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Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable

efficacy for the treatment of hematological malignancies. However, in patients with

solid tumors, objective responses to CAR-T cell therapy remain sporadic and transient.

A major obstacle for CAR-T cells is the intrinsic ability of tumors to evade immune

responses. Advanced solid tumors are largely composed of desmoplastic stroma and

immunosuppressive modulators, and characterized by aberrant cell proliferation and

vascularization, resulting in hypoxia and altered nutrient availability. To mount a curative

response after infusion, CAR-T cells must infiltrate the tumor, recognize their cognate

antigen and perform their effector function in this hostile tumor microenvironment,

to then differentiate and persist as memory T cells that confer long-term protection.

Fortunately, recent advances in synthetic biology provide a wide set of tools to genetically

modify CAR-T cells to overcome some of these obstacles. In this review, we provide a

comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective

CAR-T cell antitumor response and we discuss the most promising strategies to prevent

tumor escape to CAR-T cell therapy.

Keywords: chimeric antigen receptors (CAR), solid tumors, immunotherapy, immunosuppressive tumor

microenvironment, adoptive cell transfer (ACT), inhibitory receptors

INTRODUCTION

T cells that are genetically modified to express chimeric antigen receptors (CAR-T) constitute
a potent new cancer therapy with curative potential (1, 2). CAR-T cell therapy has produced
impressive response rates in patients with certain B-cell malignancies, resulting in the recent
approval of two CAR-T cell products targeting CD19 (3, 4). Numerous CAR-T cell therapies
targeting a variety of antigens are under clinical investigation, with anti-BCMA CAR-T cells
showing very promising results for the treatment of multiple myeloma (5). Despite the impressive
responses in patients with hematologic malignancies, early clinical trials using CAR-T cells in
patients with solid tumors have reported limited antitumor activity, with objective responses
observed only in a minority of patients (6–8).

The potential of T cells to induce complete responses in patients with solid tumors has been
demonstrated by the success of immune checkpoint therapy (9). Also, objective responses to
adoptive T cell therapy with tumor infiltrating lymphocytes (TILs) and T cells that are genetically
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engineered to express a transgenic T cell receptor (TCR)
have been reported in patients with melanoma, sarcoma,
cholangiocarcinoma, and breast cancer (10). While only a
proportion of patients exhibit long term, durable responses,
these results suggest that T cells have the potential to eliminate
solid tumors under adequate conditions. However, to date only
anecdotes of CAR-T cell mediated response have been reported
(6, 8). Understanding the mechanisms that limit CAR-T cell
efficacy in solid tumors is essential to design the next-generation
of CAR-T cell therapies with increased therapeutic index.

Some of the key factors limiting the applicability of CAR-
T cells for the treatment of solid tumors include: the lack of
truly tumor-specific target antigens (11); tumor heterogeneity
and plasticity that can lead to tumor escape due to loss of antigen
expression (12); T cell dysfunction driven by CAR-mediated
tonic signaling (13–15) or chronic antigen exposure (16); and
the immunosuppressive tumor microenvironment (TME) (17).
In this review, we summarize the key challenges that CAR-T
cell encounter in the TME, with a particular emphasis on tumor
intrinsic factors, such us hypoxia, extracellular matrix (ECM) and
stromal and immune cells. We also discuss some of the efforts
that are underway to overcome these challenges and expand the
therapeutic window of CAR-T cells for the treatment of solid
tumors (Table 1).

PHYSICAL BARRIERS

Hypoxia
Defined as a shortage in oxygen availability, hypoxia is a
prominent feature of solid tumors that results from an aberrant
vascularization and rapidly proliferating tumor cells. Tumor
hypoxia has been correlated with poor patient prognosis (101),
resistance to neoadjuvant therapy (102, 103), and metastatic
success (104). Importantly, reduced oxygenation can also
influence antitumor immune responses (105).

Cellular adaptations to oxygen levels are governed by the
hypoxia pathway and mediated by hypoxia-inducible factors
(HIF). When oxygen is available, prolyl hydroxylase domain
proteins (PHDs) are active and hydroxylate HIF, leading to
HIF ubiquitination by Von-Hippel Lindau (VHL), and HIF
degradation in the proteasome. When oxygen levels drop,
hydroxylases become inactive leading to HIF stabilization and
translocation to the nucleus, where it forms a transcriptional
complex that directly binds to specific regions, termed hypoxia
response elements (HREs). HREs are present in the promoters
of several genes that encode for important proteins that mediate
the cellular adaptation to hypoxia, such as glycolytic enzymes
and the vascular endothelial growth factor-A (VEGF-A) (106).
This family of transcription factors is mainly comprised of two
isoforms: HIF-1α and HIF-2α (107), with HIF-1α being the main
isoform expressed by activated T cells (108). HIF-1 accumulation
in T cells promotes antitumor immunity in mouse models of
solid tumors and metastases (109, 110).

After activation, T cells increase glucose uptake and
glycolytic rate to support proliferation and the acquisition of
effector functions (111). This process is supported by HIF
stabilization after TCR engagement and augmented under
hypoxia. A consequence of the T cell adaptation to hypoxia

TABLE 1 | Main challenges for CAR-T cell therapy in solid tumors and emerging

strategies to address them.

Factors harnessing CAR-T cell

therapy efficacy in solid tumors

CAR-T cell-based approaches proposed

to overcome limitations

TUMOR PENETRATION

Endothelial barriers

• Tumor vasculature • Disrupt tumor vasculature with CAR-T cells

(18–22)

T cell exclusion from tumors

• Extracellular matrix (ECM)

• Cancer-associated fibroblasts

(CAFs)

• Express matrix-degrading enzymes (23, 24)

• Target CAFs with CAR-T cells (25–34)

TUMOR MICROENVIRONMENT (TME)

Hypoxic tumor conditions • Chose appropriate costimulatory domains

(35–37)

• Restrict CAR expression to hypoxic

conditions (38)

• Target antigens upregulated in hypoxic

conditions (39)

Immunosuppressive immune cells

• Regulatory T cells (Tregs)

• Tumor-associated

macrophages (TAMs)

• Myeloid-derived suppressor

cells (MDSCs)

• Combine CAR-T cells with antibodies that

reduce Treg frequencies (40–43)

• Target Tregs with CAR-T cells (44)

• Use lymphodepleting regimens to eliminate

Tregs (45)

• Reduce IL-2 availability for Tregs by:

◦ Choosing appropriate costimulatory

domains (46–51)

◦ Mutating costimulatory domains (52)

◦ Using alternative cytokines to support

engineered CAR-T cells (49, 53, 54)

• Target TAMs with CAR-T cells (55–57)

• Reeducate TAMs toward antitumor

phenotype (58–64)

