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Toll-like receptors (TLRs) are a family of pattern recognition receptors and part of the first

line of defense against invading microbes. In humans, we know of 10 different TLRs,

which are expressed to varying degrees in immune cell subsets. Engaging TLRs through

their specific ligands leads to activation of the innate immune system and secondarily

priming of the adaptive immune system. Because of these unique properties, TLR

agonists have been investigated as immunotherapy in cancer treatment for many years,

but in recent years there has also been growing interest in the use of TLR agonists in

the context of human immunodeficiency virus type 1 (HIV-1) cure research. The primary

obstacle to curing HIV-1 is the presence of a latent viral reservoir in transcriptionally silent

immune cells. Due to the very limited transcription of the integrated HIV-1 proviruses,

latently infected cells cannot be targeted and cleared by immune effector mechanisms.

TLR agonists are very interesting in this context because of their potential dual effects as

latency reverting agents (LRAs) and immune modulatory compounds. Here, we review

preclinical and clinical data on the impact of TLR stimulation on HIV-1 latency as well as

antiviral and HIV-1-specific immunity. We also focus on the promising role of TLR agonists

in combination strategies in HIV-1 cure research. Different combinations of TLR agonists

and broadly neutralizing antibodies or TLRs agonists as adjuvants in HIV-1 vaccines have

shown very encouraging results in non-human primate experiments and these concepts

are now moving into clinical testing.
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INTRODUCTION

Human immunodeficiency virus type 1 (HIV-1) infection can today be completely suppressed by
antiretroviral therapy (ART). However, during the early phase of primary HIV-1 infection, the virus
establishes a reservoir in infected long-lived immune cells, which necessitates life-long ART in
order to prevent disease progression (1, 2). This latent HIV-1 reservoir is predominantly found
in long-lived memory CD4+ T cells in which the provirus is transcriptionally silent and thus go
undetected by the host immune system (3, 4). These proviruses can be (re)activated and go on
to transcribe and form infectious particles, leading to re-emergence of active infection if ART
is stopped. The HIV-1 reservoir is believed to be maintained through the long-lived nature and
homeostatic proliferative capabilities of the latently infected memory T cells (5, 6).

The innate immune system constitutes a vital part of the early defense against infections and in
controlling established HIV-1 infection. Therefore, strategies aimed at boosting innate immunity
have gained great interest in HIV-1 cure research. Endogenous interferon production induced
by activation of Toll-like receptors (TLRs) is one of the innate immune’system’s first antiviral
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responses upon infection. TLRs are in the family of pattern
recognition receptors (PRRs) which detect pathogen-associated
molecular patterns (PAMPs) (7, 8). TLRs also respond to signs
of host cell damage through ligands called damage-associated
molecular patterns (DAMPs) (9).

TLRs are expressed on many different immune cells including
natural killer (NK) cells, macrophages, B cells, and to a
high degree on dendritic cells (DCs) (10) (Table 1). TLR1,
TLR2, TLR4, TLR5, TLR6, and TLR10 are expressed on
the cell surface, whereas TLR3, TLR7, TLR8, and TLR9 are
located in the membrane of the intracellular endosomes (8,
14, 20). This partition in localization reflects the disparate
pathogen-sensing function of these two groups. The cell
surface-associated TLRs are mainly responsible for detecting
components from extracellular microbes such as bacteria and
fungi, whereas the TLRs in the endosomal compartment
mainly detect virus and intracellular bacteria (18, 22, 23)
(Table 1). TLRs are transmembrane proteins consisting of three
different domains: an ectodomain consisting of leucine-rich-
repeats (LRR) mediating ligand recognition, a transmembrane

TABLE 1 | A schematic outline of TLR localization, expression on immune cells, receptor complex formations, ligands, recruited TIR domain-containing adaptor

molecules, and cytokine outcomes.

