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Background:MiR-146a is an important regulator of innate inflammatory responses and

is also implicated in cell death and survival.

Methods: By sorting CNS resident cells, microglia were the main cellular source of

miR-146a. Therefore, we investigated microglia function and phenotype in miR-146a

knock-out (KO) mice, analyzed the proteome of KO and wild-type (WT) microglia by

LC-MS/MS, and examined miR-146a expression in different brain lesions of patients

with multiple sclerosis (MS).

Results: When stimulated with LPS or myelin in vitro, microglia from KO mice

expressed higher levels of IL-1β, TNF, IL-6, IL-10, CCL3, and CCL2 compared to

WT. Stimulation increased migration and phagocytosis of WT but not KO microglia.

CD11c+ microglia were induced by cuprizone (CPZ) in the WT mice but less in the

KO. The proteome of ex vivo microglia was not different in miR-146a KO compared

to WT mice, but CPZ treatment induced differential and reduced protein responses

in the KO: GOT1, COX5b, CRYL1, and cystatin-C were specifically changed in

KO microglia. We explored discriminative features of microglia proteomes: sparse

Partial Least Squares-Discriminant Analysis showed the best discrimination when

control and CPZ-treated conditions were compared. Cluster of ten proteins separated

WT and miR-146a KO microglia after CPZ: among them were sensomes allowing

to perceive the environment, Atp1a3 that belongs to the signature of CD11c+

microglia, and proteins related to inflammatory responses (S100A9, Ppm1g). Finally,

we examined the expression of miR-146a and its validated target genes in different

brain lesions of MS patients. MiR-146 was upregulated in all lesion types, and the

highest expression was in active lesions. Nineteen of 88 validated target genes

were significantly changed in active lesions, while none were changed in NAWM.
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Conclusion: Our data indicated that microglia is the major source of miR-146a in the

CNS. The absence of miR-146a differentially affected microglia function and proteome,

and miR-146a may play an important role in gene regulation of active MS lesions.

Keywords: miR-146a, microglia, cuprizone, multiple sclerosis lesion, proteome, phagocytosis, migration, CD11c

INTRODUCTION

Microglia that make up 15–20% of total number of brain cells, are
the tissue resident macrophages and the main immune defense of
the CNS. Microglia are involved in brain development, neuronal
plasticity in adulthood, they respond to injury and participate in
repair and clearance of plaques (1). As the CNS resident innate
immune cells, microglia play a key role in immune responses.
They are antigen presenting cells expressing MCH class I and
II, and can secrete both pro-inflammatory cytokines such as IL-
1β, and TNF, and anti-inflammatory cytokines such as IL-10.
Microglia are also phagocytic cells expressing Fc complement
receptors (2). Microglia are activated in response to injury or
infection, and similarly to macrophages they express pattern
recognition receptors (PRRs) that enable them to sense pathogen
associated molecular patterns (PAMPs), and damage associated
molecular patterns (DAMPs) such as microbial proteins,
saccharides, lipids, RNA and DNA or secretions form damaged
neurons and other brain cells (1, 3). Once activated, microglia
become phagocytotic and take up cell debris and apoptotic
cells. Activated microglia secrete cytokines, migrate toward
the injured area, and form a shield around the pathological
or injured site (4). There is considerable heterogeneity of
microglial activation in the brain, which is dependent on factors
in the surrounding micro environment (5). Pro-inflammatory
molecules polarize microglia toward an inflammatory phenotype
characterized by production/upregulation of IL-1β, IL-6, MHC-
II, TNF, iNOS, phagosome acidification, and production of
reactive oxygen species (ROS) (6). In contrast, microglia
stimulated with cytokines IL-4 and IL-13 produce anti-
inflammatory cytokines and neuroprotective factors, express
scavenger receptors for phagocytosis, and growth stimulation
(3) A CD11c+subpopulation of microglia is effective in
antigen presentation, but poorly express proinflammatory
cytokines (7, 8).

MicroRNAs (miRNAs) are small ∼22 nucleotides long non-
coding RNAs, that regulate gene expression. They primarily
function by translational repression but can also positively
regulate gene transcription by targeting promoter elements (9).

MiR-146a is a dominant negative regulator of innate immune
responses (10), but it is also has an effect on cell death/survival
and differentiation (11). Stimulation with lipopolysaccharide
(LPS) induced NF-κB dependent expression of miR-146a in
THP1 cells (12). IL-1 receptor associated kinase (IRAK1) and
TNF receptor-associated factor 6 (TRAF6) were identified as
target genes for miR-146a mediated repression. These findings
led to the well-acknowledged theory that miR-146a participates
in a negative feedback loop, where the miR-146a expression is
upregulated by, and acts as a repressor of signaling proteins of

the innate immune response to avoid an overactive inflammatory
response (12). This loop is initiated when LPS is recognized
by the PRR toll like receptor 4 (TLR4). TLR4 signals through
MyD88 (myeloid differentiation primary response protein 88),
which recruits various signaling proteins including IRAK1
and TRAF6 that in turn activate the IKK complex (13). The
activated IKK complex phosphorylates the inhibitory IκB, which
is then degraded releasing the transcription factor NF-κB. NF-
κB translocates to the nucleus, where it induces transcription
of miR-146a along with various inflammatory cytokines (14).
After processing, the RISC loaded miR-146a will then act as a
negative regulator of IRAK1 and TRAF6, thus reducing NF-κB
activation and completing the feedback loop. Further studies
have shown that miR-146a expression is also induced by bacterial
lipoprotein (BLP) and peptidoglycan acting through TLR2 and
flagellin acting through TLR5 (12, 15).

We have previously shown that miR-146a is also upregulated
in response to cuprizone (CPZ) exposure in mice, and that miR-
146a deficiency protected against CPZ induced demyelination
(16). Infusion of exogenous miR-146a mimics promoted
remyelination, decreased M1-like phenotype and increased M2-
like phenotype of microglia in the CPZ model (17). MiR-
146a deficiency is also associated with a more severe EAE
phenotype (18).

Oral administration of cuprizone (CPZ) in mice is an
experimental model for de- and remyelination in MS (19).
CPZ exposure is accompanied by microglial activation already 1
week after CPZ exposure, before demyelination can be detected
(20). The number of activated microglia then increases during
CPZ exposure and peaks at 4 weeks (7). Activated microglia
within the demyelinating areas of CPZ lesions express various
cytokines, chemokines and growth factors (21, 22), and inefficient
clearance of myelin debris by microglia impairs remyelinating
processes in the CPZ model (23). During the acute phase of
remyelination in the CPZ model, a large number of genes
are transcribed that suggest microglia activation, and among
them are orthologs of differentially expressed genes also in MS
lesions (24).

In this study, we investigated the cellular source of miR-146a
in the non-injured mouse CNS, and found the highest level in
postnatal microglia. Therefore, we examined the role ofmiR-146a
in microglia activation in vitro, and in response to experimental
de- and remyelination in the CPZ mouse model in vivo. We also
isolated microglia from WT and miR-146a KO mice exposed to
CPZ and investigated regulated proteins by label free quantitative
proteomics. Finally, since miR-146 have been previously detected
among differentially expressed miRNAs in MS lesions (25), we
examined, which lesion types express miR-146a and its target
genes in the white matter of MS brains.
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MATERIALS AND METHODS

Mice
The miR-146a KO mouse strain applied in this study was
generated on a C57Bl/6 background in Dr. David Baltimore’s
laboratory, California Institute of Technology (26). We
acquired the mice from the Jackson Laboratory (ME, USA).
Female C57BL/6 WT mice were obtained from Taconic Ltd.
(Ry, Denmark). All animal experiments were conducted in
accordance with guidelines and protocols approved by the
Danish Animal Health Care Committee (approval NO: 2014-15-
00369). Mice younger than 7 days old were used for magnetic
beads cell sorting (MACS) or sorting by the “shake off” method,
and female mice aged 7–8 weeks were included in the CPZ
experiments. At this age, miR-146a KO mice do not display any
autoimmune or inflammatory phenotype (26).

Cuprizone Induced de- and Remyelination
In order to induce demyelination in mice, powdered standard
chowwasmixedwith 0.4% cuprizone (SigmaAldrich,MO,USA),
and delivered to the mice via the diet as previously described
(16). CPZ was administrated for 4 weeks (4 weeks demyelination:
4wD), 4 weeks followed by 2 days of regular feeding (acute
remyelination: 2dR) or 4 weeks followed by 2 weeks of regular
feeding (full remyelination, 2wR). Control mice were kept on a
normal chow diet.

