramine), calcium
channel-blocking drugs (LTCC inhibitors such as Verapamil),
RyR-blockers (Dantrolene), or ROS scavengers (64, 65). Many
of those drugs are currently in clinical trials or have been
approved for the treatment of other diseases. Besides balancing
adequate TNF levels in tuberculosis progression, new potential
routes for treatment could furthermore include maintaining
stable macrophage numbers (61) and specifically targeting
macrophages with drug-loaded nanoparticles or liposomes, such
as Rifampicin, in the early course of the disease (66, 67).

The role of neutrophils in tuberculosis infection is less clear.
While mammalian in vivo studies investigating the role of
neutrophils during tuberculosis are conflicting (68, 69), zebrafish
studies have shown that neutrophils appear to be less important
in controlling infection. Although mycobacteria can evade direct
phagocytosis by larval zebrafish neutrophils, caspase-mediated
cell death of infected macrophages within the granuloma attracts
neutrophils, which phagocytose dying macrophages. After this
indirect uptake of mycobacteria, neutrophils can directly kill the
bacteria by NADPH oxidase-mediated ROS production (70).
Even though neutrophils do not appear to be essential to control
tuberculosis infection, higher bacterial burdens in later stages of
infection have been shown to be accompanied by neutropenia
(71). Moreover, forced production of reactive nitrogen species
in neutrophils through manipulation of hypoxia-inducible
factor 1 (Hif-1α) signaling prior to mycobacteria infection,
can induce protection in the host (72). Manipulating either
mycobacterial neutrophil evasion strategies or the HIF-1
pathway offer interesting new routes for potential therapeutic
interventions. Collectively, these studies investigating the
larval zebrafish innate immune response to M. marinum
have greatly enhanced our understanding of M. tuberculosis
pathogenesis (Figure 2A) and uncovered new mechanistic
insights that may allow for the development of promising
new treatments.

The Macrophage Response to Mycobacterium leprae

and Burkholderia cenocepacia Damages the Host
A close relative to M. marinum and M. tuberculosis is M.
leprae, a non-motile bacterium that causes leprosy in humans.
This bacterium grows at 30◦C, which makes it difficult to
study in mammalian animal models adequately. However,
it renders the poikilothermic zebrafish an excellent model
organism, which develops clinical symptoms comparable to
the human disease (73). A distinct feature of M. leprae
infection is a widespread demyelinating neuropathy, which
manifests as a disorganization and decompaction of myelin
sheaths and subsequent axonal damage (74). As with other
Mycobacteria species, initial infection and replication occurs
in macrophages. Surprisingly, the neurological disease is not
directly caused by the pathogen per se, but by patrolling infected
macrophages. This was demonstrated using a combination of
confocal and transmission electron microscopy techniques in
larval zebrafish (73). Macrophages were shown to interact with
an M. leprae-specific component of the outer cell membrane,
a triglycosylated phenolic glycolipid 1 (PGL-1), which led to
inducible nitric oxide synthase (iNOS)-driven production of
neurotoxic nitric oxide. This macrophage source of reactive
nitrogen species then caused mitochondrial damage in adjacent
axons (Figure 2B). There are currently two hypotheses for how
infected macrophages can reach the nerves: one possibility
is through an overlying skin lesion that allows for direct
seeding of macrophages from a granuloma into a nearby
peripheral nerve (75). The second suggests that infected
macrophages, which are not enclosed in a granulomatous
structure, extravasate from the blood vessels, to patrol axons,
similar to their behavior under homeostatic conditions (73, 76).
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FIGURE 2 | Schematic illustration of the phagocyte responses to the bacterial pathogens M. marinum (A), M. leprae (B), B. cenocepacia (C), and S. aureus (D). (A)

Macrophages phagocytose M. marinum (1) and release ESAT-6 (2). ESAT-6-driven Mmp9 production by epithelial cells leads to macrophage recruitment (3) and

granuloma formation (4). Newly-arriving macrophages become infected by engulfing dying infected macrophages (5). Infected macrophages can establish secondary

(Continued)
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FIGURE 2 | granulomas (6). Low TNF levels promote intracellular bacterial growth and macrophage necrosis (7). High TNF levels promote mROS production within

infected macrophages that, although initially bactericidal, also leads to necrosis (8). Necrosis results in the release of bacteria into the extracellular milieu (9).