• Combine CAR-T cells with agents that

reduce MDSC content (43, 65–71)

• Target MDSCs with CAR-engineered T/NK

cells (72, 73)

Immunosuppressive soluble

factors

• TGF-β, IL-4, IDO • Confer resistance to immunosuppressive

factors by engineering CAR-T cells to

express:

◦ Dominant-negative receptors (74)

◦ Switch receptors (75, 76)

◦ Disrupt inhibitory cytokine receptors by

genome editing (77)

• Engineer CAR-T cells to release support

cytokines (78–84)

• Combine CAR-T cells with inhibitors (85)

IMMUNE EVASION AND SUPPRESSION

Expression of inhibitory receptors and ligands by tumor and/or

stromal cells

• PD-1/PD-L1, CTLA-4, LAG-3,

TIM-3, TIGIT

• Combine CAR-T cells with immune

checkpoint blockade antibodies (71, 86–90)

• Combine CAR-T cells with oncolytic viruses

releasing immune checkpoint inhibitors (91)

• Engineer CAR-T cells to express:

◦ Blocking antibodies (92, 93)

◦ Dominant negative receptors (86)

◦ Switch receptors (94)

• Disrupt T cell inhibitory receptors by

genome editing (95–100)
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is metabolic rewiring, a process in which the reduced rate
of oxidative phosphorylation (OXPHOS) is compensated by
enhanced glycolysis. Competition for nutrients, persistent
antigenic stimulation and immunosuppressive networks in the
TME can lead to T cell exhaustion (112). Another consequence
of metabolic adaptation in T cells is the accumulation of
metabolites that impact epigenetic landscapes that influence
the fate and function of T cells (113). One example is the
increased production of the oncometabolite 2-hydroxyglutarate
(2-HG) by hypoxic T cells. 2-HG inhibits 2-oxoglutarate-
dependent epigenetic enzymes (114) resulting in the modulation
of the T-cell terminal differentiation and favoring a central
memory phenotype (115). Certain histone demethylases, such
as KDM6A and KDM5A, can also be directly inhibited by
a shortage of oxygen in a HIF- and 2-HG independent
manner, leading to the control of gene expression and cell
fate (116, 117).

The level of oxygenation impacts several aspects of CAR-T
therapies (Figure 1). In vitro, hypoxia decreases the expansion
capacity of CAR-T cells, blocking their differentiation into
effector memory cells, and enriching the cultures with T cells
with a central memory cell phenotype (118). Culturing and
expanding CAR-T cells under controlled physiological oxygen
concentrations might be an approach for enriching the cultures
with memory-like T cells, which are known to have better
persistence and efficacy than terminally differentiated effector T
cells (119).

After infusion, CAR-T cells must infiltrate solid tumors and
carry out their cytotoxic activities. How hypoxia influences these
processes remains largely unexplored. Recent development of
in vitro tools will support the study of CAR-T function in
relevant oxygenation conditions (120). In this context, the use
of organoids and 3D tumor models (121–123) will support the
preclinical development of CAR-T cells for the treatment of
solid tumors.

The hypoxia pathway offers several opportunities for the
design of CAR-T cells (Figure 1). The choice of the optimal
costimulatory domains in the CAR might be influenced by
oxygen availability in the TME, given that the metabolic
consequences of signaling downstream of CD28 and 4-1BB are
different (35–37). Another attractive approach is the design
of CARs that are active in the TME, but inactive in better
oxygenated environments in an attempt to reduce off-site
toxicities. Novel strategies to confine CAR expression to the TME
consists of introducing HRE regions on the promoter of the
construct, or fusing HIF domains to the intracellular domain of
the CAR to promote the hydroxylation and degradation of the
CAR when oxygen is available (38). Both approaches rely on
the endogenous T cell oxygen-sensing machinery to control the
expression of the CAR. Alternatively, CAR-T cell activity can also
be targeted to antigens that are known to be upregulated under
hypoxic conditions in solid tumors, such as carbonic anhydrase
IX (39).

Hypoxia also promotes immunosuppressive pathways in the
TME that offer combinatorial therapeutic strategies with CAR-
T cell approaches. Hypoxia and HIF promote the expression of
program death ligand 1 (PD-L1) (86, 124) and adenosine levels

(125, 126), as well as the recruitment of regulatory T (Treg) cells in
the TME (127), all of which are known to inhibit T cell responses.

Extracellular Matrix
The ECM is an integral constituent of the tumor stroma
composed of different macromolecules including fibrous
proteins, glycosaminoglycans, and proteoglycans. The ECM
is produced by tumor cells themselves as well as by cancer-
associated fibroblasts (CAFs) and play an important role
in cancer progression. Increased deposition of collagen or
hyaluronan, constituents of the ECM, in tumors correlate with
poor prognosis in different cancer types (128–131).

In addition, the ECM represents a physical barrier to
various anticancer therapies, preventing their penetration
and infiltration of tumors. Agents such as collagenase or
hyaluronidase can degrade distinct components of the ECM and
improve antitumor efficacy of diverse cancer therapies, including
chemotherapy, oncolytic viruses, monoclonal antibodies, or
checkpoint blockade (132–142).

While the role of ECM in resistance to adoptive T cell transfer
therapies remains underexplored, some studies demonstrate that
peritumoral ECM collagen fibers limit T cell access to tumors,
and indeed, tumors with high-collagen density present lower
levels of infiltrating T cells (142, 143). Here, the use of the matrix-
degrading agents that facilitate T cell infiltration of tumors
provides a rationale formatrix degradation as ameans to improve
efficacy of CAR-T cell therapy (140–142). In this regard, CAR-T
cells engineered to express heparanase (HPSE), which degrades
heparan sulfate proteoglycans, better infiltrated tumors and had
increased antitumor activity in mouse models (23). Since matrix
metalloproteinases (MMPs), mainly produced by macrophages,
also regulate synthesis and degradation of most of the ECM
components, an alternative strategy is to leverage the capacity of
macrophages to secrete MMPs and remodel the ECM in order to
clear the way for T cells to infiltrate tumors (24). This has been
demonstrated in the context of endogenous T lymphocytes, but
it could be hypothesized that the use of CAR-macrophages might
benefit tumor infiltration of CAR-T cells, although it has not been
experimentally tested yet.