Microglia Isolation
Ex vivo Magnetic Beads Cell Sorting (MACS)
Brain dissociated to obtain single cell suspensions was performed
by using MACS dissociation kits (Miltenyi Biotec, Lund,
Sweeden,). Cells were labeled with CD140a Microbead Kit
(oligodendrocyte precursor cells, OPCs), CD11b Microbead Kit
(microglia), ACSA-2 Microbead Kit (astrocytes), O4 Microbead
Kits (premature oligodedrocytes) or Neuron Isolation Kit.
Labeled cells were loaded on a LS Column for positive
selection (CD140a, CD11b, ACSA-2, and O4 Microbead Kits)
or an LD column for negative selection (Neuron Isolation
Kit), and placed in the magnetic field of a SuperMACSTM II
separator. The purity of the obtained cell fractions was further
analyzed on a FACSCaliburTM flow cytometer using FSCSDivaTM

software version 6.1.2 (BD Biosciences), and the obtained cell
fractions were on average 74–98% pure. Microglia sorted by
CD11b for in vitro stimulation assays were on average 90%
pure, when characterized as CD11b+/CD45low cells on the
flow cytometer.

In vitro Sorting by Shaking Method
For investigation of phagocytosis and migration microglia were
isolated by the “shake off” method (27). In short, CNS cells
were seeded in a T75 flask after enzymatic dissociation and
allowed to proliferate for 10 days. Then the flasks were shaken
for 6 h at 200 rpm causing microglia to detach from the astrocyte
monolayer. Microglia sorted this way were on average 95% pure
when characterized as CD11b+/CD45low on the flow cytometer.

Antibodies and Fluorescence Activated
Cell Sorting (FACS)
Cells were stained with PE-anti mouse CD45 (Biolegend,
Copenhagen, Denmark) and PerCP-Cy5.5-anti-mouse
CD11b (for sorting of whole microglia population) or
PerCP-Cy5.5-anti-mouse CD11b, biotinylated-anti-mouse
CD11c (BD pharmingen) and PE-anti mouse CD45 (for
analysis of CD11c+ microglia) as previously described (8),
and sorted by FACSAriaTM III cell sorter (BD Biosciences,
Albortslund Denmark).

Filter-Aided Sample Preparation for
Proteomics of FACS Sorted Microglia
In total, between 180 and 1300 k cells were used for filter-
aided sample preparation (FASP) for mass spectrometry,
essentially as previously described (28), and cells for
each sample was obtained from 3 to 5 brains. In brief,
cells were lysed in 0.5% sodium deoxycholate in 50mM
triethylammonium bicarbonate (pH 8.6), denatured by
heating to 95◦C for 10min, and ultrasonicated for 10min.
The protein concentration was determined by protein
A280 (Thermo Nanodrop). A total of 100 µg from each
sample was then reduced and alkylated using 10mM
Tris(2-carboxyethyl)phosphine hydrochloride, and 25mM
chloroacetamide for 30min at room temperature. The samples
were then incubated at 37◦C with 1:100 (w/w) trypsin (mass
spectrometry grade) per sample overnight. The peptides were
extracted by solvent phase transfer, and stored at −80◦C
until LC-MS/MS.

Mass Spectrometry Analysis
The individual samples (5 µg) were separated and sequenced
using a ThermoSci QExactive High-Field orbitrap mass
spectrometer in biological (n = 2–4 in each treatment, type)
and technical duplicates (n = 2). In brief, a UPLC-nanoESI
MS/MS setup with a Dionex RSLC nanopump (Dionex/Thermo
Scientific, Waltham, USA) connected to Q-Exactive High-Field
mass spectrometer (Thermo Scientific, Waltham, USA). The
peptide material was loaded onto a C18 reversed phase column
(Dionex Acclaim PepMap RSLC C18, 2µm, 100 Å, 75µm x
2 cm) and separated using a C18 reversed phase column (Dionex
Acclaim PepMap RSLC C18, 2µm, 75 Å, 75µm × 75 cm) kept
at 60◦C.

A full MS scan in the mass range of m/z 375 to 1,500 was
acquired at a resolution of 120,000. In each cycle, the mass
spectrometer would trigger up to 10 MS/MS acquisitions of
eluting ions based on highest signal intensity for fragmentation.
The MS/MS scans were acquired with a dynamic mass range
at a resolution of 15,000. The precursor ions were isolated
using a quadrupole isolation window of m/z 2.0 and fragmented
using higher-energy collision (HCD) with normalized collision
energy of 27 and fixed first m/z of 110. Fragmented ions were
dynamically added to an exclusion list for 15 s.
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Raw File Analysis of Mass Spectrometry
Data
All MS scans were searched against the mouse isoform proteome
from UniProt (date stamp 17MAR2017; 70.939 isoforms), which
included indexed retention time standard (iRT standard) using
MaxQuant/Andromeda v1.5.8.3.

The results were processed using Perseus v 1.5.8.3.
Initially, all reverse database hits and proteins tagged
as contaminants were removed before further analysis,
and the LFQ intensity data was log2-transformed. The
protein abundances were investigated duplicate-wise and
raw data investigated by Persons correlation (>0.85).
Principle components analysis was performed by imputing
missing values from a normal distribution (width 0.3 and
down shift 1.8). All protein groups with < 50% values in
each grouping (treatment, type) and unique peptides <1
were removed.

Proteins with statistically significant abundance change
between exposure (CPZ vs. Ctrl) or strain groups (WT vs.
KO) were identified for each group, and treatment using a
permutation based FDR corrected p-value based two-sample
students t-tests between treatment groups (FDR = 0.05 or 0.15,
S0= 0.1 and 250 randomizations).

Data was imported into R (v 3.6.1) using PerseusR (v 0.3.4) in
Rstudio (v 1.2.5001) (29); https://www.R-project.org/ and http://
www.rstudio.com/). The MixOmics package (v 6.8.5) was then
used to perform a sparse Partial Least Squares-Discriminant
Analysis (sPLS-DA), a supervised model that can be used to
identify the most discriminative variables for classifying mice
according to their respective group (CTL-KO, CTL-WT, CPZ-
KO & CPZ-WT) (30). The performance of the sPLS-DA model
was assessed using the MixOmics perf and tune.splsda functions
with leave-one-out cross validation. The lowest classification
error rate was achieved using 3 components with 7, 10, and
50 variables on component 1, 2, and 3, respectively. The
selected variables on each component were used to create a
total of 3 clustered image maps based on hierarchical clustering
using the MixOmics cim function. STRING (v 11: https://
string-db.org) was used to analyze known functional protein
interactions of the selected variables from the sPLS-DA (31).
Finally, the MixOmics pca function was used to perform a
principal component analysis.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE repository
with the dataset identifier PXD015939 (32, 33). The raw data
supporting the conclusions of this manuscript will be made
available by the authors, without undue reservation, to any
qualified researcher.

STRING Pathway Enrichment Analysis
Gene names of encoded proteins identified in the proteomics
analysis were uploaded into the online STRING database (version
11: https://string-db.org). From this database we extracted a list
of enriched KEGG pathways and compared the lists of enriched
pathways between treatment groups by simple Venn diagram
analysis (VENNY 2.1 http://bioinfogp.cnb.csic.es/tools/venny/).

RNA Extractions and Quantitative PCR
Whole RNA was extracted using a miRNeasy micro kit (Qiagen,
Denmark, Copenhagen). TaqMan chemistry primers were
acquired from Life Technologies (miR-146a ID: 000468, sno135
ID: 001230, U6: 001973, Thermo Scientific, CA, USA) and RNA
was transcribed using a TaqManmicroRNA reverse transcription
kit (Life Technologies, Thermo Scientific). qPCR was performed
on Bio-Rad CFX ConnectTM Real-Time System (software
Bio-Rad CFX Manager 3.1). Expression levels were reported
relative to geometric mean of snoRNA135 and U6snRNA. TNF
expression was analyzed as previously described (34).