TLR type Cell type Receptor-

complex

Ligand TIR-adaptor Outcome

(A) TLRs on cell surface

TLR1 Monocytes

DCs

T cells

1–2 - Lipopeptides from bacteria and mycobacteria MyD88 Pro-inflammatory cytokines

TLR2 Monocytes

Macrophages

DCs

2–1

2–2

2–6

2–10

- Components from the cell wall of gram-positive bacteria

- Glycoprotein from virus

- Zymosan from fungi

MyD88 Pro-inflammatory cytokines

TLR4 Monocytes

DCs

4-MD2 - Lipopolysaccharides from gram-negative bacteria

- Envelope components of respiratory syncytial virus

MyD88

TRIF

TRAM

TIRAP/MAL

Pro-inflammatory cytokines

IFNs

TLR5 Monocytes

T cells

5–5 - Flagellin from flagellated bacteria MyD88 Pro-inflammatory cytokines

TLR6 Monocytes

Macrophages

B cells

6–2 - Lipopeptides from Mycoplasma MyD88 Pro-inflammatory cytokines

TLR10 B-cells 10–2 - Ligands from Listeria

- Ligands from Influenza A

(B) TLRs in endosomal compartments

TLR3 DCs 3-3 - Viral double-stranded RNA

- Self-RNA from damaged cells

TRIF Pro-inflammatory cytokines

IFNs

TLR7 pDCs

B cells

7-7 - Viral single-stranded RNA MyD88 Pro-inflammatory cytokines

IFNs*

TLR8 Monocytes

DCs

8-8 - Viral single-stranded RNA

- Bacterial RNA

MyD88 Pro-inflammatory cytokines

TLR9 pDCs

B cells

9-9 - CpG containing DNA from bacteria and virus

- Self-DNA from damaged cells

- Hemozoin from Plasmodium Falciparum

MyD88 Pro-inflammatory cytokines

IFNs*

*IFNs through MyD88.

The table is a summary of TLR properties described previously (11–20). It should be noted that some immune cells subsets and ligands have been left out for the sake of overview and

relevance to the subjects at hand. TLR expression on epithelial cells have been left out of Table 1 as well, but have been reviewed elsewhere (21).

domain, and the cytosolic domain Toll/IL-1R (TIR), which
mediates downstream signaling (18). The cytosolic domain can,
upon activation of the TLR, recruit different domain-containing
adaptor molecules such as myeloid differentiation primary-
response protein 88 (MyD88), TIR-domain containing adaptor
protein (TIRAP)] also called MyD88 adaptor-like (MAL), TIR-
domain containing adaptor protein inducing IFN-β (TRIF),
and TRIF-related adaptor molecule (TRAM) (23–25). The
MyD88 signaling pathway used by all of the TLRs, except for
TLR3, activates nuclear factor-κB (NF-κB) andmitogen-activated
protein kinases (MAPKs) leading to the production of pro-
inflammatory cytokines. The TRIF–dependent pathway used by
TLR3 and TLR4 leads to induction of type 1 interferons (IFNs)
in addition to pro-inflammatory cytokines (18, 20, 23). The
cytokine induction initiated by TLR activation not only triggers
an innate immune response, but also takes part in initiating and
shaping the adaptive immune response (22, 26).

The present review focuses on the emerging potential of
synthetic TLR agonist treatment in HIV-1 cure research both
alone and in combination with other interventions.
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TLR AGONISTS AS LATENCY REVERSING
AGENTS (LRA)

The latent HIV-1 reservoir constitutes the main barrier to
a cure for HIV-1 infection (27, 28). One of the proposed
strategies toward overcoming this obstacle is the “shock and
kill” approach (28, 29). The hypothesis behind this strategy is
that LRA administration will (re)activate HIV-1 transcription in
latently infected cells, leading to expression of viral antigens on
their surface. This will in turn expose infected cells to immune-
mediated killing and/or apoptosis due to viral-cytopathic effects
while concurrent ART prevents released virions from infecting
other immune cells (30).

A widely investigated group of LRAs is the histone deacetylase
inhibitors (HDACi) including romidepsin, vorinostat,
panobinostat, and chidamide (31–33). Inhibition of the histone
deacetylase enzymes leads to a more accessible chromatin
structure, thus enabling transcription of the latent proviral
HIV-1 DNA (34, 35). While HDACi are now being investigated
in combination with HIV-1 vaccines (36), broadly neutralizing
antibodies (bNAbs) (www.clinicaltrials.gov: NCT03041012), and
other LRAs, none of these HDACi alone have so far been capable
of inducing a substantial reduction of the HIV-1 reservoir in
clinical trials (37).