Tumor Vasculature
Aberrant tumor vasculature is required for tumor survival,
progression, and metastasis, but also provides a physical barrier
for T cell extravasation and infiltration into tumors (144).
CAR-T cells capable of destroying tumor vasculature have
been developed targeting molecules such as VEGFR-2 (18),
VEGFR1 (19), PSMA (20), TEM8 (21), or the fibronectin
splice variant EIIIB (22). All of these target antigens are also
expressed by a range of tumor cell types, and some of them
by immunosuppressive cell populations such as regulatory T
cells (Tregs) and myeloid-derived suppressor cells (MDSCs, i.e.,
VEGFR2) (145, 146) or by the ECM (i.e., EIIIB), which may
improve the outcome of the therapy in patients. Unfortunately,
a clinical trial on metastatic cancer patient treated with
VEGFR-2 CAR-T cells was terminated due to lack of objective
responses (NCT01218867).
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FIGURE 1 | Exploiting the hypoxia response pathway for CAR-T therapy. (A) Expanding CAR-T cells ex vivo under reduced oxygen concentrations (1–5% O2) might

support the enrichment of memory-like T cells, a process mediated by S-2HG. (B) CAR expression can be gradually modulated by increasing levels of HIF-1α in T

cells, generating a hypoxia-responsive CAR-T with increased CAR expression in hypoxic tumors and reduced CAR expression in the periphery. (C) Selection of TAAs

that are upregulated under hypoxic conditions in solid tumors might limit off-tumor CAR-T cell activity. HIF-1α, Hypoxia-inducible factor 1 alpha; S-2HG,

S-2-hydroxyglutarate; TAA, tumor associated antigen.

FIBROBLASTS

CAFs can contribute to up to 90% of the solid tumor mass in
carcinomas (147) and represent a complex barrier to entry and
activity of endogenous and adoptively transferred immune cells.

CAFs signal in a paracrine fashion with tumor cells and
other components of the TME. Tumor promoting CAFs secrete
factors, including VEGFs, that induce angiogenesis to improve
oxygen and nutrient availability in the tumor. CAFs can also
directly provide cancer cells with nutrients, growth factors
and immunosuppressive cytokines such as transforming growth
factor beta (TGF-β), epidermal growth factor (EGF), platelet-
derived growth factor (PDGF), and fibroblast growth factor 2
(FGF2), and serve as a physical barrier to T cell infiltration
(148, 149). CAFs heavily contribute to the survival, proliferation,
metastasis initiation and, even, de-differentiation of tumor cells
into more stem cell-like phenotype (150, 151).

Given their powerful and diverse protumoral effects, an
attractive therapeutic approach could be generating CAR-T cells
that target CAFs. In addition to eliminating their multiple
negative effects, an advantage to targeting fibroblasts would be
that they are more genetically stable than tumor cells, so they
are less likely to lose antigen expression via immunoediting.
Moreover, since mesenchymal tumoral stromal cells are present
in almost all human adenocarcinomas, therapies against CAFs
could potentially be used for multiple types of tumors (152).

In the setting of solid tumors, different subtypes of CAFs have
been proposed to have disparate effects on tumor establishment,
growth and progression, as well as in metastatic capacity (25,
153). Therefore, when choosing a CAR-targeted protein, it is
important to consider which fibroblast cell subpopulation is
going to be depleted (154). With this thought in mind, fibroblast
activation protein (FAP) has been proposed as a potentially
good target. FAP is a surface peptidase that also has gelatinase
activity and is widely expressed in a subset of protumoral
fibroblasts in many cancer types (155–157). FAP expression in
pancreatic cancer (158, 159) and non-small cell lung cancer (160)
is associated with worse clinical outcome. Depletion of FAP+
cells using genetic depletion strategies appeared to enhance T cell
mediated antitumor activity in preclinical models of melanoma

and pancreatic ductal adenocarcinoma (161–163). Antibodies
against FAP have confirmed the suitability of FAP as a target
by demonstrating efficient tumor stroma targeting capabilities
in clinical trials (157). However, no therapeutic responses were
observed, prompting the development of alternative strategies
such as FAP antibody conjugates including immunostimulatory
antibodies (164) and immunocytokines (165). One of those, an
anti-FAP-IL-2v fusion protein, is currently being tested in clinical
trials (NCT02627274, NCT03386721) (166). Alternatively, CAR-
T cell therapy targeting FAP might be a more potent and
efficacious strategy.

CAR-T Cells Targeting Fibroblasts: A
Potential Double-Edged Sword
A number of groups have generated CAR-T cells targeted to
mouse FAP and tested their ability to inhibit tumor growth. To
date, eight studies have demonstrated antitumor activity of FAP-
targeting CAR-T cells in several preclinical models including
mesothelioma, lung, mammary, colon, pancreatic cancers (25–
32), with a key measure of these studies being the potential
for toxicity.

A key concern of targeting FAP is that, while it is highly
expressed by CAFs and in wound healing, it is also expressed
at low levels in healthy tissues including muscle, adipose tissue,
bone marrow mesenchymal stem cells (BMMSCs), skin, and
pancreas (167, 168). Complete ablation of FAP-expressing cells
in mice using genetic approaches resulted in body weight loss,
anemia, bone marrow hypoplasia and pancreatic toxicity (167).
With these toxicities in mind, it is of interest to review the studies
in which CAR-T cells targeting mouse FAP were tested, however,
it is important to recognize that each study used a different single-
chain fragment variable (scFv) antibody targeting FAP, different
cytoplasmic domains, and different types of T cells (murine vs.
human T cells).

Tran and colleagues observed minimal antitumor effect using
a CAR with the FAP-5-scFv coupled with mouse CD28, 4-1BB,
and CD3ζ intracellular signaling domains, but did observe severe
toxicity indicated by significant cachexia and anemia (30). In
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contrast, Kakarla et al. showed that a FAP-CAR, using theMO35-
scFv with human CD28 and CD3 derived domains, controlled
tumor burden in a systemic lung carcinoma model without
toxicity observed 2 days after T cell injection (27). However, this
time point may be too early to see the negative effects exerted by
the T cells.

The group at the University of Pennsylvania developed a FAP-
CAR containing a scFv from the 73.3 anti-mouse FAP antibody
and the human 41BB and CD3ζ intracellular domains (25, 28,
31, 32). These CAR-T cells slowed tumor growth in an immune-
response dependent and independent manner in several tumor
models in mice. Despite 73.3-FAP-CAR initial efficacy, CAR-T
cells isolated from xenograft tumors became hypofunctional (28).
Function was augmented by either using mouse T cells from
mice lacking the inhibitory enzyme diacylgycerol kinase zeta
(DGKZ) (32) or human T cells using the 73.3-CAR linked to the
DAP12 signaling domain from natural killer (NK) cells (FAP-KIR
CAR) (31). There was a link between enhanced CAR activity and
toxicity: while nomajor toxicities were observed using the “basal”
73.3-FAP CAR-T cells, treatment with the more active DGKZ
CAR-T cells resulted in a lymphocytic infiltrate observed in the
pancreas (32). Likewise, treatment with the highly active FAP-
KIR-CAR resulted in anemia, body weight loss and bone marrow
hypoplasia (31). The “basal” 73.3-FAP-CAR targets cells with
high FAP densities, like CAFs, while sparing low FAP expressing
cells, which may provide a therapeutic window to obtain efficacy
in the absence of toxicity. Unfortunately, the 73.3–FAP-CAR is
mouse specific and cannot be used in the clinical setting.