In vitro Stimulation of Microglia Cells
Microglia (20.000 to 200.000) were seeded in each well of poly-l-
lysine coated standard plates in DMEM media (Sigma Aldrich).
After 2 h, cell culture media was changed and new media
containing LPS (10 ng/ml) or myelin (0.2 ng/ml or 50 ng/ml)
was added. Cell culture media was collected, or cells were lyzed
directly in the wells 24 h after LPS stimulation, or 48 h after
myelin stimulation.

Meso Scale Discovery (MSD) Multiplex
Analysis
Cytokine levels in cell culture media were measured by the
Meso Scale Discovery (MSD, USA) electrochemiluminescence
proinflammatory mouse V-Plex Plus Kit and a MULTI-SPOT
4 spot cytokine costume plate (CCL2, CCL3, VEGF and
MMP9). A SECTOR Imager 6,000 (Meso Scale Discovery)
Plate Reader was used for analysis and data were analyzed
using the MSD Discovery Workbench software according to the
manufacturer’s instructions.

Phagocytosis Assay
Phagocytotic activity was examined by measuring fluorescence
of internalized latex beads by flow cytometer (35)
(Supplementary Figure 1). Microglia were stimulated with
LPS or myelin for 24 h. Fluorescent latex beads were added
for 40min at 37◦C (samples) or 4◦C (controls). Cytochalasin
D (5µg/ml), was added as a negative control. Incubation was
stopped by placing the cells on ice. Cells were detached from the
plate by adding 0, 2% Trypsin-EDTA to the cells, and analyzed
by flow cytometry.

Random Migration Assay
Microglia were seeded at a density of 13.000 cells/well in
a PDL coated 96-well ImageLock Plate (Essen Bioscience)
and stained with CellTracker Red CMTPX Fluorescent Probes
(Life Technologies). Cells were stimulated with LPS or myelin
and placed in the IncuCyte Zoom live cell imagining system
(Essen BioScience, USA). Pictures were taken every 20min
for 24 h. Single cell motility was quantified using the Fiji
plugin TrackMate for semi-automated particle tracking (36).
In TrackMate, the Laplacian of Gaussian (LoG) detector with
estimate spot diameter of 21µm and a threshold of 0.5 was
used to detect individual cells. The simple linear assignment
problem (LAP) tracker with a linking maximum distance of
80µm, a gap-closing max distance of 80µm and a gap closing
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max distance of 2 was used to track cell migration through the
time course movies.

Lesion Classification and RNA Extraction
From Specific Histological Brain Areas of
Patients With MS
Examination of mir-146a expression in human progressive
white matter (WM) MS brain tissue was done on 8 normal-
appearing white matter (NAWM) areas and 8 active lesions
(AL) (n = 8). WM areas (n = 8) of non-neurological diseased
cases were used as controls. The RNA was collected from our
previously study (37), and the mir-RNA level of mir-146a and the
reference genes (sno135, U6) were measured as described above
using the TaqMan microRNA reverse transcription and TaqMan
chemistry primers.

For finding validated target genes of miR-146a, we used the
miRTarBase (38, 39). To identify the target genes significantly
expressed in different stages of lesion evolution in the brain white
matter of MS patients we used the MS-Atlas (www.msatlas.dk).

Statistics
All statistical tests were performed, and graphs were conducted
using Prism 5 software (GraphPath, USA, CA). One significant
outlier according to the Grubbs’ test of extreme studentized
deviates was removed from the cellular source dataset, and
one from the 48-h time point analysis of CCL3 after 0.2 ng/ml
myelin stimulation. Cellular source analysis and analysis of miR-
146a levels in response to LPS stimulation, and analysis of
miR-146a expression in microdissected MS brain lesions were
performed using a parametric one-way AVOVA test. Migration,
phagocytosis, MSD data analysis, miR-146a expression levels
in response to myelin stimulation, CD11c+ cells analysis and
percentage of CD11b+/CD45high cells were analyzed using a two-
way ANOVA test, followed by appropriate post hoc tests, and
the level of microglia cells in naïve adult brains was analyzed
using a parametric student t-test. Data are presented as mean ±

SD. Statistics for proteomics analysis is described in detail in the
section “Raw File Analysis of mass spectrometry data.”

RESULTS

Microglia Express High Levels of miR-146a
Compared to Other Cell Types in the Brain
To identify the main cellular source of miR-146a in the brain
by qPCR, microglia (CD11b+ cells), OPCs (CD140a+ cells),
premature oligodendrocytes (O4+ cells), astrocytes (ACSA-2+

cells) and neurons (negative selection) were isolated from the
brains of postnatal mice by MACS. Microglia expressed miR-
146a at the highest level followed by OPCs, that expressed miR-
146a at higher level than astrocytes and neurons (Figure 1A). We
also analyzed the level of miR-146a in isolated adult microglia
compared to the entire CNS cell fractions without microglia: the
expression of miR-146a was 7.6 times higher in the microglia
fraction (Figure 1A).

Since miR-146a was expressed at the highest level in
microglia, we next examined if the absence of miR-146a alters
microglia functions.

FIGURE 1 | Expression of miR-146a in brain resident cells and microglia in

miR-146a KO mice. (A) Using MACS, microglia were sorted by anti-CD11b,

OPCs by anti-PDGFRα, immature oligodendrocytes by anti-O4, astrocytes by

anti-ACSA-2, and neurons by negative selection. Purity of each population is

indicated. Relative expression of miR-146a was determined by qPCR and

expression levels are presented relative to geometric mean of U6snRNA and

sno135 levels. Each sample is a pool of 3–5 brains. Statistics: *p < 0.05, ***p
< 0.001, n = 5–8 in each group, one-way ANOVA followed by Tukey’s multiple

comparisons test, mean ± SD. (B) The number of microglia was analyzed by

flow cytometry, and microglia were defined as CD11b+/CD45low cells. n = 6–7

in each group, parametric students t-test, mean ±SD.
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MiR-146a Deficient Mice Have Normal
Levels of Microglia in the Brain
First, we investigated if the absence of miR-146a affects the
number of microglia in the healthy mouse brain. Using flow
cytometry, we found that adult naive miR-146a KO mice and
WT mice had similar number of CD11b+CD45low microglia
(Figure 1B).

Cytokine/Chemokine Production of
LPS-Activated Microglia Is Increased in the
Absence of miR-146a
Next, we investigated cytokine and chemokine production by
LPS-stimulated miR-146a KO andWTmicroglia. Microglia were
stimulated for 24 h in vitro, and the levels of cytokines and
chemokines in the cell culture media were examined by MSD
multiplex analysis. We found increased levels of TNF, IL-6, IL-
1β, IL-10, CCL2, and CCL3 in in miR-146a KO compared to WT
microglia cultures (Figure 2).

MiR-146a Deficient Microglia Response to
Myelin in vitro
Knowing that microglia cells are highly activated by
demyelination pathologies in vivo (7, 21, 22), we next
investigated the response to myelin stimulation in vitro.

Postnatal microglia were sorted from WT mice and miR-146a
KO mice by MACS and stimulated with either 0.2 ng/ml or
50 ng/ml myelin for 48 h. We found that miR-146a KO microglia
cells were strongly activated by myelin stimulation, and secreted
IL-1β, TNF, IL-6, IL-10, CCL3, and CCL2 (Figure 3). None
of the cytokines or chemokines were significantly changed in
response to myelin stimulation in WT microglia; however, we
observed a non-significant tendency of elevation for all cytokines
and chemokines.

Phagocytosis Is Reduced in Microglia in
the Absence of miR-146a
Next, we investigated how in vitro stimulation with LPS, and
myelin affected the phagocytotic ability of microglia (Figure 4).
Postnatal WT and miR-146a KO microglia were stimulated
with either 10 ng/ml LPS or 0.2 ng/ml and 50 ng/ml myelin for
24 h, and fluorescent latex beads were added to the activated
microglia. We found that activation of microglia with LPS
increased phagocytosis by WT microglia but not miR-146a KO
microglia (Figure 4A). Activation with myelin did not increase
phagocytosis, on the contrary, stimulation with 50 ng/ml myelin
significantly decreased phagocytosis by miR-146a KO microglia
(Figure 4B).