Neutrophils can phagocytose infected macrophage debris (10) and kill M. marinum by NADPH oxidase-mediated ROS production and Hif-1α-dependent reactive

nitrogen species production (11). (B) M. leprae-infected macrophages migrate along nerve axons (1), where PGL-1 (2) stimulates iNOS-driven nitric oxide production

in macrophages (3) that damages mitochondria in adjacent axons (4). (C) Following i.v. delivery, macrophages phagocytose B. cenocepacia (1) providing a replication

niche (2). Infected macrophages produce Il1b (3) that attracts neutrophils and macrophages (4), leading to tissue damage resulting from degranulating neutrophils (5).

The inflammatory response also leads to myeloid cell ablation that favors the survival of infected macrophages (6). B. cenocepacia can disseminate through non-lytic

escape from infected macrophages (7). Following s.c. infection, neutrophils phagocytose B. cenocepacia (8) but are inefficient in killing the bacteria and instead

release the bacteria into the extracellular milieu (9). (D) Following phagocytosis of S. aureus by neutrophils (1), NADPH oxidase activity (2) contributes to the formation

of non-acidic Lc3-positive phagosomes (3) that provide a replication niche. Phagosome membrane damage results in the release of bacteria into the cytosol (4),

neutrophil death and bacterial dissemination (5).

The latter hypothesis would support how leprosy manifests
as such a widespread neuropathy in comparison to other
mycobacterial diseases.

Similar to M. leprae infection, the macrophage response
to another opportunistic pathogen B. cenocepacia can be
detrimental to the host. B. cenocepacia belongs to the
Burkholderia cepacia complex (Bcc) and can emerge as an
opportunistic pathogen, particularly in cystic fibrosis patients
and immunocompromised individuals (77). B. cenocepacia is
extremely virulent in the zebrafish model, and macrophages
were shown to be vital for initial infection and replication
(78). Depending on the infection route, intravenously (i.v.) or
subcutaneously (s.c.), live imaging experiments within infected
larvae revealed that phagocytes engaged with B. cenocepacia
in different ways. If B. cenocepacia was administered i.v.,
neutrophils and macrophages were both recruited to the
infection site. However, only few bacteria were phagocytosed
by neutrophils triggering degranulation that resulted in tissue
damage and increased bacterial burden. Following s.c. infection,
neutrophils predominantly phagocytosed B. cenocepacia but
failed to kill the bacteria. Instead infected neutrophils adopted
a circular morphology and ejected the bacteria back into the
extracellular space, suggesting non-lytic exocytosis or a NET-
based mechanism that was unable to destroy B. cenocepacia
effectively (79).

In contrast, macrophages predominantly phagocytosed
bacteria following i.v. delivery and engaged with B. cenocepacia
at later stages following s.c. infection. Regardless of the
administration route, B. cenocepacia failed to efficiently replicate
within macrophage-depleted hosts, resulting in enhanced
survival (79). This effect on survival was partially dependent on
macrophage-derived Il1b, which induced both host-protective
and fatal pro-inflammatory consequences. Additionally,
expression analysis showed a global downregulation of the
macrophage- and neutrophil-marking genes mpeg1 and
mpx after infection, suggesting systemic myeloid cell death
through massive inflammation, bestowing a survival advantage
specifically to infected macrophages through an unknown
mechanism. After intracellular replication in macrophages, B.
cenocepacia was shown to utilize a non-lytic escape mechanism
to infect neighboring cells after leaving the macrophage
vacuole, which resulted in a systemic and fatal infection (78).
B. cenocepacia infection provides an excellent example of how
phagocytes demonstrate diverse responses during infections
(Figure 2C), where macrophages exacerbate disease outcome
instead of protecting the host.

Neutrophils Provide an Intraphagocytic Niche for

Staphylococcus aureus
S. aureus is a gram-positive opportunistic pathogen, usually
residing on the skin and in nasal cavities of healthy carriers.
In immunocompromised individuals, especially in hospitals, S.
aureus is one of the leading causes of fatal bacteremia/sepsis,
skin infections, pneumonia, endocarditis, and osteomyelitis
(80). Another serious complication is the growing emergence
of antibiotic-resistant strains, such as the methicillin-resistant
(MRSA), and vancomycin-resistant (VRSA) S. aureus strains,
which additionally complicate effective and life-saving
treatments. The control of systemic S. aureus infection in
larval zebrafish was strongly dependent on phagocytes, as
neutrophil and macrophage ablation caused exponential
growth of GFP-tagged S. aureus in the circulation and
rapid death of infected larvae (81). Chemical ablation of
either neutrophils or macrophages revealed that both cell
populations were indispensable for controlling infection,
however, macrophages seemed to be more important for this
process as they predominantly phagocytosed the bacteria (82).
Furthermore, S. aureus uses neutrophils as an intraphagocytic
niche for host immune evasion (82, 83). Once S. aureus is
phagocytosed by neutrophils, the bacteria utilize the host
autophagy machinery to successfully evade intracellular killing
mechanisms. After internalization, the neutrophil-intrinsic
NADPH oxidase prompts Lc3-associated phagosome formation,
which contains the bacteria and provides a protective niche as
these phagosomes do not acidify. S. aureus subsequently damage
the Lc3-associated phagosomal membrane, resulting in bacterial
proliferation and dissemination (Figure 2D) (83).