Protein kinase C (PKC) agonists such as bryostatin and
prostratin (38) have shown significant latency reversal activity
ex vivo but may be too toxic to be dosed at active concentrations
in humans (39). However, the latency reverting effects of a
natural plant extract containing ingenols, yet another group of
PKC agonist, is currently under being tested in a clinical trial
in HIV-1 infected individuals (NCT02531295). Disulfiram, a
drug used for alcohol cessation, has also been tested in clinical
trials as a potential LRA (40). Disulfiram induced increased
levels of cell-associated unspliced HIV-1 RNA (usRNA) in study
participants of three different dosing groups, but it did not lead
to significant changes in either total HIV-1 DNA or plasma
levels of HIV-1 RNA. The latency reversing properties of other
compounds such as cytokines and other epigenetic modifiers
have similarly been investigated (41, 42). However, the discovery
of a single therapeutic capable of inducing significant HIV-1
reservoir alterations is still to be made.

The first TLR agonist to draw attention to the potential
utilization of TLR agonists as LRAs was that of the antisense
oligodeoxynucleotide (ODN) phosphorothioate Gene-
Expression Modulator 91 (GEM91). GEM91 was initially
shown to inhibit HIV-1 replication ex vivo in human peripheral
blood mononuclear cells (PBMCs) from HIV-1 infected donors
(43). Unexpectedly, a subsequent GEM91 dose-escalation
study showed increased viremia following administration in
HIV-1 infected individuals contradictory of the ex vivo findings
(44). It was later discovered that this potential induction of
viremia was due to a CpG motif in GEM91 leading to TLR9
stimulation. Thus, it was proposed that the increased viremia
was caused by innate immune activation and concomitant HIV-1
(re)activation (45–47).

Several TLR agonists have since been investigated as LRAs
because of their ability to induce immune activation, and in doing

so, causing (re)activation of silent HIV-1 in latently infected cells
and boosting the antiviral immune response. These mechanisms
are elaborated in the section “Immunomodulatory properties of
TLR agonists.”

Ex vivo Experiments
Utilizing the optimal cell model for assessment of latency
reversal is of great importance and should consider the type
of LRA investigated. The majority of in vitro/ex vivo LRA
experiments focuses on latently infected T cell lines or primary
T cells. These cell models work well when investigating LRAs
such as HDACi which (re)activate HIV-1 transcription by a
direct impact on the target cell. Yet, most TLRs are not
expressed at physiological levels on CD4+ T cells, which is
why this lymphocyte subset is often unresponsive to direct
TLR stimulation (e.g., by TLR7 or TLR9 agonists) (Table 1).
Instead, these TLR agonists induceHIV-1 transcription indirectly
through activation of innate immune cells such as DCs (Table 2)
(18, 22, 23, 54).

This issue was highlighted in a study by Novis et al. who
tested a broad panel of TLR agonists as LRAs (48). In a
central memory CD4+ T cell (TCM) model, they found that
only the TLR1/2 agonist Pam3CSK4 was able to significantly
increase HIV-1 transcription, measured by intracellular p24 Gag
protein expression, after stimulating the cells for 3 days (48).
Subsequently, the latency reversing properties of Pam3CSK4
were tested ex vivo utilizing TCM isolated from aviremic HIV-1
infected donors. They found that HIV-1 transcription increased
in two out of seven donors after Pam3CSK4 stimulation
compared to five out of seven after panobinostat stimulation,
measured by the level of usRNA. Pam3CSK4 was demonstrated
to (re)activate HIV-1 transcription via an NF-κB and NFAT-
dependent pathway, but without induction of IFNs, thereby
avoiding T cell activation (CD69+ and CD25+) and proliferation
(cell proliferation dye assessment). However, the degree of HIV-
1 (re)activation induced by Pam3CSK4 was lower than that
of panobinostat.