FIGURE 2 | Expression of cytokines and chemokines by miR-14a KO and WT microglia stimulated with LPS. Microglia were sorted by CD11b microbeads from

postnatal miR146a-KO mice and WT mice and stimulated with LPS (10 ng/ml) for 24 h in vitro. The level of cytokines and chemokines was measured by MSD

multiplex analysis. Statistics: ***p < 0.001, n = 11–21 in each group, two-way ANOVA followed by Bonferroni posttest, mean ± SD.
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FIGURE 3 | Expression of cytokines and chemokines by miR-14a KO and WT microglia stimulated with myelin. Microglia were sorted by CD11b microbeads from

postnatal miR146a-KO mice and WT mice and stimulated with 0.2 ng/ml or 50 ng/ml myelin for 48 h in vitro. The level of cytokines and chemokines in the cell culture

media was measured by MSD multiplex analyses. Statistics: *p < 0.05, ***p < 0.001, n = 3–4 in each group, Two-way ANOVA followed by Bonferroni posttest, mean

± SD.

Stimulation With LPS and Myelin Induce
Random Migration in WT but Not in KO
Microglia
We then investigated how in vitro stimulation with LPS
and myelin affected random single cell microglia migration
(Figure 5). Postnatal microglia were stimulated with 10 ng/ml
LPS, 0.2 ng/ml myelin, or 50 ng/ml myelin for 24 h, and random
migration of single cells was examined during this time by
TrackMate. Activation of microglia with LPS and myelin
increased random migration of WT microglia but not miR-146a
KO microglia.

Reduced in vivo Generation of CD11c+

Microglia in miR-146a KO Mice
In order to investigate the role of miR-146a in microglia
activation in response to demyelination in vivo, we used the CPZ
mouse model (7, 21, 22). We examined the number of CD11c+

microglia that is effective in antigen presentation, but poorly
express proinflammatory cytokines (7, 8, 40). We found that the
percentage of CD11c+ microglia increased in response to CPZ

exposure in the WT mice, but the increase was lower in the miR-
146a KO mice compared to WT mice during demyelination and
acute remyelination (Figure 6).

Proteomics Analysis of WT and miR-146a
KO Microglia Isolated During CPZ-Induced
Demyelination
Next, we determined the proteome of both resting microglia and
in vivo activated microglia during CPZ-induced demyelination
in adult WT and miR-146a KO mice (Figure 7A). Microglia
cells were sorted as CD11b+, CD45low cells from the brains
of naïve (Ctrl) and CPZ-exposed WT and miR-146a KO mice,
and the proteome was analyzed by mass spectrometry (UPLC-
nanoESI MS/MS). We next investigated the overall similarities
between the 32 LC-MS runs by an unsupervised PCA on
the complete data set after merging the technical duplicates.
The proteome of the resting microglia was not different
between KO and WT microglia. However, the PCA analysis
indicated a major difference between the CTL and CPZ groups
(Figures 7A,B). We identified 1.549 unique proteins hereof 1,065
quantifiable proteins: 136 proteins were significantly changed in
microglia sorted from WT mice in response to CPZ exposure
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FIGURE 4 | Phagocytosis by miR-146a KO and WT microglia stimulated with LPS and myelin. Microglia were treated with LPS (A) or myelin (B) for 24 h before the

addition of fluorescent latex beads. Cells were allowed to ingest the beads for 40min before the analysis made on a flow cytometer. Phagocytosis was quantified as

mean fluorescence intensity and displayed relative to WT control. (C) Gating strategy: Initial gating to exclude cell debris and dead cells (upper left panel); doublet

discrimination based on side scatter height and width (upper right panel); doublet discrimination based on forward scatter height and width (lower left panel);

separation of labeled and unlabeled cells (lower right panel). (D) Example of fluorescein intensity of phagocytosed beads after stimulation with different concentration

of LPS and myelin. Statistics: *p < 0.05, ***p < 0.01, ****p < 0.0001, n = 3–4 in each group, Two-way ANOVA followed by Tukey’s posttest, mean ± SD.
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FIGURE 5 | Random single cell migration by miR-146a KO and WT microglia stimulated with LPS and myelin. Single cell track displacement of microglia stimulated

with LPS (A) or myelin (B) for 24 h was quantified by analysis with TrackMate. Statistics: *p < 0.05, **p < 0.01, n = 3 in each group, Two-way ANOVA followed by

Sidak’s posttest, mean ± SD.

(FDR<0.05). Out of these, 38 were upregulated whereas 98 were
downregulated (Figure 7A, Table 1, Supplementary Table 1). In
activated microglia sorted from the miR-146a KO mice during
demyelination, we only identified 10 differentially regulated
proteins (p < 0.05 FDR) out of which 6 were upregulated and
4 were downregulated (Figure 7A, Table 2). Out of these 10
proteins, 3 proteins (HEXA, HEXB, and SMC1A) were also
differentially regulated in WT microglia (Tables 1, 2). When
using a less stringent FDR threshold value of 0.15 for WT
microglia, we could find 3 additional proteins out of the 10
proteins in the KO dataset (CD180, CD68, and RBM14) among
the differentially regulated proteins in the WT mice, suggesting
that the remaining 4 proteins out of the 10 proteins (GOT1,
COX5B, CRYL1, and CST3) were dysregulated specifically in the
miR-146a KO microglia in response to CPZ exposure.

To address discriminative features of proteins among the
microglia proteomes of the wild-type and KO-mice without
(control) or with CPZ treatment, we used the sparse Partial
Least Squares-Discriminant Analysis (sPLS-DA). The lowest
classification error rate was achieved using 3 components with
7, 10, and 50 variables on component 1, 2, and 3, respectively
(Figures 8A, 9A). The selected variables on each component
were used to create a total of 3 clustered image maps based
on hierarchical clustering using the MixOmics cim function
(Figures 8B,C, 9B).

sPLS-DA was able to discriminate CPZ treated mice from
the control mice on component 1 (Figure 8A). The clustered
image map that was made using the seven variables for driving
the discrimination on component 1, showed a clear grouping
of the mice according to treatment (Figure 8B). Further, the
clustered imagemap showed that these proteins were upregulated
in the CPZ-treated mice and downregulated in the control
mice (Figure 8B). The STRING analysis of these proteins
(Supplementary Table 2) showed significant interactions that
is related to ganglioside catabolic and metabolic process, lipid

storage, carbohydrate derivative metabolic process and lysosome
organization (data not shown).

The sPLS-DA was also able to separate the CPZ-WT and
CPZ-KOmice on component 2 (Figure 8A). The clustered image
map showed a cluster of ten proteins that was downregulated
in CPZ-WT and upregulated in CPZ-KO (Figure 8C). The
STRING analysis of these proteins (Supplementary Table 2)
showed significant interactions related to regulation of plasma
membrane organization, synaptic vesicle recycling, vesicle-
mediated transport in synapse and neurotransmitter secretion
(data not shown).

Finally, the sPLS-DA was able to separate the control WT
from all the other groups on component 3 (Figure 9A). The
clustered image map showed a collection of 50 proteins that
was upregulated in control WT (Figure 9B). The STRING
analysis of these proteins (Supplementary Table 2) showed
significant interactions related to mRNA metabolic process,
mRNA processing, mRNA splicing via spliceosome and RNA
splicing, but also biological processes related to negative
regulation of amine transport, regulation of cellular protein
localization and negative regulation of catecholamine secretion
(data not shown).

Pathway Analysis of Differentially
Regulated Proteins in WT and miR-146a
KO Microglia in Response to CPZ
Next, we aimed to identify pathways that characterized the
activated miR-146a KO microglia response to CPZ exposure
in vivo.