There has been one reported clinical trial in which FAP
CAR-T cells have been locally injected into the pleural effusion
of mesothelioma patients (NCT01722149) (33). The authors
reported the route of administration and the therapy to be safe
in one patient (34) and, another patient showed stable disease for
1 year (26). Unfortunately, at the time of closure of the clinical
trial in mid-2019 only 4 patients had been recruited.

In summary, FAP targeted CAR-T cells have clearly shown
some antitumor activity in preclinical models, but they have also
demonstrated the potential for toxicity. There does appear to
be a viable therapeutic window, however. For this reason, it is
likely that the role of FAP CAR-T cells will be in combination
therapies. Combining FAP CAR-T cells with tumor-targeted
CAR-T cells or with vaccines can result in additive or even
synergistic effects (27, 32). Other target proteins like CD10 and
GPR77 which identify a newly described CAF subpopulation
with protumorigenic functions (169) provide alternative option
for CAR development.

TUMOR-INFILTRATING IMMUNE CELLS AS
BARRIERS TO EFFECTIVE CAR-T CELL
THERAPY

Solid tumors are highly infiltrated with immune cells such
as Tregs, tumor-associated macrophages (TAMs) or MDSCs
that contribute to the establishment of a hostile and
immunosuppressive TME capable of limiting the efficacy of
CAR-T cell therapy. In this section, we review the obstacles

imposed by each of these cell populations and the different
strategies that have been utilized in order for CAR-T cells
to be efficacious in such context, as illustrated in Figure 2.
These include strategies to directly target and deplete the
immunosuppressive immune cell populations as well as indirect
approaches consisting of genetically engineering the CAR-T cells
to endow them with transgenes capable of modulating the TME
or to confer them with resistance to immunosuppression.

Regulatory T Cells
Tregs are a subset of T cells (phenotypically defined as
CD4+CD25+FoxP3+) which play a crucial role in maintaining
immune tolerance to self-antigens but can also suppress
antitumor immunity (170). Cancer patients have increased
numbers of Tregs in peripheral blood (171–173), and their
presence in tumors is associated with poor prognosis in a variety
of cancers (174–178).

Tregs suppress antigen-specific CD8+ T cell cytotoxicity by
using different mechanisms: competitive consumption of IL-2;
secretion of immunosuppressive cytokines such as IL-10 or TGF-
β; CTLA-4-mediated suppression of antigen presenting cells
(APCs); prevention of optimal T cell activation; or lysis of effector
cells through the action of granzyme and/or perforin (170).

In the TME, Tregs play an inhibitory role in the antitumor
efficacy of adoptively transferred tumor-targeted effector T
cells (179). The frequency of Tregs in the blood of responder
patients was lower than in samples obtained from non-
responders in a combined analysis of multiple trials of adoptively
transferred TILs (180). In a first-in-human study of an epidermal
growth factor receptor variant III (EGFRvIII)-specific CAR in
glioblastoma, the analysis of tumor specimens from patients
who had post-treatment surgery revealed an increased influx
of immunosuppressive Treg cells, which might have limited the
antitumor effect of the CAR-T cell therapy (181). In addition,
the importance of the effector to regulatory T cell balance in
predicting responses to immunotherapy treatments has been
highlighted (182).

A first and obvious way to address this limitation is to
specifically eliminate Tregs. The combination of CAR-T cells with
antibodies targeting GITR or 4-1BB (whose expression has been
reported to be specific for tumor Tregs) has been explored inmice,
resulting in decreased Treg frequencies and enhanced antitumor
efficacy (40–43). The idea of directly depleting Tregs with a CAR
has also been proposed by targeting the C-C chemokine receptor
4 (CCR4), which is expressed on T cell malignancies but also in
Tregs (44).

Many clinical trials of CAR-T cells have failed to
provide significant clinical benefit in the absence of prior
lymphodepleting preconditioning (183–188). This lack of
success may be explained, at least in part, by the fact that such
preparative treatments are known to eradicate Tregs, which
otherwise might suppress infused T cells (189). Illustrating
this, the efficacy of CD19 CAR-T cells in a mouse model of
lymphoma was completely abolished when Treg cells were
previously injected and restored by preparative treatment
with cyclophosphamide (45). Unfortunately, preconditioning
regimens carry with them toxicities, which in some cases
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FIGURE 2 | Therapeutic strategies to overcome the immunosuppressive TME. Tumors are infiltrated with stromal cells, such as cancer-associated fibroblasts (CAFs),

and immune cells, including regulatory T cells (Tregs), tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) which support cancer

progression and promote immunosuppression. Therapeutic strategies utilized to hit these components to enhance the efficacy of CAR-T cell therapy can be

categorized in three classes, and the most relevant examples are represented in this figure. (A) Elimination or reduction of stromal and immunosuppressive immune

cells: the combination of CAR-T cells with agents such as antibodies or drugs has resulted in decreased frequencies of Tregs and/or MDSCs. Alternatively, CARs have

been designed to target antigens expressed on CAFs, Tregs, TAMs and MDSCs to directly deplete them. (B) Immunomodulation of the TME: this group of strategies

aims at manipulating the TME to create a favorable environment that allows a better performance of the CAR-T cells. Some examples include the modulation of the

tumor cytokine milieu by the expression of proinflammatory cytokines by CAR-T cells or by the optimization of costimulatory signaling domains in order to reduce IL-2

secretion and therefore impair Treg expansion and tumor infiltration. Immunomodulatory molecules that are able to polarize M2 TAMs into an antitumor M1 phenotype

can also be expressed from CAR-T cells. (C) Confer CAR-T cells with intrinsic resistance to immunosuppression: CAR-T cells can be modified to be resistant to

immunosuppression by endowing them with dominant-negative receptors (to disrupt signaling) or chimeric switch receptors (to convert negative signaling into

positive), or by abrogating the expression of inhibitory receptors using genome-editing tools. Alternatively, antibodies blocking inhibitory receptors or ligands can be

secreted by CAR-T cells. Also, it has been reported that the incorporation of particular costimulatory domains or the expression of some proinflammatory cytokines by

CAR-T cells confer intrinsic resistance to Treg-mediated immunosuppression.

create a need for alternative strategies. In this line, several
studies have demonstrated that IL-12 can help to overcome
Treg-mediated immunosuppression and, therefore, the need
for prior preconditioning. In mice, CAR-T cells engineered
to constitutively produce IL-12 acquire intrinsic resistance to
Tregs and are more efficacious in the absence of preconditioning
(78, 79). Considering the potential clinical toxicity of constitutive
IL-12 expression, safer approaches might involve the use of
inducible systems to drive IL-12 production upon antigen
recognition or the incorporation of elimination genes (80, 81).
Constitutive IL-12-secreting mucin-16 ectodomain (MUC-
16ecto)-specific CAR-T cells, which also express a truncated
form of the human epidermal growth factor receptor (EGFRt)
as a safety system, are currently being tested in an ovarian

cancer phase I clinical trial (NCT02498912) (82, 83). CAR-T
cells expressing alternative cytokines with safer clinical profiles
such as IL-18 have also been tested in preclinical models with a
similar impact on reducing tumor-infiltrating Treg numbers and
improving antitumor activity (84).