In 2018, Kaur et al. conducted a comprehensive investigation
of the LRA properties of agonists of 6 different TLRs(1/2, 3, 4,
5, 7, and 8) on both PBMCs and isolated CD4+ T cells from
HIV-1 infected donors on long term ART (49). All TLR agonists
were able to induce a modest but statistically significant fold-
increase of supernatant HIV-1 RNA from PBMCs compared to
vehicle controls. In isolated CD4+ T cells however, only the
TLR1/2 agonist Pam3CSK4 was able to significantly increase the
supernatant HIV-1 RNA level. These findings are in line with
the findings of Novis et al. and indicate TLR1/2 expression on
CD4+ T cells.

Thibault et al. tested the direct HIV-1 latency reversing
properties of the TLR5 agonist flagellin on TCM (50), which in
a previous study showed indications of TLR5 expression (55)
(Table 1). Resting TCM isolated from healthy donor PBMCs
were infected with luciferease-encoding pseudotyped HIV-1
particles. When treated with flagellin, the isolated TCM showed
enhanced HIV-1 gene expression compared to mock-treated
controls, assessed by fold increase of HIV-1 long terminal repeat-
driven luciferase activity. However, when flagellin stimulation

Frontiers in Immunology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 1112

www.clinicaltrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Martinsen et al. TLR Agonists in HIV-1 Cure

TABLE 2 | Schematic overview of ex vivo experiments investigating the utility of TLR agonists as LRAs included in the manuscript.

References TLR agonist Cell type Study design Endpoint Results

Novis et al. (48) 1) 1/2, 2/6, 3, 4, 5,

7, 7/8, 9

1) TCM cell model 1) In vitro stimulation 1) Intracellular p24 Gag

protein expression

1) Only the TLR1/2 agonist

induced significant increase

(but the TCM cell model does

not express most TLRs)

2) 1/2 2) TCM from aviremic HIV-1

infected donors

2) Ex vivo stimulation 2) Intracellular level of

usRNA

2) Significant increase in 2 of

7 donor samples (5 of 7

for panobinostat)

Kaur et al. (49) 1) 1/2, 3, 4, 5, 7, 8 1) PBMCs from aviremic HIV-1

infected donors

1) Ex vivo stimulation 1) Supernatant HIV-1

RNA level

1) All TLR agonists induced

significant increase

2) 1/2, 3, 4, 5, 7, 8 2) CD4+ T cells from aviremic

HIV-1 infected donors

2) Ex vivo stimulation 2) Supernatant HIV-1

RNA level

2) Only TLR ½ agonist

Pam3CSK4 induced

significant increase

Thibailt et al. (50) 1) 5 1) Resting TCM from healthy

donor PBMCs, infected with

luciferease-encoding

pseudotyped HIV-1

1) Ex vivo stimulation 1) HIV-1 long terminal

repeat-driven luciferase

activity

1) Increase

2) 5 2) resting CD4+ T cells from

aviremic HIV-1 infected donors

2) Ex vivo stimulation 2) Intracellular p24 Gag

protein level

2) No increase

Tsai et al. (51) 1) 7 1) PBMCs from aviremic HIV-1

infected donors

1) Ex vivo stimulation 1) Supernatant mean

HIV-1 RNA levels

1) Increase

2) 7 2) PBMCs from aviremic HIV-1

infected donors, treated with

antibodies against IFNAR on T

cells

2) Ex vivo stimulation 2) Supernatant mean

HIV-1 RNA levels

2) No increase

3) 7 3) CD4+ T cells from aviremic

HIV-1 infected donors

3) Ex vivo stimulation 3) Supernatant mean

HIV-1 RNA levels

3) No increase

Bam et al. (52) 1) 7 1) PBMCs from healthy donors 1) Pre-stimulating with

GS-9620 for 2 days

prior to infection with a

luciferase reporter virus

containing HIV-1

1) HIV-1 replication 1) Inhibition

2) 7 2) CD4+ T cells from healthy

donors

2) Pre-stimulating with

GS-9620 for 2 days

prior to infection with a

luciferase reporter virus

containing HIV-1

2) HIV-1 replication 2) No inhibition

Offersen et al. (53) 1) 9 1) PBMCs from aviremic HIV-1

infected donors

1) Ex vivo stimulation 1a) Level of usRNA in

CD4+ T-cells extracted

from PBMCs post

stimulation

1a) Increase

1b) Level of IFN-α in

cell supernatant

1b) Increase

The studies all have several endpoints in their study setup. The most relevant endpoints in the setting of this review have been outlined as (1), (2), and (3) for overview.