Because of the low number of dysregulated proteins in the
miR-146a KO microglia by FDR<0.05 threshold, the pathway
analyses were conducted using the less stringent FDR-value
of 0.15. Pathway analyses of WT microglia and miR-146a KO

Frontiers in Immunology | www.frontiersin.org 9 June 2020 | Volume 11 | Article 1110

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Martin et al. MiR-146a and Microglia

FIGURE 6 | Upregulation of CD11c+ microglia in response to CPZ treatment is decreased in miR-146a KO mice. The level of CD11c+ microglia was measured in the

brain of mice exposed to CPZ and compared between miR-146a KO and WT mice. This was made using flow cytometry. *p < 0.05, **p < 0.01, n = 4–12, Two-way

ANOVA followed by Bonferroni post hoc test, mean ± SD. Ctrl, unmanipulated controls; 4wd, 4 weeks demyelination; 2dr, 2 days (acute) remyelination; 2wr, 2 weeks

(full) remyelination.
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FIGURE 7 | Quantitative proteome analysis of microglia proteome isolated from wild-type and miR-146 KO mice during cuprizone-induced demyelination. (A)

Summary of the quantitative analysis based on multiple-hypothesis testing and relaxed statistical analysis indicating the number of specific microglia proteins and

pathways that were uniquely regulated among 4 conditions: wild-type control mice, wild-type mice after 4-week cuprizone (CPZ) treatment, KO control, and KO mice

after 4-week CPZ treatment. The number of common pathways is also shown. The corresponding proteins are listed in different tables that are also indicated in the

figure. (B) Principle component analysis of isolated microglia proteomes shows separation of the 4 conditions: proteome of microglia isolated from WT and KO mice

without cuprizone (CPZ) treatment (control, CTL) and after 4-week CPZ (demyelination).

microglia thus included 320 and 101 dysregulated proteins in
response to CPZ-induced demyelination, respectively.

By using STRING pathway enrichment analysis, we
determined a list of KEGG pathways that were significantly
enhanced in the WT microglia, and another list of significantly
enhanced pathways in the miR-146a KO microglia. The two lists
were then compared to identify WT specific pathways (Table 3),
miR-146a KO specific pathways (Table 4) and pathways changed
in bothWT and miR-146a KOmicroglia (Table 5). We identified
16 WT-specific pathways, which were not changed in the

miR-146a KO microglia (Table 3), whereas we only identified
4 miR-146a KO-specific pathways (Table 4). Two of these 4
pathways contained only proteins which were also changed
in the WT microglia (glycosphingolipid biosynthesis—globo
series, and glycosphingolipid biosynthesis—ganglio series), and
therefore the significant increase seen in these pathways, may
be a statistical artifacts. The other two pathways, cysteine and
methionine metabolism and cGMP-PKG signaling pathway
contained some proteins only found in the miR-146a KO dataset
(GOT1 and VDAC2). Although most proteins were changed
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TABLE 1 | Top 25 dysregulated proteins in WT microglia in response to CPZ exposure in vivo.

Protein Change P-value

Top 25 upregulated proteins in WT microglia exposed to CPZ in vivo

Alpha-2-macroglobulin-P A2mp 3.29 0.0024

Apolipoprotein A-I Apoa1 3.24 0.0046

Inter-alpha-trypsin inhibitor heavy chain H2 Itih2 3.11 0.0088

Apolipoprotein E Apoe 2.20 0.027

Unconventional myosin-IXb Myo9b 2.10 0.029

Thymosin beta-4;Hematopoietic system regulatory peptide Tmsb4x 1.89 0.012

Beta-hexosaminidase subunit alpha Hexa 1.58 0.0048

Apoptosis-associated speck-like protein containing a CARD Pycard 1.37 0.031

40S ribosomal protein S10 Rps10 1.36 0.0074

Phosphoserine aminotransferase Psat1 1.35 0.027

Cystatin-B Cstb 1.32 0.0069

Cofilin-1 Cfl1 1.28 0.0017

H-2 class I histocompatibility antigen H2-D1;H2-Q7;H2-Q6;H2-Q9;H2-Q8 1.26 0.023

Beta-hexosaminidase subunit beta Hexb 1.14 0.013

Crk-like protein Crkl 1.14 0.0028

Annexin A5 Anxa5 1.11 0.0015

V-type proton ATPase subunit F Atp6v1f 1.01 0.0066

Thioredoxin Txn 1.01 0.00017

Macrophage-capping protein Capg 0.98 0.016

V-type proton ATPase subunit G 1 Atp6v1g1 0.96 0.00063

Macrophage migration inhibitory factor Mif 0.94 0.019

Superoxide dismutase [Cu-Zn] Sod1 0.89 0.0014

Elongation factor 1-beta Eef1b2;Eef1b 0.86 0.0042

Poly [ADP-ribose] polymerase 1 Parp1 −3.55 0.021

Pre-mRNA-processing-splicing factor 8 Prpf8 −3.22 0.017

Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 Gnb2 −2.57 0.00058

Centromere protein V Cenpv −2.55 0.026

Structural maintenance of chromosomes protein 1A Smc1a −2.54 0.022

Importin subunit alpha-4;Importin subunit alpha-3 Kpna3;Kpna4 −2.52 0.0083

Host cell factor 1 Hcfc1 −2.40 0.00078

Sulfide:quinone oxidoreductase, mitochondrial Sqrdl −2.40 0.026

U5 small nuclear ribonucleoprotein 200 kDa helicase Snrnp200 −2.26 0.013

Heterogeneous nuclear ribonucleoprotein H2 Hnrnph2 −2.19 0.0047

Lysophosphatidylcholine acyltransferase 2 Lpcat2 −2.19 0.022

Cleavage and polyadenylation specificity factor subunit 5 Nudt21 −2.19 0.000064

Interleukin enhancer-binding factor 2 Ilf2 −2.17 0.00038

Splicing factor 3B subunit 1 Sf3b1 −2.12 0.0039

P2Y purinoceptor 12 P2ry12 −2.09 0.019

Structural maintenance of chromosomes protein 3 Smc3 −2.07 0.019

THO complex subunit 2 Thoc2 −2.04 0.011

N-acylneuraminate cytidylyltransferase Cmas −2.03 0.010

Integrin alpha-M Itgam −2.03 0.0075

4-aminobutyrate aminotransferase, mitochondrial Abat −1.98 0.035

Prohibitin-2 Phb2 −1.98 0.019

Myelin expression factor 2 Myef2 −1.98 0.0018

SUN domain-containing protein 2 Sun2 −1.96 0.023

Band 4.1-like protein 2 Epb41l2 −1.95 0.0029

RuvB-like 2 Ruvbl2 −1.94 0.033
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TABLE 2 | Dysregulated proteins in miR-146 KO microglia in response to CPZ

exposure in vivo.

Protein Change P-value

CD180 antigen Cd180 2.031 0.000055

Macrosialin Cd68 2.028 0.0029

Beta-hexosaminidase subunit beta Hexb 2.35 0.00021

Beta-hexosaminidase subunit alpha Hexa 2.31 0.000013

Aspartate aminotransferase, cytoplasmic Got1 0.99 0.00060

Cytochrome c oxidase subunit 5B, Cox5b 1.22 0.000097

mitochondrial

Structural maintenance of chromosomes Smc1a −2.25 0.0032

protein 1A

RNA-binding protein 14 Rbm14 −1.68 0.0028

Lambda-crystallin homolog Cryl1 –1.53 0.0024

Cystatin-C Cst3 –1.27 0.000084

Proteins in bold were dysregulated only in the miR-146a KO mice.

in both datasets most pathways that were dysregulated in the
miR-146a KO mice were also altered in the WT mice (Table 5).

Expression of miR-146a and Its Target
Genes in Brain White Matter Lesions of MS
Patients
Differential expression of miR-146a has been described in MS
lesions examined by microarray (25). Here, we examined the
relative expression of miR-146a by qPCR in different lesion
types of the brain white matter (Figure 10A). We found
the highest expression in active lesions, although it was also
expressed in the normal-appearing white matter (NAWM),
chronic active as well as remyelinating lesions. We also examined
the absolute expression of validated target genes of miR-146a
(miRTarBase) determined by RNA sequencing in the active
lesions with the highest expression of miR-146a (www.msatlas.
dk) (Figure 10B). Nineteen of 88 strongly validated target
genes were significantly changed in active lesions (Figure 10B),
while none were changed in NAWM compared to control
(data not shown). We also examined the differential regulation
of these targets in the microglia proteomes, but only MIF
was identified.

DISCUSSION

In this study, we quantified and compared the expression of miR-
146a among resting CNS resident cell types in vitro, and found
the highest expression in microglia. Previous microarray data
(41) and data obtained from cell cultures (42) also pointed to
an enriched expression of miR-146a in microglia compared to
other CNS resident cells. LPS induced an upregulation of miR-
146a in BV-2 and EOC 13.31 microglial cell lines (43), as well
as in primary microglia cells (44). Based on these results, and
since miR-146a is also known to be involved in macrophage cell
proliferation (26), we first examined if the absence of miR-146a
alters the level of microglia in the adult mouse brain. We did not

find any difference in the number of microglia betweenmiR-146a
KOmice andWTmice, which indicates that the level of microglia
in the brain is not affected by miR-146a deficiency.