A second, indirect approach to overcome CAR-T cell
suppression by Tregs is to restrain their proliferation and survival
by modulating the cytokines in the TME, specifically IL-2. IL-2
sustains the survival and function of both regulatory and effector
T cells (190). In fact, IL-2 is often used to improve persistence
of adoptively transferred T cells, albeit its administration leads
to the expansion of Tregs in cancer patients (191). CAR-T cells
release high levels of IL-2 upon antigen engagement, becoming
a main source of this cytokine. It could be expected, then,
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that the use of CAR-T cells with reduced levels of secreted IL-
2 would improve the antitumor efficacy of these engineered
T cells as IL-2 would be no longer available to sustain Treg

persistence. Cytokine levels can be modulated by selecting an
appropriate co-stimulatory endodomain such as ICOS, which
has been reported to generate CAR-T cells with increased IL-
17 production and reduced secretion of IL-2 (46). Alternatively,
more conventional co-stimulatory domains such as CD28 can
be mutated for the same purpose. It is known that IL-2
secretion is initiated by CD28-mediated LCK recruitment and
phosphorylation, therefore, the mutation of the LCK binding
domain abolishes IL-2 secretion by CAR-T cells (52). This
modification improved antitumor efficacy of CAR-T cells in the
presence of previously inoculated Treg cells, which persisted less,
compared to mice treated with CAR-T cells containing the wild
type CD28 endodomain (52).

In apparent contradiction with this study, several groups
report that the incorporation of a CD28 co-stimulatory domain
in different CAR platforms provides increased resistance to Treg-
mediated immunosuppression, and more specifically, to TGF-β-
mediated suppression of T cell proliferation (47–50). Conversely,
while sustaining Treg survival and function, IL-2 induced by
CD28 activation of LCK and autocrine signaling through IL-2
receptor on tumor-specific effector T cells appears to be crucial
to counteract the inhibitory effects of TGF-β (48, 49). In fact, the
deletion of the LCK binding domain in CD28 reverted resistance
to TGF-β-mediated suppression (49). One strategy proposed to
compensate for the detrimental effect of LCK mutation while
maintaining the benefits of abrogating IL-2 secretion is the
addition of a 4-1BB co-stimulatory signaling domain (51). A
different approach is the use of alternative cytokines to replace
the CD28-induced IL-2 autocrine loop. For instance, CAR-T
cells can be engineered to express IL-7Rα so that IL-7 can
support their function (53). In a more sophisticated approach,
CAR-T cells with a disrupted IL-2 axis can be engineered to
release transgenic IL-7 and to co-express an IL-7Rα/IL-2β hybrid
receptor to provide cell-intrinsic IL-2 signaling through IL-7
(49). Alternatively, cytokine stimulation can be provided by IL-
15 through the expression of a tethered membrane-bound IL-
15, which has been shown to favor the persistence and survival
of CAR-T cells with a clinically desirable immature state of
differentiation (54). This interesting approach avoids undesirable
effects of soluble IL-15 coadministration or constitutive secretion
by CAR-T cells such as o toxicity (192) or promotion of Tregs

(193). In addition, there is great excitement on the use of
engineered IL-2 mutants designed to preferentially signal into
effector T cells but not Tregs, although this strategy has not yet
been tested in the context of CAR-T cells (194–196).

Besides suppressing T cell proliferation, TGF-β induces a
Treg-like phenotype on CAR-T cells (77). Therefore, conferring
CAR-T cells with intrinsic resistance to TGF-β represents
an opportunity for improvement. TGF-β signaling in CAR-
T cells can be abrogated by knocking out TGF-βRII through
CRISPR/Cas9 technology (77). In the same line, CAR-T cells
can be endowed with a TGF-β dominant-negative receptor
(dnTGF-βRII). A first-in-human trial in patients with refractory
castration-resistant metastatic prostate cancer has been initiated

with a prostate-specific membrane antigen (PSMA)-specific CAR
incorporating this receptor (NCT04227275) (74). Alternatively,
switch receptors can be created by fusing the extracellular
part of the TGF-βRII to the endodomain of 4-1BB or by
linking a TGF-β-specific scFv to the CD28-CD3ζ intracellular
signaling domains, rendering CAR-T cells capable of converting
the immunosuppressive signal from soluble TGF-β into an
immunostimulatory one (75, 76).

Tumor-Associated Macrophages
TAMs are the most abundant immune cells infiltrating human
cancers and their accumulation in tumors correlates with poor
prognosis in a broad range of tumor types (197, 198). TAMs
can sustain cancer progression by secreting growth factors
which stimulate tumor cell proliferation, proteolytic enzymes
that promote matrix remodeling and facilitate metastasis,
proangiogenic factors which support angiogenesis, or reactive
oxygen species (ROS) and nitric oxide (NO) that induce
genetic instability on tumor cells (199). Furthermore, TAMs can
suppress T cell-mediated antitumor immunity by releasing IL-
10 and TGF-β, amino acid-depleting enzymes such as arginase
1 or indoleamine 2,3-dioxygenase (IDO) which cause metabolic
starvation on T cells or prostaglandins with immunosuppressive
effects, or by expressing immune checkpoint ligands like PD-
L1, PD-L2, B7-H4, or VISTA. Moreover, TAMs can promote
the recruitment and immunosuppressive activity of Tregs (199).
TAMs can also prevent T cell-mediated antitumor immune
responses by physically creating long-lasting interactions with
CD8+ T cells, thus excluding them from tumors (200).

There is overt preclinical evidence of that TAMs can mediate
resistance to immunotherapy, including adoptive cell transfer
therapy. For instance, the depletion of TAMs through the
administration of a CSF-1R inhibitor improved the efficacy
of adoptively transferred tumor-specific T cells in syngeneic
mouse models of melanoma (200). Superior antitumor activity
of the combined treatment correlated with a decrease in
the number of intratumoral macrophages, which subsequently
facilitated an increase in expansion, intratumoral accumulation
and functionality of the adoptively transferred T cells (201).