was tested on resting CD4+ T-cells from virally suppressed HIV-
1 infected donors, no induction of intracellular p24 Gag protein
was detectable. The results of Thibault et al. are in accordance
with those of Novis et al. and Kaur et al., but raise uncertainty
regarding the physiological effects of the previously indicated
TLR5 expression on T cells.

Tsai et al. demonstrated that GS-9620, a TLR7 agonist,
was capable of (re)activating latent HIV-1 in PBMCs from
HIV-1 infected donors after 4 days of stimulation, measured
as a 1.6-fold increase in mean HIV-1 RNA levels in the
cell supernatant compared to vehicle-treated controls (51).
This effect was mediated by activation of plasmacytoid
dendritic cells (pDCs) leading to an IFN-driven CD4+ T

cell activation (CD69+), which was demonstrated by the
lack of HIV-1 RNA production when PBMCs were treated
with antibodies against interferon-α receptors (IFNAR) on
T cells. No changes in supernatant HIV-1 RNA was found
when performing direct stimulating of pure CD4+ T-cells,
which is consistent with the above-mentioned inconsiderable
TLR7 expression on human T-cells. In corroboration with
these findings, Bam et al. demonstrated inhibition of HIV-
1 replication in PMBCs pre-stimulated with GS-9620
for 2 days prior to infection with a luciferase reporter
virus containing HIV-1 (52). This antiviral effect was not
observed when isolated CD4+ T cells or macrophages were
equivalently pre-stimulated.
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As briefly described above, synthetic ODNs containing CpG
motifs were the first version of the TLR9 agonists and were
mainly investigated in the context of cancer treatment (56).
The structurally different TLR9 agonists such as MGN1703 were
later developed to improve the tolerability of the drug class
(57). Our group investigated the “shock and kill” properties
of the TLR9 agonist MGN1703 on PBMCs from HIV-1
infected individuals on ART (53). MGN1703 stimulation led
to increased levels of usRNA in CD4+ T-cells after 16 h. This
effect was mediated indirectly by activated pDCs secreting
IFNs, inducing T-cell activation (CD69+). MGN1703 did
however not increase the usRNA levels to the same extent
as panobinostat.

Lastly, other studies have also suggested that agonists of
TLR2/7 and TLR8 possess latency reversing properties ex vivo
and in vivo (58, 59). Extensional investigation of latency reversing
properties of TLR agonists utilizing cell lines and mouse models
have been reviewed elsewhere (25, 60, 61).

The findings of the preclinical studies presented here
suggest that while some TLRs are present on T cells, the
physiological effect of TLR-mediated (re)activation of latent HIV-
1 in transcriptionally quiescent memory T cells occur in large by
means of DC activation and subsequent IFN-α stimulation of T
cells. Therefore, the full immune stimulating or latency reversing
effect of synthetic TLR agonists can often not be evaluated by
utilizing single immune cell models (Table 2).

Non-Human Primate (NHP) Studies
Evaluating pre-clinical in vivo studies investigating the
therapeutic potential of TLR agonists in HIV-1 cure research,
the present review will be focusing on NHP studies, as the
TLR expression on immune cells of NHPs bare the closest
resemblance to that of human immune cells, compared to
smaller animal models (62, 63).

Of the TLR agonists investigated ex vivo as described above,
only agonists of TLR3, TLR7, and TLR9 have progressed into
clinical testing as potential LRAs in the field of HIV-1 cure
research. However, TLR3 agonist testing quickly progressed from
small animalmodels into clinical trials in advanced cancer disease
and its LRA potential has not been assessed in NHPs (64–67).
The majority of the preclinical work concerning TLR9 agonists
have similarly been conducted in the field of cancer treatment
and is thus beyond the scope of this review but has been described
elsewhere (68).