We next examined the functional role of miR-146a in
microglia cells in response to LPS stimulation in vitro by
measuring the level of cytokines and chemokines secreted
by stimulated miR-146a KO and WT microglia. As expected,
we found that microglia expressed various cytokines and
chemokines in response to LPS stimulation, but the expression
level was significantly higher in microglia lacking miR-146a. This
is in line with the suggested role of miR-146a in macrophages as
a regulator of the inflammatory response (10), and the findings
of others showing that miR-146a suppressed the inflammatory
response to LPS in macrophages/monocytes (45, 46). Since miR-
146a plays an important role in response to myelin damage in
vivo (16), and exposure to myelin in vitro has been found to
induce a unique pattern of cytokine and chemokine production
in microglia (47), we examined microglia response to myelin
stimulation in vitro. We found that myelin-stimulated miR-146a
KO microglia cells produced higher levels of TNF, IL-1b, IL-
6, IL-10, and CCL3 compared to WT cells. Despite increased
expression of cytokine/chemokines in the absence of miR-146a
in microglia, no specific pattern was observed: both pro- and
anti-inflammatory cytokines were increased.

Several previous studies examined microglia cytokine
and chemokine responses during in vivo demyelination
and remyelination in the CPZ model. Demyelination
induced increased phagocytosis by microglia accompanied by
upregulation of corresponding receptors and shift in microglia
phenotype: intracellular TNF production was increased, while
anti-inflammatory IL-10, IL-12, and pro-inflammatory IL-12
and IFN-γ production was not altered (22). Gene and protein
expression of two chemokines involved in MS pathology, CCL2
(MCP1) and CCL3 (MIP-1a) were induced by demyelination
although with different kinetics (16, 21, 48), and here we also
found increased production of both chemokines in microglia
stimulated by LPS in vitro. The gene of CXCL10 was also
upregulated during early remyelination in the corpus callosum,
and it may be produced by astrocytes and orchestrate early
microglia activation (24, 49). CXCR3, the receptor of CXCL10
is critical for the activation of microglia, and proinflammatory
transcripts were attenuated in the brain of CXCR3-deficient mice
during CPZ-induced demyelination (50). Another chemokine,
CXCL12 was also found to be increased and expressed by
CD11b+ microglia after 6-week demyelination along with its
receptor CXCR4 on OPCs, and maybe involved in promoting
remyelination (51). In our previous microarray analysis, a
number of genes related to microglia function were differentially
expressed in the demyelinating and remyelinating corpus
callosum with different kinetics (24): among them, genes of
several molecules involved in phagocytosis (CD14, FCGR1,
FCGR2, IFGP2, TIM3, ITB2, GAL3); the phagocytic receptor
TREM2 was upregulated during early remyelination supporting
previous observations (22). IL-6 produced by astrocytes
may regulate expression of TREM2 during experimental
demyelination and reduce microglia activation and proliferation
in connection with reduced demyelination (52). However, we
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FIGURE 8 | Supervised investigation of co-regulated microglia proteins isolated from wild-type and miR-146 KO mice during cuprizone-induced demyelination. (A)

The supervised model, Partial Least Squares-Discriminant Analysis (sPLS-DA) was used to identify discriminative proteins in the proteome of microglia isolated from

wild-type control mice, wild-type mice after 4-week cuprizone (CPZ) treatment, KO control, and KO mice after 4-week CPZ treatment. Component 1 (X axis) was able

to separate microglia according to proteome with or without CPZ treatment, while component 2 separated wild-type and KO microglia after 4-week CPZ treatment (Y

axis). (B) Hierarchical clustering of proteins in component 1. (C) Hierarchical clustering of proteins in component 2. See also Supplementary Table 2.

found decreased amount of IL-6 in the miR-146 KO mice during
demyelination, while these mice were protected against myelin
loss (16). Here we observed that absence of miR-146 increased

the production of IL-6 in response to both LPS and myelin,
indicating that cytokine and chemokine changes within the
tissue are the results of complex interaction among different cells
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FIGURE 9 | Supervised analysis of microglia proteome isolated from wild-type

and miR-146 KO mice during cuprizone-induced demyelination. (A) The

supervised model, Partial Least Squares-Discriminant Analysis (sPLS-DA) was

used to identify discriminative proteins in the proteome of microglia isolated

from wild-type control mice, wild-type mice after 4-week cuprizone (CPZ)

treatment, KO control, and KO mice after 4-week CPZ treatment (see
Methods). Component 3 (Y axis) separated control wild-type microglia from all

the other groups by 50 proteins. (B) Hierarchical clustering of 50 regulated

proteins in component 3. See also Supplementary Table 2.

and their functional changes. Transgenic production of IL-17 by
astrocytes increased the accumulation of activated microglia in
the demyelinating corpus callosum, but the expression of TNF,
CCL2, CCL3, and CXCL10 genes was not different compared to
WT mice (53). Immunization with MOG peptide, i.e., induction
of EAE during CPZ-induced demyelination resulted in microglia
activation in contrast to classic EAE, and also potentiated gene
expression of CXCL10, CCL2, and CCL3 in the corpus callosum
beside additional brain areas (54). Pretreatment of mice with

TABLE 3 | Dysregulated pathways specific to WT microglia in response to CPZ

exposure in vivo.

WT specific KEGG

pathways

FDR Changed pathway members

Valine, leucine and

isoleucine degradation

6.4e-06 Abat, Acaa2, Acat1, Aldh3a2,

Aldh6a1, Dld, Ivd, Pccb

Proteasome 2.74e-05 Psma5, Psmb10, Psmb6,

Psmb8, Psme1, Psme2,

Psme3

Alzheimer s disease 0.00017 Apoe, Atp5a1, Atp5c1, Atp5j,

Cox7a2, Ndufa4, Ndufv1,

Sdha, Uqcrc1, Uqcrc2,

Uqcrfs1

Antigen processing and

presentation

0.00069 Canx, Ctsb, Ctsl, Hspa4,

Psme1, Psme2, Psme3

mRNA surveillance pathway 0.0022 Dazap1, Nudt21, Ppp1ca,

Ppp1cb, Ppp1cc, Rnmt,

Wdr82

Glyoxylate and

dicarboxylate metabolism

0.0039 Acat1, Aco2, Cat, Pccb

Amino sugar and nucleotide

sugar metabolism

0.0049 Cmas, Cyb5r3, Hexa, Hexb,

Hk1

beta-Alanine metabolism 0.0082 Abat, Aldh3a2, Aldh6a1,

Cndp2

Oocyte meiosis 0.19 Ppp1ca, Ppp1cb, Ppp1cc,

Smc1a, Smc3, Ywhab

Fatty acid degradation 0.031 Acaa2, Acat1, Aldh3a2, Eci1

Cardiac muscle contraction 0.22 Atp1b1, Cox7a2, Uqcrc1,

Uqcrc2, Uqcrfs1

Non-alcoholic fatty liver

disease (NAFLD)

0.23 Cox7a2, Ndufa4, Ndufv1,

Sdha, Uqcrc1, Uqcrc2,

Uqcrfs1

Protein export 0.25 Spcs1, Spcs2, Spcs3

Herpes simplex infection 0.28 C1qbp, C3, Gtf2i, Hcfc1,

Ppp1ca, Ppp1cb, Ppp1cc,

Srsf7

RNA transport 0.32 Kpnb1, Nup155, Nup210,

Ranbp2, Thoc2, Thoc6, Tpr

Collecting duct acid

secretion

0.32 Atp6v1e1, Atp6v1f, Atp6v1g1

TABLE 4 | Dysregulated pathways specifc to miR-146a microglia in response to

CPZ exposure in vivo.