This host immune evasion strategy is particularly important
in the context of mixed-strain infections, where a drug-resistant
mutant can be present in a bacteria population. It had been
demonstrated in previous experiments that the injection of
an equal ratio of two differentially labeled S. aureus strains,
resulted in one of the injected strains dominating the infected
larvae, despite identical initial proliferation (82). This preferential
expansion was the result of a few individual bacteria that
exclusively survived within neutrophils (82, 83). Furthermore,
this behavior correlates with antibiotic resistance. It has been
demonstrated that if multiple S. aureus strains were present
in a host with differential antibiotic resistances (drug-resistant
vs. drug-sensitive), the drug-resistant strain predominated even
if only sub-curative amounts of the antibiotic were present
(84). This effect was not observed in phagocyte-depleted
larvae, suggesting that drug-resistant S. aureus strains are
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more likely to use the autophagy-mediated immune evasion
strategy. Understanding the diverse mechanisms through which
phagocytes engage with pathogens and how different bacteria
can avoid or exploit host innate immune responses, promises to
reveal new anti-microbial strategies that are of clinical need in the
age of increasing antibiotic resistance.

Fungal Infections
Modeling fungal infections in zebrafish has gained increasing
attention within the last decade. Two significant reasons
have contributed to this popularity. Firstly, many fungal
pathogens prefer lower incubation temperatures (33◦C),
which resemble the lungs, outer limbs and skin temperature
of humans (85), which is easily practicable with zebrafish
embryos. Secondly, zebrafish embryos and larvae resemble
late-stage HIV-infected patients, as they do not possess a
functional adaptive immune system, rendering this model
ideal to study opportunistic fungi (86). Comprehensive
reviews describing the modeling of different fungal infections
in larval zebrafish have previously been covered elsewhere
(9, 87, 88). Here we highlight studies exploring the host response
to three specific fungal pathogens (Aspergillus fumigatus
(A. fumigatus), Talaromyces marneffei (T. marneffei), and
Cryptococcus neoformans (C. neoformans) that encompass a
range of phagocyte responses, from providing protective niches
against host immunity to mediating inter-phagocyte fungal
transfer and fungal dissemination.

Macrophages Can Protect Fungal Pathogens From

Neutrophil-Mediated Killing
Spores of A. fumigatus, an environmental fungus, are inhaled on
a daily basis but can cause invasive or pulmonary aspergillosis
in immunocompromised individuals (89). Once the dormant
spores (conidia) are taken up by a host, a developmental
switch to filamentous, invasive hyphae occurs, a process called
germination (89). Fungal germination is considered a key
event in pathogenesis because neutrophils respond to the
hyphal form with the initiation of highly efficient killing
mechanisms intracellularly (ROS/RNS and Mpx-dependent) and
extracellularly, such as NETosis (90–92). At this point, A.
fumigatus infection appears contradictory: while hyphae are
a necessary virulence factor, germination ultimately entails
fungal clearance due to the activation of neutrophils. The
role of macrophages in disease progression is less clear.
While in vitro studies support an important role in killing
conidia (93), mouse in vivo studies have shown contradicting
results (94, 95).

A recent elegant larval zebrafish study was able to shed
light on the role of macrophages in A. fumigatus infection
(Figure 3A) (9). The study demonstrated that following
infection, macrophages phagocytosed injected conidia (91)
and formed tight clusters around the fungus (9). The observed
macrophage-driven phagocyte clusters resembled “fungal”
granulomas (aspergillomas) (96), which is commonly observed
in other infections, such as M. tuberculosis/M. marinum. This
recent study has revealed that the macrophage clustering creates
a protective niche for the spores by inhibiting the switch to

fungal germination by an unknown mechanism (9). This
delay promotes the persistence of the fungus by preventing
neutrophil recruitment and subsequent neutrophil-mediated
killing (9). Moreover, the retardation of fungal germination
allows certain fungicidal drugs, such as voriconazole, to target
and kill predominantly A. fumigatus hyphae (97). In light
of growing antifungal resistances and inexplicable treatment
failures, the larval zebrafish A. fumigatus infection model
provides an ideal platform for studying drug efficacy and their
mechanistic impact on aspergillosis (97). Once the infection
progressed further, fungal germination occasionally occured in
the late phagosome causing subsequent macrophage necroptosis
(98). In some instances, lateral cell-cell transfer from dying to
naïve-recipient macrophages was observed using high-resolution
confocal microscopy of fluorescently-labeled macrophages
and A. fumigatus, a process called metaforosis, which further
restricted germination of the fungus (99). Elucidating the
dichotomous role of macrophages in creating a protective
niche for A. fumigatus, while simultaneously promoting
control of germination (9, 99), may create new avenues for
therapeutic strategies.