Two different groups have investigated the potential of TLR7
agonists as LRAs in vivo in NHP. Lim et al. showed that the
TLR7 agonist GS-986, was capable of inducing transient simian
immunodeficiency virus (SIV) plasma RNA blips of up to 1,000
copies/mL, after 24 to 48 h (69). GS-986 was administered in
escalating doses (0.1–0.3 mg/kg) by oral gavage and led to SIV
RNA blips in 4 out of 4 virally suppressed rhesus macaques
on ART, compared to 0 of 6 vehicle-treated controls. The blips
were seen after dose 4, 5, 6, and 7, but not after the first
3 doses, which could indicate a priming effect of the TLR
agonist. T, NK, and B cells were transiently activated within
24 to 48 h following stimulation and then returned to baseline.
In the TLR7 agonist treated NHPs, the viral reservoir was

reduced by an average of 75% as measured by total SIV DNA
in memory CD4+ T cells [isolated from PBMCs, mononuclear
cells from lymph node (LNMCs) and gastrointestinal mucosa
(GMMCs)] compared to no change in total SIV DNA among
control animals. However, there was no difference in time to
viral rebound between the GS-986-treated group and the control
group following ART cessation.

In a subsequent experiment, 9 NHPs, received 10
administrations of either GS-986 (0.1 mg/kg) or GS-9620
(0.05 or 0.15 mg/kg) followed by a 3-months resting period
and then another 9 doses. 2 NHPs constituted a vehicle-control
group. All TLR7 agonist-treated NHPs experienced blips in
plasma SIV RNA levels during the first interventional period,
but during the second interventional period, only 1 viral blip was
measured, even though the activation level of T, NK and B cells
was comparable between the two dosing periods. The reason
for this variation is not clear but it could indicate increasing
immune tolerance to TLR7 activation following repeated
stimulation. Total SIV DNA was however again significantly
reduced in both PBMCs and GMMCs in a combined analysis
of all TLR7-agonists-treated groups compared to controls. In a
modified viral outgrowth assay, the majority of TLR7-treated
NHPs displayed a reduction in the inducible SIV reservoir. Two
of the NHPs had no inducible SIV reservoir and showed durable
control for more than 700 days after interruption of ART.
Subsequent CD8+ T-cell depletion did not lead to emergence of
virus, and neither did adoptive transfer of PBMCs and LMMCs
to naïve macaques, suggesting a complete eradication of the
viral reservoir.

Surprisingly, Del Prete et al. were unable to reproduce the
findings of Lim et al. (70). Their study also included SIV-infected
rhesus macaques that received 12 doses (0.15 or 0.5 mg/kg)
of GS-9620, administered by oral gavage. No spikes in plasma
SIV RNA levels were observed and no significant changes in
transcriptional RNA/DNA ratios in PBMCs, LNMCs, or GMMCs
were detected at 24 and 48 h post-dosing. All NHPs rebounded
within 4 weeks upon ART cessation. CD4+ T cells showed no
increased activation but at 24 h post-dosing CD8+ T cells had
increased co-expression of CD38 and HLA-DR.

The cause of the difference in LRA effect and outcome in the
two comparable NHP studies is unclear. In the study by Lim
et al., ART was initiated on day 65 of infection and continued for
around 437 days before the intervention, whereas Del Prete et al.
initiated ART on day 13 and waited 525 days before intervening.
The timing of ART initiation and/or of intervention might
affect the viral reservoirs differently which could contribute to
the discrepant findings. NHPs were infected intrarectally with
SIVmac251 in the study of Lim et al., and intravenously with
SIVmac239X in the study of Del Prete et al., which could also
lead to varying reservoir properties.