KO specific KEGG

pathways

FDR Changed protein members

Cysteine and methionine

metabolism

3.45e-05 Apip, Got1, Ldhb, Mdh1,

Mdh2

cGMP-PKG signaling

pathway

0.12 Atp1b1, Gtf2i, Ppp1ca, Vdac1,

Vdac2

Glycosphingolipid

biosynthesis—globo series

0.24 Hexa, Hexb

Glycosphingolipid

biosynthesis—ganglio series

0.24 Hexa, Hexb

glatiramer acetate (GA), an approved medication of relapsing
MS induced microglia activation during demyelination, and
microglia cultures treated with GA produced IL-4 and IL-10 (55).
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Besides the secretion of cytokines and chemokines, we
also examined if absence of miR-146a alters phagocytosis and
migration capacity.We found that the phagocytotic ability of LPS
stimulated microglia decreased in the absence of miR-146a. This
is in line with studies concerning monocytes and macrophages
suggesting that an overexpression of miR-146a is associated with
increased phagocytosis while miR-146a inhibition is associated
with decreased phagocytosis (56, 57). We have recently found a
reduced number of microglia in the corpus callosum of miR-146a
KOmice during CPZ-induced demyelination (16), which suggest
a reduced migration of microglia in the KO mice. In line with
those findings, we observed that the absence of miR-146a was
associated with decreased migration of myelin and LPS activated
microglia when compared to WT controls. Altogether, this
indicates that miR-146a plays a main role in activated microglia
where it helps induce a migrating and phagocytosing phenotype
while dampening cytokine and chemokine production. This may
contribute to the reduced demyelination induced by CPZ in
miR-146a KO mice (16).

To investigate the role of miR-146a in microglia activation
during demyelination, we used the CPZ mouse model of
experimental de- and remyelination (7, 21, 22). CD11c+

microglia cells are considered effective in presenting antigens,
but express proinflammatory cytokines at a lower level than
CD11c− microglia (7, 8, 40). We found that the percentage of
CD11c+ microglia increased in response to CPZ treatment in the
WT mice, which is in line with previous findings (7). However,
the increase was lower in the miR-146a KO mice compared
to WT mice. Others have suggested that a reduced phenotype
shift toward CD11c+ phenotype in response to CPZ exposure
is linked to impaired repair mechanisms (23), but since we
have previously shown that miR-146a KO mice were protected
against CPZ induced demyelination, axonal loss and weight loss
(16), it is likely that the difference in percentage of CD11c+

microglia observed in the present study is linked to the reduced
demyelination damage of the miR-146a KO mice.

Next, we sorted out resting microglia from WT and KO
mice, and also in vivo activated microglia from CPZ-exposed
WT and KO mice, and conducted a label free quantitative
proteomics analysis by mass spectrometry. In resting microglia,
we found no significant difference in the proteome between
WT and KO mice. During CPZ-induced demyelination, using
a stringent threshold level of FDR<0.05, we identified 137
dysregulated proteins in WTmicroglia, whereas only 10 proteins
were dysregulated in miR-146a KO microglia. The lower level
of dysregulated proteins in the KO microglia can be related to
a lower demyelination damage observed in these mice (16), or
to a less changed phenotype caused by the absence of miR-146.
We identified 4 out of the 10 changed proteins to be specifically
regulated in miR-146a KOmicroglia. These were GOT1, COX5B,
CRYL1, and CST3 proteins. GOT1, which was upregulated in the
miR-146a KO microglia, is a transaminase enzyme, which has
previously been shown to be neuroprotective in animal models
of amyotrophic lateral sclerosis (ALS) and cerebral ischemia,
regulating the level of extracellular glutamate (58, 59). COX5B
was also upregulated in the miR-146a KOmicroglia. This protein
is a mitochondrial membrane protein found in all cell types

participating in the synthesis of ATP. In neuronal cultures
COX5B has been reported to be neuroprotective in response
to oxygen-glucose deprivation (OGD) (60), and in MS lesions,
the gene coding for COX5b is downregulated (61). CST3 was
downregulated in miR-146a KO microglia. It is an inhibitor of
lysosomal proteinases, and upregulation of CST3 in glial cells
has been implicated in the process of neuronal death (62). On
the contrary, it has been suggested that CST3 is neuroprotective
in Alzheimer’s disease (63, 64). CRYL1 was also downregulated
in miR-146a KO microglia. This protein is involved in energy
production by catalyzing the dehydrogenation of L-gulonate in
the alternative glucose metabolic pathway, the uronate cycle
(65). To our knowledge, the potential implication of CRYL1 in
brain disorders has not been examined. Mitochondrial injury
and oxidative stress are believed to be fundamental elements
of CPZ induced pathology (66). In addition, activation of
microglia in response to myelin internalization is linked to the
stimulation of repair processes in response to tissue damage
in MS (67). Based on the known function of the changed
proteins as described above, it is possible that the upregulation
of GOT1 and COX5b, and downregulation of CST3 and CRYL1
in miR-146a KO microglial cells is involved in protecting the
miR-146a KO mice from demyelination in response to CPZ
exposure (16) by reducing oxidative damage and rendering a
repair prone microglia phenotype. However, this hypothesis
needs to be further addressed. For STRING analysis of enriched
KEGG pathways, we used a more relaxed statistics (FDR 0.15),
thus pathway analyses of WT microglia and miR-146a KO
microglia included 320 and 101 dysregulated proteins in response
to CPZ-induced demyelination, respectively. We identified 14
pathways that were enhanced in both WT and KO microglia
from CPZ-treated mice indicating that they are independent of
miR-146a. We also found 16 pathways that were only enhanced
in WT microglia indicating an indirect regulation by miR-146a.
Among these were pathways for Alzheimer disease, antigen
processing and presentation and fatty acid degradation indicating
a role for miR-146a in these processes. Two pathways, the
cysteine/methionine metabolism pathway and the cGMP-PKG
signaling pathway were specifically enriched in miR-146a KO
microglia indicating direct regulation by miR-146a. However,
only 2 proteins in these pathways were not found in the WT
proteomics dataset, therefore, enrichment of these pathways in
the KO microglia can be a statistical artifact due to a lower total
number of changed proteins in the miR-146a KO microglia.

Besides directly comparing the dysregulated proteins in ex
vivo microglia among the different in vivo conditions i.e., in
the WT and KO mice with or without CPZ treatment, we
further explored discriminative features of microglia proteomes
by Principle Component Analysis (PCA) and Partial Least
Squares-Discriminant Analysis (sPLS-DA). Both showed that
discrimination among the microglia proteomes was the best
when control and CPZ-treated conditions were compared.
Control WT microglia were separated from the other three
groups (control KO, CPZ-treated WT and KO) by 50
proteins based on sPLS-DA, and seven proteins were able
to separate microglia according to proteome with or without
CPZ treatment. The STRING analysis of these proteins showed
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TABLE 5 | Dysregulated pathways enriched in both WT and miR-146a KO microglia in response to CPZ exposure in vivo.

Strain KEGG pathway FDR Changed protein members

WT Spliceosome 1.61e−16 Cdc5l, Ddx42, Ddx5, Dhx15, Hnrnpc, Hnrnpm, Prpf19, Prpf4, Prpf8, Puf60, Sf3a1, Sf3a3,

Sf3b1, Sf3b3, Sf3b6, Snrnp200, Snrnp40, Snrpd1, Snrpe, Srsf7, Thoc2, U2af2

KO 0.0070 Cdc5l, Lsm3, Sf3b1, Snrnp200, Srsf9

WT Microbial metabolism in diverse

environments

9.88e−09 Acaa2, Acat1, Aco2, Acyp1, Akr1a1, Aldh3a2, Aldoa, Cat, Dlat, Dld, Hk1, Idh2, Ldha, Pccb,

Pdhb, Pgam1, Pon3

KO 4.42e−05 Aldoa, Echs1, Eno2, Ldhb, Mdh1, Mdh2, Suclg1, Suclg2

WT Metabolic pathways 1.36e−08 Abat, Acaa2, Acat1, Aco2, Adssl1, Akr1a1, Akr1b10, Aldh3a2, Aldh6a1, Aldoa, Atic, Atp5a1,

Atp5c1, Atp5j, Atp6v1e1, Atp6v1f, Atp6v1g1, Cmas, Cndp2, Dlat, Dld, Gba, Glud1, Hexa,

Hexb, Hk1, Hprt, Idh2, Isyna1, Ivd, Ldha, Lpcat2, Lta4h, Mogs, Ndufa4, Ndufv1, Pccb, Pdhb,

Pgam1, Pon3, Ptgs1, Sdha, Uqcrc1, Uqcrc2, Uqcrfs1

KO 4.54e−08 Ak2, Aldoa, Alox5, Apip, Atp6v1f, Atp6v1g1, Cox5a, Cryl1, Echs1, Eno2, Gatm, Got1, Hexa,