Another fungal pathogen that uses macrophages as a
protective niche to prevent neutrophil-mediated killing is
T. marneffei (Figure 3B). T. marneffei (formerly classified
as Penicillium) infects predominantly HIV and AIDS
patients in southeast Asia and can result in a lethal systemic
infection (talaromycosis) (100). This fungus primarily infects
macrophages, which has also been demonstrated in the zebrafish
infection model using different routes of infection. Even though
neutrophils interacted and phagocytosed conidia, the spores
were preferentially taken up by macrophages (17). T. marneffei
is thermally dimorphic, which means it exists as filamentous
conidia at moderate temperatures (in the environment) and
switches to a more pathogenic yeast form at 37◦C (inside
the host). Interestingly, once macrophages phagocytosed the
conidia in the ectothermic zebrafish model, the transition to the
yeast morphology occurred regardless of the lower incubation
temperature of the host. This suggests that alternative cues can
supersede the requirement for a specific temperature, such as
the intracellular milieu of macrophages (17). This might also
partially explain why macrophages are the preferred location for
the initial infection and the proliferation of T. marneffei within
the host. As with A. fumigatus, T. marneffei used macrophages as
a protective niche to escape neutrophil-mediated killing, which
is primarily achieved through the myeloperoxidase activity
abundantly found in their granules.

Shuttling-a New Mechanism of Fungal Transfer

Between Phagocytes
Recently, a novel mechanism of pathogen transfer between
phagocytes (shuttling) has been identified in zebrafish studies
using A. fumigatus and T. marneffei infections (Figures 3A,B)
(101), which may be of therapeutic relevance in potential
treatments. This transfer of pathogens has been shown to be
unidirectional and exclusively from neutrophils to macrophages,
while both phagocyte populations remain alive and intact, at
the time of the exchange and afterwards. Thus, far, shuttling
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FIGURE 3 | Schematic illustration of phagocyte responses to the fungal pathogens A. fumigatus (A), T. marneffei (B) and C. neoformans (C) in larval zebrafish. (A)

Macrophages phagocytose A. fumigatus conidia and form tight clusters around the fungus, which inhibits fungal germination (1). Fungal germination can occur in the

late phagosomes of infected macrophages (2) causing macrophage necroptosis (3). Transfer of A. fumigatus conidia can occur from infected and dying macrophages

to recipient macrophages (4). Neutrophils kill A. fumigatus hyphae with their effector functions, including phagocytosis and NETosis (5). Infected neutrophils can

transfer A. fumigatus to recipient macrophages through shuttling (6). (B) T. marneffei exists as filamentous conidia at 30◦C and as pathogenic yeast form at 37◦C (1).

T. marneffei spores can transition to the yeast form within macrophages (2). Neutrophils can also phagocytose T. marneffei conidia (3) and transfer them to recipient

macrophages through shuttling (4). (C) Macrophages phagocytose C. neoformans (1) where it can be killed (2) or persist and proliferate (3). WASP-Arp2/3 regulates

vomocytosis and fungal dissemination (4).

was only observed within the first 4 h following infection in
which single or multiple conidia were transferred to naïve or
pre-loaded macrophages. This pathogen exchange mechanism
happened through a direct cell-to-cell contact between donor
neutrophil and recipient macrophage, which was demonstrated
using sophisticated live imaging techniques with differentially
labeled phagocyte populations. Phagocytosed conidia resided
in a membrane-lined subcellular compartment within the
neutrophil and were entirely transferred to the macrophage,
suggesting not only pathogen but also phagosome exchange
between the phagocytes. This shuttling mechanism was initiated
by β-glucan, an integral component of the fungal cell wall.
This newly discovered pathogen exchange mechanism was also
conserved in isolated mouse neutrophils and macrophages
(101). Macrophages recognized β-glucan and participated in
shuttling partially through Dectin-1 signaling, which could only
be demonstrated in vitro, as the zebrafish ortholog of this receptor

has not yet been identified. At present, it is unclear if this
phenomenon presents a host-defense strategy or a fungal escape
mechanism to avoid the unfavorable neutrophil intracellular
compartment and access the preferred macrophage niche (9, 17).