In the field of CAR-T cell therapy, the infusion of GD2-specific
CAR-T cells in neuroblastoma patients provoked a striking
expansion of circulating macrophages with immunosuppressive
phenotype suggesting a role of macrophages limiting the
antitumor efficacy (88).

Despite their overall tumor-promoting functions, certain
subpopulations of TAMs can sustain antitumor activities
including phagocytosis, antigen-presenting, or the release of
proinflammatory cytokines such as TNF-α and IL-12. Indeed,
in certain contexts, macrophages have been proven crucial
for the development of effective immunotherapy (202–204).
Several strategies have been proposed to either reprogram
immunosuppressive “M2-like” TAMs into an antitumor “M1-
like” phenotype which could cooperate with CAR-T cells to
induce tumor regression, or to directly deplete TAMs to facilitate
productive antitumor immunity.

One strategy of TAM reeducation consists in making them
more phagocytic. CD47 is expressed on tumor cells and interacts
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with SIRPα expressed on macrophages to deliver a “don’t eat me”
signal. CAR-T cells can be engineered to express CD47-blocking
antibodies in order to prevent that interaction, thus stimulating
phagocytosis of tumor cells and improving engagement of the
innate immune system (58, 59). A clever approach to hijack the
phagocytic capacities of TAMs and redirect them toward tumor-
associated antigens is to engineer macrophages themselves to
express a CAR. Interestingly, macrophage transduction with
chimeric adenoviral vectors promoted a gene expression change
toward a proinflammatory M1 phenotype, which subsequently
converted bystander M2 TAMs into an M1 phenotype and
boosted endogenous antitumor T cell responses (60).

TAMs can also be manipulated to become more functionally
activated. CD40 is expressed in antigen presenting cells
(APCs) including dendritic cells (DCs), B cells, monocytes
and macrophages. Interaction of CD40 with its ligand, CD40L,
is known to induce activation and IL-12 secretion by APCs.
Preliminary studies using a bispecific antibody to mediate the
interaction between a c-myc tag on CAR-T cells and CD40
on APCs demonstrated enhanced CAR-T cell function (61).
Constitutive expression of CD40L by CAR-T cells improved their
therapeutic efficacy in part through the induction of maturation
and IL-12 secretion by monocyte-derived DCs and macrophages
(62, 63). By means of a different pathway, the administration of
the multikinase inhibitor sorafenib in combination with CAR-
T cells also induced an increase in IL-12 production by TAMs
which contributed to antitumor activity (64).

Not surprisingly, cytokines secreted by CAR-T cells upon
antigen encounter can alter the TME and convert TAMs
from immunosuppressive to immunostimulatory. For instance,
secretion of GM-CSF and IFN-γ by CAR-T cells upon antigen
engagement has been shown to elicit a recruitment of myeloid
cells to the TME and to activate newly recruited as well
as re-educate resident suppressive TAMs thus potentiating
their IL-12 production, capacity of antigen presentation, and
tumoricidal activity (205). Armoring CAR-T cells with additional
cytokines can improve their capacity to modulate the TME.
In mice, inducible IL-12 secretion by CAR-T cells resulted
in the recruitment of activated TNF-α-producing macrophages
which directly contributed to tumor elimination in a TNF-α-
dependent manner (206). In addition, IL-12 secretion by CAR-T
cells indirectly mediated the depletion of TAMs as a result of
Fas engagement on TAMs by FasL on CAR-T cells and altered
the phenotype of remaining TAMs toward a proinflammatory
one (83). IL-18-secreting CAR-T cells also led to a reduction in
“M2-like” macrophages in tumors as well as Tregs (84).

A different strategy to overcome immunosuppression in
the TME is to develop CARs that target antigens expressed
by TAMs to directly eliminate them. CAR-T cells targeting
the antigen CD123, with shared expression in malignant cells
and TAMs, have been proposed for the treatment of Hodgkin
lymphoma which contains a highly immunosuppressive TME
(55). Alternatively, rather than hitting all macrophages by using
a pan-macrophage target, it would be desirable to design CARs
that are able selectively deplete TAMs with protumor “M2-like”
properties while sparing other TAM populations with antitumor
“M1-like” functions. CAR-T cells targeting folate receptor β

(FRβ), which is expressed only in the immunosuppressive TAM
population, have been developed for that aim (56). Similarly,
CAR-T cell targeting B7-H4, a molecule expressed by cancer cells
and TAMs, mediated antitumor responses in a preclinical ovarian
cancermodel, but was also toxic due to possible targeting of tissue
resident macrophages (57).

Finally, CAR-T cells can also be combined with agents that
protect them from TAM-related immunosuppressive pathways,
such as that mediated by IDO. IDO is produced by tumor cells
and TAMs and mediates the metabolism of tryptophan into
immunosuppressive metabolites that can suppress CAR-T cell
function. The use of IDO inhibitors or preconditioning with
fludarabine, which can inhibit IDO expression, are strategies
that can be used to improve the activity of CAR-T cells in
immunosuppressive microenvironments (85).

Myeloid-Derived Suppressor Cells
MDSCs are a highly diverse population of immature myeloid
cells which include two major subsets: the mononuclear MDSCs
(M-MDSCs), which are morphologically and phenotypically
similar to monocytes and can differentiate into TAMs, and
the polymorphonuclear MDSC (PMN-MDSCs), which resemble
neutrophils and are precursors of tumor-associated neutrophils
(TANs), as well as a small group of myeloid progenitors (207).
MDSCs play a role in supporting tumor progression, and
according to a meta-analysis of the literature, their accumulation
is associated with poor clinical outcome in cancer patients
(208). The hallmark feature of MDSCs is their strong capacity
to inhibit immune responses, with T cells being the main
targets of these effects. Mechanisms implicated in MDSC-
induced immunosuppression are common to those reported for
TAMs, including production of NO and ROS, elimination of key
nutrition factors needed for T cell proliferation such as arginine,
cysteine, or tryptophan, production of IL-10 and TGF-β, and
induction of Tregs (209). MDSCs have also been implicated in
limiting the effects of CAR-T cell therapy. In a clinical trial of
third generation CD19 CAR-T cell therapy, low levels of M-
MDSCs was associated with response in patients with lymphoma
and leukemia (210).