Hexb, Ldhb, Lta4h, Mdh1, Mdh2, Ndufb4, Pnp, Ppt1, Suclg1, Suclg2, mt-Co2

WT Lysosome 4.24e−08 Cd68, Ctsa, Ctsb, Ctsf, Ctsl, Fuca1, Gba, Hexa, Hexb, Lamp1, Lamp2, Npc2, Pla2g15, Psap

KO 4.15e−08 Cd68, Ctsb, Ctsl, Ctsz, Hexa, Hexb, Lamp2, M6pr, Npc2, Ppt1

WT Oxidative phosphorylation 6.33e−07 Atp5a1, Atp5c1, Atp5j, Atp6v1e1, Atp6v1f, Atp6v1g1, Cox7a2, Ndufa4, Ndufv1, Sdha,

Uqcrc1, Uqcrc2, Uqcrfs1

KO 0.0073 Atp6v1f, Atp6v1g1, Cox5a, Ndufb4, mt-Co2

WT Carbon metabolism 6.33e−07 Acat1, Aco2, Aldh6a1, Aldoa, Dlat, Dld, Hk1, Idh2, Pccb, Pdhb, Pgam1, Sdha

KO 2.15e−06 Aldoa, Echs1, Eno2, Got1, Mdh1, Mdh2, Suclg1, Suclg2

WT Parkinson s disease 1.23e−06 Atp5a1, Atp5c1, Atp5j, Cox7a2, Ndufa4, Ndufv1, Sdha, Slc25a5, Uba1, Uqcrc1, Uqcrc2,

Uqcrfs1, Vdac1

KO 0.0094 Cox5a, Ndufb4, Vdac1, Vdac2, mt-Co2

WT Pyruvate metabolism 1.92e−06 Acat1, Acyp1, Akr1b10, Aldh3a2, Dlat, Dld, Ldha, Pdhb

KO 0.12 Ldhb, Mdh1, Mdh2

WT Glycolysis / Gluconeogenesis 2.95e−06 Akr1a1, Aldh3a2, Aldoa, Dlat, Dld, Hk1, Ldha, Pdhb, Pgam1

KO 0.29 Aldoa, Eno2, Ldhb

WT Huntington disease 1.17e−05 Atp5a1, Atp5c1, Atp5j, Cox7a2, Ndufa4, Ndufv1, Sdha, Slc25a5, Sod1, Uqcrc1, Uqcrc2,

Uqcrfs1, Vdac1

KO 0.15 Cox5a, Ndufb4, Vdac1, Vdac2, mt-Co2

WT Citrate cycle (TCA cycle) 4.85e−05 Aco2, Dlat, Dld, Idh2, Pdhb, Sdha

KO 0.00035 Mdh1, Mdh2, Suclg1, Suclg2

WT Propanoate metabolism 4.85e−05 Abat, Acat1, Aldh3a2, Aldh6a1, Ldha, Pccb

KO 0.00035 Echs1, Ldhb, Suclg1, Suclg2

WT Phagosome 0.00077 Atp6v1e1, Atp6v1f, Atp6v1g1, C3, Canx, Ctsl, Itgam, Lamp1, Lamp2, Sec22b

KO 0.00033 Atp6v1f, Atp6v1g1, Ctsl, Lamp2, M6pr, Stx7, Tuba4a

WT Other glycan degradation 0.0011 Fuca1, Gba, Hexa, Hexb

KO 0.30 Hexa, Hexb

significant functional interactions based on gene ontologies
(GO) related to ganglioside catabolic and metabolic process,
lysosome organization, lipid storage, carbohydrate derivative
metabolic process indicating myelin pathways related probably
to myelin phagocytosis. However, significant interactions were
also related tomRNAmetabolic process, processing, and splicing,
but also biological processes related to negative regulation
of amine transport, cellular protein localization and negative
regulation of catecholamine secretion. These data indicate
that microglia respond to CPZ by dysregulation of several
pathways that are related not only to demyelination but
also to the cellular stress. Similar stress responses have also
been recently found by examination of the proteome and
modified proteome of bulk corpus callosum tissue during
CPZ-induced de- and remyelination (68). It is unclear, if

such CPZ-induced stress responses that may be different
in oligodendrocytes are responsible for preventing microglia
apoptosis while inducing death of other cell types, such
as oligodendrocytes and thymocytes in this model (69, 70).
Finally, cluster of ten proteins separated wild-type and KO
microglia after 4-week CPZ treatment based on sPLS-DA, and
they represented pathways of plasma membrane organization,
synaptic vesicle recycling, vesicle-mediated transport in synapse
and neurotransmitter secretion. Among these 10 proteins,
NGP (neutrophilic granule protein) that differentiate microglia
from peripheral macrophages is a “sensome’ allowing cells to
perceive and interact with the environment; another differentially
expressed protein Hexb also belongs to this group (6). One of
the proteins in this discriminating cluster, S100A9 up-regulated
IL-1beta, TNF and iNOS in microglia cell line (71). Additional
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FIGURE 10 | Expression of miR-146a and its target genes in different stages

of lesion evolution in the brain white matter of MS patients. (A) The expression

level of miR-146a was examined by qPCR in microdissected lesions

representing different stages of lesion evolution in the MS brain. *p < 0.05,

n=4–9, one-way ANOVA followed by Tukey’s post hoc test, mean ± SD. (B)

The 88 validated target genes of miR-146a were retracted from the

miRTarBase, and their RNA expression level was examined in the same lesions

by using the MS-Atlas (www.msatlas.dk). Nineteen genes were significantly

differentially regulated in active lesions compared to control. NAWM,

normal-appearing white matter; AL, active lesion; CAL, chronic active lesion;

RL, remyelinating lesion.

proteins related to synapse and vesicle organization may reflect
differential phagocytotic ability of WT and KO microglia (Syn2,
Rab3a, Sh3gl2, Clic1). Atp1a3 that belongs to the signature
of CD11c+ microglia (72) was also found among the cluster
proteins, supporting our data that CPZ induces this microglia
phenotype. Dysregulated proteins such as Ppm1g may indicate
differential stress responses between WT and KO microglia after
CPZ treatment, and this protein was recently identified in the
proteome of microglia cell line activated with LPS/IFN-γ (73).

Finally, by analyzing different WM lesions in the brain of
patients with progressive MS, we found that while miR-146
mRNA was increased in active lesions, it was not significantly
higher in NAWM, inactive, chronic active, and remyelinating
lesions, supporting previous microarray data that indicated
expression in the active but not in inactive lesions (25). We
therefore searched for target genes of miR-146a in the same
lesions by using the recently established MS-Atlas (www.msatlas.
dk). We found that out of 88 target genes, 19 were significantly

expressed in active lesions but none in the NAWM. Four target
genes among them IRAK2 were downregulated in active lesions.
Fifteen out of the 19 target genes were upregulated, among
them the genes of the receptor-ligand pair CXCR4 and CXCL12
that promotes differentiation of oligodendrocyte progenitors and
remyelination (51). Genes of cell death and fate (FAS, CASP7,
EGFR), inflammatory pathway molecules (ICAM1, TGFB1) and
major target pathways of miR-146a (TLR4, NOTCH2, NUMB)
were also upregulated.

In summary, here we identified microglia as the main
cellular source of miR-146a in the resting brain and aimed at
characterizing the phenotype of miR-146a KO microglia. We
found that microglia cells are highly activated by LPS and
myelin stimulation in vitro in the absence of miR-146a. In vivo,
the CD11c+ phenotype associated with antigen presentation is
decreased in the KO microglia, which may be explained by less
myelin damage in the KO mice (16). In addition, the number of
dysregulated proteins is also less in the KO microglia proteome
after in vivo activation with CPZ. We further identified GOT1,
COX5B, CRYL1, and CST3 proteins to be specifically regulated
in miR-146a KO microglia in response to CPZ exposure in vivo,
and hypothesize that the differential regulation of these proteins
could be involved in the induction of a microglia phenotype
that may contribute to protection against demyelination and
axonal loss in the miR-146a KO mice (16). Our data also
indicate that miR-146a expression is increased in active lesions
of the MS brain, and several target genes are also differentially
regulated. These data indicate a heterogeneous role of miR-
146a in microglia that may contribute to different pathological
outcomes in mouse and potentially in the MS brain depending
on the inflammatory environment.
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