Dissemination of Infection by Vomocytosis
The fungus C. neoformans, which is also able to persist
and proliferate in macrophages, uses a different phagocyte
escape mechanism. C. neoformans is an environmentally
occurring fungus and can cause life-threatening meningitis
in immunocompromised patients (102). Even though the
phenomenon of non-lytic exocytosis has already been observed
previously following mouse and human in vitro studies (103),
it has only recently been directly visualized for the first time
in macrophages using a larval zebrafish C. neoformans infection
model (20). This phagosome expulsion or “vomocytosis”
maintains the pathogen, as well as the phagocyte, alive and intact.
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Moreover, in the case of C. neoformans, macrophages do not
serve as a protective niche but limit the dissemination of the
fungus within the host. Thus, vomocytosis from macrophages
into the extracellular space helps to promote fungal growth
(Figure 3C). Moreover, in vitro mammalian studies showed that
cryptococci-loaded phagosomes formed dynamic actin structures
dependent on Wiscott-Aldrich-Syndrome-protein/actin-related
protein 2/3 (WASP-Arp2/3) signaling, which were able to
counteract non-lytic expulsion and could thereby provide a route
for novel pharmacological intervention (103). This non-lytic
escape mechanism does not appear to be limited to macrophages
and has also recently been described in neutrophils in vitro (104).
Interestingly, this resembles the observations described earlier
in neutrophilic Bcc infections (79) suggesting that zebrafish may
be a suitable model to investigate further this mechanism of
exocytosis, as well as potential interventions.

PHAGOCYTE RESPONSES DURING
STERILE INFLAMMATION

In addition to being vital for the host response to microbial
challenges, a cellular innate immune response is also essential
for tissue and wound repair. Similar to that observed during
infection, the host response to such “sterile” insults is dominated
by the recruitment of phagocytic cells, in particular neutrophils
and macrophages. The zebrafish offers several established models
of sterile inflammation, from acute injury and chemical insults to
crystal injections (Figure 1B) (105–108). The following section
describes studies that have utilized zebrafish models of sterile
inflammation and uncovered mechanistic insights into how
neutrophil numbers are controlled during sterile inflammation
and how macrophages help orchestrate neutrophil migration.

Wound-Induced Inflammation
Tissue damage usually triggers a local inflammatory response,
which is considered sterile as the host reaction originates from
a non-pathogen insult. The recruitment of immune cells, in
particular phagocytes, is crucial when physical barriers are
compromised to eliminate infiltrating pathogens and clear
cellular debris during the process of tissue healing. The timely
resolution of this inflammatory response is critical for the
restoration of normal tissue function and to avoid prolonged
tissue damage. In many inflammatory conditions such as COPD,
asthma, rheumatoid arthritis, osteoporosis and atherosclerosis
(109), the resolution process is disturbed, which results in a
chronic and often incurable manifestation of the disease. The
classical wounding model in the zebrafish comprises of tail
fin transections or incisions in larvae between 2 and 4 days
of development, whereas relatively few studies have induced
wounds by needle stabbing at more anterior sites (110). Paired
with the use of phagocyte-labeled transgenic zebrafish lines, this
model enables the visualization of immune cell behaviors during
the initiation and the resolution phase of sterile inflammation. In
the initiation phase, neutrophils are typically the first responders
to wounding and actively migrate toward the wound following a
chemotactic gradient.

An Early Role for Hydrogen Peroxide in Attracting

Neutrophils
A significant contribution made to neutrophil biology by
exploiting the zebrafish model was uncovering a role for
hydrogen peroxide (H2O2) as a chemotactic signal for the
earliest arriving neutrophils (105). Combining fluorescently-
labeled neutrophil transgenic lines with the ability to visually
measure H2O2 concentrations in real-time using the ratiometric
sensor HyPer, a non-myeloid derived H2O2 gradient was
discovered, for the first time, in and around wounds in vivo
(105). This elegant study revealed that peak H2O2 production,
generated via the dual oxidase (Duox) enzyme, was strongest
at the wound margin and was necessary for recruitment of the
earliest arriving neutrophils. Soon after this discovery, another
study employing the zebrafish model revealed that neutrophils
sensed the local gradient of H2O2 through activation of the Src
family kinase (SFK) Lyn by oxidation of the cysteine residue C466
(111). Of significance, these findings were confirmed in mouse
and human in vitro experiments (111). A further study focussed
on understanding the transient nature of the H2O2 chemotactic
signal. The study discovered that following arrival at the wound,
neutrophils immediately begin to reduce the wound-derived
H2O2 through the intrinsic myeloperoxidase (Mpx) enzyme that
catalyzes an H2O2-consuming reaction to produce halides (112).
This H2O2-driven recruitment of neutrophils (Figure 4A) has
been validated in several in vitro and in vivomodels, ranging from
invertebrates to humans (111, 113, 114).