The detrimental effect of MDSCs on CAR-T cell proliferation
and cytolytic function has been demonstrated by using CARs
targeting a number of different antigens (65–67). As a proof of
concept, depletion of MDSCs with anti-Gr-1 antibody resulted in
improved antitumor efficacy of CAR-T cells inmousemodels (40,
65, 66). Unfortunately, the lack of a suitable marker for human
MDSCs prevents their targeting by using a single antibody. It has
been demonstrated that GM-CSF and STAT3 signaling through
GM-CSF and/or IL-6 can drive the expansion of MDSCs and
support PD-L1 expression by these cells, promoting suppression
of CAR-T cells through the PD-1/PD-L1 axis. Therefore, GM-
CSF neutralization, STAT3 inhibition or PD-L1 blockade might
represent alternative targets to limit the impact of MDSCs
in humans (65, 68). The combination of CAR-T cells with
compounds such as polyinosinic-polycytidylic acid (poly I:C), all-
trans retinoic acid (ATRA), gemtuzumab ozogamicin (GO) or
sunitinib also resulted in improved antitumor efficacy attributed
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to a reduction in the content and suppressive function of MDSCs
(66, 67, 69, 70).

Interestingly, some studies combining CAR-T cell therapy
with anti-PD-1 or anti-4-1BB antibodies have reported a decrease
in the percentage of MDSCs in the TME, correlating with
improved antitumor effects (43, 71). However, mechanisms
underlying MDSC depletion mediated by immune checkpoint
blockade are not fully understood.

A more direct approach of depleting MDSCs by using CAR-
T cell therapy is to target antigens expressed on their surface.
For instance, CAR-T cells targeting tumor vasculature through
VEGFR-2 were able to reduce the frequency of MDSCs in
the TME, which also expressed VEGFR-2 (72). Parihar and
colleagues engineered NK cells to express a chimeric activating
receptor comprised of the extracellular domain of NKG2D
receptor fused to the T cell signaling domain CD3ζ (73).
Engineered NK cells achieved efficient depletion of MDSCs,
which express NKG2D ligands, and increased the recruitment
and tumor infiltration of tumor-specific CAR-T cells when given
in combination.

Neutrophils can also be immunosuppressive in the context of
cancer, and their presence in tumors has been associated with
poor outcome (211). In a CAR-T cell therapy trial targeting
CEA, increased neutrophil to lymphocyte ratios correlated with
poor responses in colon cancer patients with liver metastasis
(212). Like TAMs, tumor-associated neutrophils (TANs) can be
generally classified into antitumorigenic “N1” or protumorigenic
“N2” phenotypes (213). Although strategies to target “N2”
TANs have not been reported yet in the context of CAR-T cell
therapy, some of the above-mentioned strategies could be used
to counteract immunosuppressive pathways common with Tregs,
TAMs, or MDSCs.

INHIBITORY RECEPTORS AND THEIR
LIGANDS

Tumor cells, tumor-infiltrating immune cells and tumor-derived
exosomes frequently express an array of ligands that bind to
inhibitory receptors on T cells to suppress antitumor immunity.
Blocking these interactions with therapeutic antibodies, known
as immune checkpoint inhibitors, releases the brakes from
suppressed T cells, allowing them to recover their antitumor
activity. This therapeutic approach can mediate long-term
responses, especially in a subset of tumors that are infiltrated with
neoantigen-specific T cells. Therapeutic antibodies targeting the
inhibitory receptors CTLA-4 and PD-1 or the PD-1 ligand PD-
L1 have been approved for clinical use in patients with different
solid cancer types (9). Checkpoint blockade has revolutionized
cancer treatment, highlighting the tremendous power of T cells
in controlling solid tumors.

Among the different immune checkpoints, the PD-1/PD-L1
axis has gained increasing attention. PD-1 is expressed in the
surface of activated or dysfunctional T cells, while PD-L1 is
frequently expressed in the surface of tumor cells and immune
cells, and can also be found in extracellular forms (214, 215).
PD-L1 upregulation is mainly associated with IFN-γ release in

response to T cell activation (216); however more recent findings
suggest that multiple cytokines found in the TME (including
IL-10, IL-1α, IL-27, and IL-32γ) can induce PD-L1 expression
(217). Of note, some cancer cells can constitutively express
the PD-L1 gene due to hypomethylation of its promoter, while
TAMs have been reported to also express PD-L1 naturally or
via trogocytosis from tumor cells (218). Expression of PD-L1 in
the tumor restrain tumor infiltrating lymphocytes from full and
persistent activation. Moreover, PD-L1 expression in the stroma
can prevent T cells from infiltrating the tumor, excluding them
to the margin of the tumor (219). Blocking the PD-1-PD-L1
interaction can promote T cell proliferation and infiltration into
the tumor, and results in durable antitumor responses (219).

The success of checkpoint immune therapies targeting CTLA-
4 or the PD-1/PD-L1 axis has prompted intense investigation into
new inhibitory receptors, including TIM-3, LAG-3, and TIGIT.
A new wave of therapeutic agents targeting these receptors
are being investigated in clinical trials, with encouraging initial
results (220). However, little is known about the biology of these
receptors and the interactions with their ligands. TIM-3 ligands
include the cell surface ligands Ceacam-1 and Phosphatidyl
serine-PTdSer (221) and the soluble factors, Galectin-9 (222) and
HMGB1, that are released to the TME. LAG-3 also interacts with
various ligands in the TME, including MHC class II expressed in
APC and tumor cells; Galectin-3 (223) and LSECtin, expressed
on tumor-associated stromal cells and tumor cells; and FGL-1, a
soluble factor produced in some tumors (224). TIGIT interacts
with the ligands CD112 and CD155, which are expressed on
APCs and tumor cells. Expression of these ligands in tumors is
associated with tumor progression and inhibition of antitumor T
cell responses (224–227).

Releasing the Breaks on CAR-T Cells
A promising strategy to increase the antitumor efficacy of
CAR-T cells is to prevent or revert T cell dysfunction driven
by engagement of inhibitory receptors with their ligands in
the tumor. Upon antigen recognition, CAR-T cells up-regulate
different inhibitory receptors, similarly to endogenous tumor-
specific T cells. CAR-T cells isolated from xenograft tumors
typically express high PD-1 levels, with a fraction of these
cells co-expressing TIM-3 and LAG-3 (86, 228). Overexpression
of PD-L1 by tumor cells has been shown to inhibit CAR-
T cell function, while combining CAR-T cell therapy with
antibodies that block the PD1/PD-L1 interaction has proved to
increase the antitumor effects of each therapy alone (71, 86, 87).
One study using syngeneic mouse models showed therapeutic
responses when combining CAR-T cells with PD1-blocking
antibodies, which was correlated with a decrease in MDSCs
(71). Several ongoing clinical trials are testing the combination
of CAR-T cells with anti-PD-1/PD-L1 blocking antibodies
in patients with hematologic malignancies or solid tumor
(NCT02414269, NCT01822652, NCT03980288, NCT03726515),
with some preliminary results with small groups of patients
showing safety and encouraging efficacy results (88–90).