Neutrophil Retrograde Chemotaxis Helps Resolve

Neutrophilic Inflammation
Once neutrophils assist with clearing DAMPs, cell debris and
invading pathogens, they need to be removed in a timely fashion
from the wound site to limit collateral tissue damage. The
dominant theory for several decades suggested that macrophages
phagocytose and eliminate apoptotic neutrophils, conferring a
central role for macrophages in resolving sterile inflammation
(115). Through live imaging, a zebrafish study discovered that
an alternative mechanism of neutrophil migration away from
the wound site (retrograde chemotaxis) also contributed to
the resolution of inflammation (13). Many studies have since
followed to further elucidate different mechanisms for the
initiation of neutrophil retrograde migration fromwound sites to
the vasculature. The conserved occurrence of this mechanism has
since been shown in human neutrophils (116) and mouse models
(117), and appears complementary to regulated neutrophil
apoptosis during inflammation resolution.

Macrophages play a major role in controlling neutrophil
retrograde migration. Although they arrive slightly later than
neutrophils at sites of tissue injury, macrophages also sense
a chemotactic gradient through the closely related SFK Yes-
related kinase Yrk (14). Once macrophages arrived at the wound,
they elicited a contact-mediated guidance program toward
neutrophils, which was dependent on Yrk and p22phox, an
integral component of the NADPH oxidase complex (Figure 4B)
(14). These findings demonstrated a central role for ROS-
activated SFK signaling cascades that involved multiple SFK
family members, especially Lyn and Yrk, in the phagocyte
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FIGURE 4 | Schematic illustration of the signaling pathways and mechanisms that help control phagocyte migration and abundance during larval zebrafish acute tail

fin injury. (A) A gradient of H2O2, generated at the wound margin, is sensed by neutrophils through oxidation of Lyn, leading to directed neutrophil migration (1).

Neutrophil-delivered Mpx consumes H2O2 producing hypochlorous acid (HOCl) (2). (B) Macrophage arrival at the wound site is promoted by NADPH oxidase activity

and Yrk, in addition to Cxcr3.2/Cxcl11(1). In this context, Cxcr3.3 acts as a scavenger receptor to negatively regulate Cxcr3.2 function. Macrophage-delivered PGE2

promotes neutrophil retrograde chemotaxis (2) together with NADPH/Yrk-dependent contact-mediated guidance from macrophages (3). Cxcr2 signaling also

contributes to initiate neutrophil retrograde chemotaxis (4). (C) Cxcr4/Cxcl12 signaling contributes to the retention of neutrophils at the wound site (1) along with Hif-1

activation (2). Macrophages at the wound site also remove apoptotic neutrophil debris (3).

recruitment and resolution phase of sterile inflammation,
respectively (14, 111). Despite the discovery of this contact-
mediated mechanism, one of the main roles of macrophages
in wound healing, in addition to the clearance of cell debris,
is phagocytosis of apoptotic neutrophils (Figure 4C). A recent
study investigated in more detail the role of macrophages in
restoring normal tissue homeostasis (118). Live imaging in
larvae depleted of macrophages revealed the accumulation of
neutrophil apoptotic bodies at the wound site, which resulted
in the persistence of inflammation (118). Moreover, the same
study showed the most abundant eicosanoid Prostaglandin E2
(PGE2) was produced by macrophages and was essential for
the subsequent promotion of retrograde migration (Figure 4B),
highlighting the interplay of both mechanisms for efficient
resolution of inflammation (118).

Additionally, chemotaxis plays a superordinate role during
inflammation resolution, as genetic depletion of chemokines
or their receptors abrogated retrograde migration despite
the presence of macrophages (107). Even though Cxcr2 was
originally implicated in neutrophil migration toward infection,
this chemokine receptor showed additional functions in the
initiation of retrograde migration in tissue injury (107, 119). The
chemokine receptor-ligand pair Cxcl8a (interleukin-8)/Cxcr2
proved to be crucial to orchestrate the initiation of neutrophil

migration away from the wound (Figure 4B) (107, 119), which
has also been shown in human neutrophils (107). Remarkably,
another chemokine receptor-ligand pair, Cxcl12/Cxcr4, had the
opposite role in this process, as activation of this signaling axis
resulted in retention of neutrophils at the wound site (Figure 4C)
(120). This work is particularly interesting in the context of
chronic inflammatory diseases because samples from patients
with rheumatoid arthritis or chronic inflammatory lung diseases
have been shown to have increased CXCR4 expression on
infiltrating neutrophils (121). Hence altered chemokine profiles
and receptor expression could play crucial roles in establishing
chronic diseases by retaining neutrophils at sites of sterile
inflammation and inhibiting retrograde migration.

Recently, a novel chemokine axis has been implicated in
the recruitment of macrophages to wounds. The Cxcr3/Cxcl11
receptor-ligand pair was shown to contribute to macrophage
migration toward tail wounds using knockouts of the respective
receptors in zebrafish (122). The CXCR3 receptor exists as
three paralogs in zebrafish (Cxcr3.1, Cxcr3.2, and Cxcr3.3),
whereby Cxcr3.2 and Cxcr3.3 antagonistically function during
macrophage recruitment. As both receptors share the same
ligand, Cxcr3.2 promotes macrophage migration toward the
wound, whereas Cxcr3.3 negatively regulates Cxcr3.2 function by
acting as a scavenger receptor for Cxcl11 (Figure 4B) (122).
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In another zebrafish study, the involvement of hypoxia
added a further signaling axis to those that regulate
retrograde migration (16). Mimicking hypoxic conditions
pharmacologically or genetically by manipulating Hif-1α,
neutrophil apoptosis at the injury site was decreased, as
was the rate of retrograde chemotaxis (Figure 4C) (16).
Thus, hypoxia/HIF-1 activation delays the resolution of the
inflammation after tissue injury and offers a pharmacologically
amenable target for potential therapeutic interventions. Because
this resolution mechanism includes multiple possibilities
for druggable targets, it is noteworthy that neutrophils that
underwent retrograde migration did not show a primed
inflammatory state or have obvious functional differences to
those during steady-state (123). These findings suggest that
pharmacological induction of reverse migration may be an
attractive new strategy for therapeutic treatments, especially
in the context of chronic inflammatory conditions where
excessive neutrophil recruitment and retention contribute to
tissue destruction.

Chemical and Crystal-Induced
Inflammation
One of the major drawbacks of the beforementioned studies
involving tail fin transections is the necessity to manipulate
every larva individually. This not only exacerbates, and in
some instances, precludes high-throughput approaches but can
additionally introduce experimental variations within, as well
as between, experiments. By immersing larval zebrafish in
copper sulfate, a local inflammatory response can be generated
in a high-throughput fashion through inducing neuromast
cell death (106). Neuromasts are mechanoreceptors that are
dispersed superficially along the whole body surface and belong
to the lateral line system of fish and amphibia, which senses
water pressure and direction. The rapidly induced apoptosis of
neuromasts lead to a local inflammatory response characterized
by neutrophil and macrophage recruitment, similar to tail
fin transection. This experimental setup can be coupled to
a (semi-)automatic quantitative readout with transgenic lines
possessing fluorescently labeled phagocytic cells to accelerate
and facilitate analysis. Using this approach, a vast number of
small molecules can be screened for anti-inflammatory properties
at multiple steps during the inflammatory response, from the
initiation to the resolution phase, depending on the time of drug
administration (106).

A further example of sterile inflammation are crystallopathies,
which can be caused by the inhalation of airborne micro-
or nanoparticles, the endogenous self-aggregation of misfolded
proteins or the supersaturation and subsequent deposition of
crystals (124). During excretion of organic metabolites, serum
urate levels increase, which can lead to hyperuricemia and
the formation of monosodium urate (MSU) crystals. The MSU
crystals accumulate in and around joints, which leads to
the development of the chronic inflammatory disease, gouty
arthritis (125). The MSU crystal deposition causes an acute
inflammatory reaction, termed a gout flare, which is extremely
painful and usually self-resolves within 1–2 weeks (126). Our