Novel alternative approaches to target the PD-1/PD-L1
axis include the genetic modification of CAR-T cells to release
a PD-1- or PD-L1-blocking scFv in the tumor (92, 93), to

Frontiers in Immunology | www.frontiersin.org 9 June 2020 | Volume 11 | Article 1109

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rodriguez-Garcia et al. CAR-T Hits the Tumor Microenvironment

express PD-1 dominant negative receptors (86), or chimeric
switch receptors (94). These strategies may avoid the toxicities
associated with systemic delivery of checkpoint inhibitors and
bypass the requirement for repeated antibody administration.
Expression of chimeric switch receptors has the advantage of
converting an inhibitory signal (PD-1) into a costimulatory signal
(i.e., CD28) (94). Compared to PD-1 chimeric receptors, the
delivery of PD-1 or PD-L1 blocking antibodies (by combination
therapy or genetic modification) offers the possibility to re-
invigorate endogenous tumor-specific T cells (92), which may
be required to achieve complete responses in solid tumors. In
this line, combination of CAR-T cells with oncolytic viruses
releasing an anti-PD-L1 mini-body locally in the tumor resulted
in enhanced therapeutic effects (91). Oncolytic viruses provide
a danger signal able to diminish tumor immunosuppression
while inducing tumor debulking, and may be ideal partners
to combine with CAR-T cells and immune checkpoint
inhibitors (229).

Another strategy to counteract tumor-induced T cell
inhibition is to disrupt T cell inhibitory receptors by genome
editing. Several studies have demonstrated that PD-1 gene
editing, using TALEN or the CRISPR/Cas9 system, can augment
T cell-mediated killing in vitro and enhance clearance of PD-L1+

tumors in vivo (95–97). However, reported in vivo results
testing this strategy seem to be contradictory and conflicting.
Recent studies suggest that PD-1 ablation or knockdown can
accelerate T cell exhaustion, prevent memory formation and
reduce long-term antitumor efficacy (230, 231). Enhanced
antitumor effects with PD-1 knockout (KO) CAR-T cells are
usually observed in animal experiments using tumor cell lines
genetically modified to express constitutive and uniform levels
of PD-L1. So, it is possible that PD-1 disruption is only beneficial
in tumors with high PD-L1 tumor densities. Different clinical
trials are actively testing PD-1 KO engineered T cells for the
treatment of solid tumors (NCT03747965, NCT03525782,
NCT03706326, NCT03399448). A first-in-human phase 1
clinical trial has recently published the safety and feasibility
of deleting three genes (TRAC, TRBC, and PDCD1, the gene
encoding PD-1) using CRISPR-Cas9 in cancer-specific T cells
for the treatment of patients with refractory cancer (98). Initial
results in three patients demonstrated engraftment of PD-1–
deficient T cells with no evidence of autoimmunity or T cell
genotoxicity. Surprisingly, it was found that, in one patient,
the percentage of tumor-specific T cells with mutations in
the PD-1 locus decreased from 25% in the infusion product
to 5% 4 months post-infusion. While further investigations
are required to interpret these results, loss of PD-1 edited
T cells would be consistent with mouse studies highlighting
the role of PD-1 in preserving T cells from overstimulation
and terminal differentiation. In this same line, initial reports
have established the feasibly of knocking out other inhibitory
receptors, such as CTLA-4 or LAG-3, but it remains unclear as
to whether these modifications result in enhanced CAR-T cell
activity (99, 100). A better understanding on the mechanisms
by which inhibitory receptor negatively regulate T cell function
together with preclinical models that better recapitulate the

TME are required to design the next-generation CAR-T
cell therapies.

CONCLUSIONS AND FUTURE
DIRECTIONS

Unprecedented durable responses in cancer patients treated
with checkpoint blockade antibodies or CAR-T cell therapy is
generating considerable optimism. Augmenting the therapeutic
outcome of CAR-T cell therapy in the context of solid tumors
represents the next big challenge and opportunity for the
field. Clearly, a major obstacle for CAR-T cells in solid
tumors is the immunosuppressive TME. There is now an
understanding that physical barriers and stromal and immune
cells that express and release an array of immunosuppressive
molecules limit CAR-T cell persistence and efficacy. In these
hostile circumstances, strategies aimed at remodeling the tumor
microenvironment or conferring intrinsic CAR-T cell resistance
to immunosuppression may be more promising than targeting
only one specific pathway. The cellular component of TME is
characterized by considerable diversity and a high degree of
plasticity (232, 233). Several strategies directed to regulating
this plasticity and reversing immunosuppression are being
explored. Armored CAR-T cells expressing proinflammatory
cytokines or combination of CAR-T cells with oncolytic viruses
could serve this purpose (234). Gene ablation technology will
allow CAR-T cells to avoid immunosuppresssive signals in the
TME. By a different approach, direct elimination of stroma
or immune suppressive cells could revert immunosuppression,
tackling different pathways simultaneously. Ongoing efforts seek
to develop a new generation of CAR-T cell therapies targeting
fibroblasts, Tregs, M2 macrophages or MDSCs.

Other factors such as the effect of gut microbiota on
response to immune therapies might be also considered. It
has been recently reported by many groups that microbiome
composition modulates the antitumor response to immune
checkpoint inhibitors. This effect is described to be mediated by
IL-12 and to correlate with a decrease of Tregs and MDSCs in the
TME (235). Similar observations have been made in preclinical
mouse studies in the context of adoptive cell transfer therapy
(236). In the field of CAR-T cell therapy, a preliminary study
of microbiota composition in cancer patients prior to CAR-T
cells infusion found a correlation between the presence of certain
bacterial families and efficacy and toxicity of the therapy (237).
This observation warrants future consideration of strategies such
as the use of specific antibiotics or fecal microbial transplantation
in combination with CAR-T cell therapy (238).

One of the greatest challenges in developing effective and
safe CAR-T cells that tackle the TME is the lack of clinically
relevant models that reflect the challenges of solid tumors.
Currently available preclinical models have been unable to
predict the toxicities observed in clinical trials and the lack
of antitumor activity, especially in patients with solid tumors.
Advanced preclinical models relevant to study the impact of
tumor heterogeneity and the role of the TME in CAR-T cell
efficacy are required to test the next-generation of CAR-T cells
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as monotherapy or in combination with other agents. The testing
of such CAR-T cell approaches in canines with spontaneous
solid cancer represents a promising avenue of investigation (239).
Current clinical studies will hopefully reveal information on the
safety and efficacy of novel CAR-T cell approaches, including
those addressing barriers of the TME. Lessons learned from
these early-phase clinical trials will be important to continue
to develop novel CAR-T cell therapies for the treatment of
solid tumors.
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