group has recently developed a larval zebrafish model of gout
to provide new insights into how phagocytes become activated
in response to crystal-induced sterile inflammation (108). In
this novel zebrafish model, MSU crystals, the causative agent
in the development of gouty flares, were locally injected into
the hindbrain ventricle of zebrafish larvae. The MSU crystals
caused an immediate activation of tissue-resident macrophages
and a subsequent inflammatory reaction, mimicking the acute
gout flare in the joints of gout patients. The acute inflammatory
reaction in the human condition is often connected to
increased consumption of alcohol and purine-rich foods, which
results in the substantial release of fatty acids (FAs) into
the circulation (127). By live imaging metabolic processes
[such as mitochondrial ROS (mROS) production; (128)] within
macrophages during MSU-driven crystal inflammation, we were
able to demonstrate that β-oxidation of FAs fueled macrophage
activation through elevated mROS production (108). Moreover,
this immunometabolic mechanism was conserved in human
macrophages. Through performing a drug repositioning screen
to identify drugs that inhibit this immunometabolic mechanism
of macrophage activation, we uncovered two drugs (chrysin and
piperlongumine) that effectively inhibited inflammation in an in
vivomouse model of acute gouty inflammation.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In this review, we have discussed several examples of modeling
infectious and sterile inflammation within larval zebrafish
and how these models have been utilized to provide novel
mechanistic insights into diverse phagocyte functions. These
studies have revealed that the examination of phagocyte-
pathogen interactions and microbial evasion strategies are
greatly facilitated by the live imaging potential of transparent
zebrafish larvae and the ever-expanding number of transgenic
reporter lines. This direct observation potential has helped to
understand how pathogens can use specific immune cells as
intracellular niches or shields, in particular macrophages, and
avoid phagolysosomal killing mechanisms (9, 17, 56, 57, 59, 78,
101). Furthermore, specific dissemination or escape strategies
have now been successfully demonstrated or validated using
zebrafish infection studies, when it was often not possible to
observe or dissect such mechanisms previously in an intact
animal setting. One such mechanism is non-lytic exocytosis
(vomocytosis), which leaves the pathogen as well as the
phagocytic cell intact and has only been observed in cell
culture studies before (20, 78). Another important example is
the discovery of a dissemination mechanism of fungal conidia
in a process termed shuttling, where spores are leaving the
unfavorable neutrophil environment and are transferred to their
preferred macrophage niche (101).

In addition to live imaging, taking advantage of the
genetic tractability of the zebrafish system has allowed for the
examination of pathogen virulence factors and the discovery
of host determinants of susceptibility or resistance toward
infections. Several genetic screens for pathogenic elements
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(129, 130) or relevant host genes (131) have been successfully
performed in zebrafish. The latter study discovered the
leukotriene A4 hydrolase (LTA4H) locus as a susceptibility
determinant for M. marinum and M. tuberculosis infections
in zebrafish and humans, respectively. In several successive
studies, LTA4H has been shown to be ultimately responsible
for TNF levels by catalyzing the final reaction in lipid mediator
leukotriene B4 (LTB4) synthesis, which could either promote
or inhibit TNF production in zebrafish or human tuberculosis
(63–65). Analogous to the detrimental effect of imbalanced
TNF levels, LTA4H deficiency or excess both resulted in
hypersusceptibility toward M. marinum and M. tuberculosis,
as well as increased macrophage necrosis. Importantly, the
discovery of this essential genetic host factor using the zebrafish
led to the discovery of a single nucleotide polymorphism in the
human LTA4H promoter that was associated with phagocyte
recruitment, survival and response to anti-inflammatory
treatment in patients with tuberculous meningitis.

Not only is the zebrafish model a valuable tool for the
initial discovery of novel mechanisms, but it also provides an
excellent platform to perform chemical screens to identify drugs
that actively target those pathways for therapeutic benefit. As
an example, a compound screen searching for small molecules
that influence neutrophil retrograde migration and apoptosis
identified a drug derived from a Chinese medicinal herb,
tanshinone IIA, that was able to accelerate inflammation
resolution. The drug was able to simultaneously induce
neutrophil apoptosis and promoted retrograde migration in
larval zebrafish, an activity that was conserved when examining
human neutrophils (15).

Despite the multiple advantages of the zebrafish, there
are currently still certain limitations present in this animal
model. For one, there is still a prominent lack of available
antibodies, which not only hampers advances in zebrafish

proteomics but also impedes the discovery and differentiation
of phagocyte subsets. Antibody-based staining and selection
techniques are routinely used in rodent and human studies,
which is currently not possible to the same extent using the
zebrafish model. Moreover, the lack of knowledge regarding
the degree of functional heterogeneity in immune cell lineages,
in particular macrophages and neutrophils, precludes certain
in-depth studies on the same level as it is currently possible
in mammalian models. However, the zebrafish system is
offsetting these limitations with the more recent development of
transgenic lines that mark activated phagocytes, which will aid
in identifying distinct phagocyte subpopulations. Additionally,
rapid advances in single cell RNA-sequencing technology
will help to resolve the uncertainty about the functional
heterogeneity of larval macrophage and neutrophil subsets
and how they compare to their mammalian counterparts.
With the recent and advanced CRISPR/Cas9 technology, host-
pathogen interactions and tissue inflammation mechanisms
can now be studied in-depth on a molecular and genetic
level using cutting-edge genomic engineering techniques.
Moreover, the CRISPR/Cas9 technology enables zebrafish
researchers to recreate human risk alleles for inflammatory
diseases using homology-directed repair mechanisms, which
may assist in unraveling how such risk alleles contribute
to disease.
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