Collectively, these findings indicate that the latency reversing
effect of TLR7 agonists in NHPs might be very sensitive to
alterations in model conditions such as timing of treatment
initiation in relation to the course of infection, immune status,
and SIV/SHIV challenge strain. The measured effects of the
treatment may also depend greatly on the administered dose,
dosing intervals, and timing of sampling.
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Clinical Trials
The first clinical trial investigating the effects of a TLR3
agonist in HIV-1 infected individuals on long-term ART was
recently published by Saxena et al. (71). The synthetic double-
stranded RNA polyinosinic:polycytidylic acid (poly-I:C) and
its more stabilized form containing poly-L-lysine (poly-ICLC)
have previously been tested in human cancer studies (67, 72).
Saxena et al. tested poly-ICLC on 12 HIV-1 infected donors
in doses of 1.4mg administered subcutaneously once daily on
two consecutive days. Follow-up measurements were obtained
on day 4 and 8 and at week 4, 16, and 48. During the study
period, poly-ICLC treatment did not affect the level of usRNA
or total HIV-1 DNA in CD4+ T-cells. In addition, no significant
changes in activation of DCs (CD40+CD83+CD86+) or T
cells (HLA-DR+CD38+) were observed, except for a significant
upregulation of CD38 expression on CD8+ T-cells at day 4,
which normalized at day 8. The authors speculated that higher
poly-ICLC doses, more frequent administration, or combinations
with other therapeutics might be needed to achieve a robust
immunological impact.

Assessing the safety of the TLR7 agonist GS-9620, Riddler et al.
recently reported findings from a phase I dose escalation placebo-
controlled study including 48 HIV-1 infected individuals on
ART (NCT02858401) (73). In 6 treatment groups, GS-9620 doses
ranging from 1 to 12mg GS-9620 were administered every other
week for up to 19 weeks. GS-9620 was generally well-tolerated,
even in the 12mg group, and there were no discontinuations due
to adverse events. There was however no evidence of GS-9620
effectively impacting the latent HIV-1 reservoir as no consistent
changes were observed in levels of plasma HIV-1 RNA, usRNA
or total HIV-1 DNA in CD4+ T cells between the different
groups. Another ongoing study with this compound is assessing
the safety and efficacy of GS-9620 in ART-treated HIV-1 infected
controllers, defined as individuals having a pre-ART viral load
between 50 and 5,000 copies/mL (NCT03060447).

Since 2007, our group has been working with TLR9 agonists
both as vaccine adjuvant and immune stimulator in HIV-
1 infection. We conducted a pilot study in HIV-1 infected
individuals whom received 60mg of TLR9 agonist MGN1703,
administered subcutaneously twice weekly over 4 weeks (74).
During the 4-week intervention period, 6 of the 15 participants
had detectable plasma HIV-1 RNA levels in the range of 21–
1,571 copies/mL. This suggested a moderate latency reversing
effect ofMGN1703, but no reduction was observed in the proviral
reservoir size assessed by total and integrated HIV-1 DNA in
CD4+ T cells. No changes in levels of replication-competent
proviruses were detected either. Both pDCs and T cells were
activated as demonstrated by increased expression of the co-
stimulatory markers CD40 and CD86 on pDCs and CD38 and
HLA-DR on T cells. Surprisingly, the level of transcriptionally
active CD4+ T cells, measured as cell-associated usRNA levels,
decreased significantly during the 80-days follow-up period.

Based on these favorable immunological findings, an
extension of the this study was conducted during which
MGN1703 was administered twice weekly for 24 weeks to 12
HIV-1 infected participants (75). The prolonged intervention
did, however, not reduce the size of the viral reservoir, assessed

by measurements of total HIV-1 DNA or replication competent
virus in a viral outgrowth assay. One participant (ID113)
was able to control viral replication to undetectable levels for
150 days upon ART cessation. Immunological control in this
individual was shown to be mediated in part by a superior level of
HIV-1-specific CD8+ effector memory T cells, compared to the
other study individuals. Of note, the IgG neutralization capacity
of ID113 had increased during the MGN1703 treatment,
supporting beneficial effect of the TLR agonist on adaptive
immunity and in particular on B cell maturation (76).

Although several ex vivo and some in vivo studies have
demonstrated encouraging results regarding the latency
reversing effect of TLR agonists, there are no reproduceable data
showing significant impact on the HIV-1 reservoir in clinical
trials following TLR agonist treatment. A potential issue of LRAs
as part of a HIV-1 cure strategy is that the focus is on latently
infected CD4+ T cells as the main target of the latency reversal.
While infected memory CD4+ T cells constitutes a long-lived
HIV-1 reservoir, other cell types have been shown to harbor
replication competent virus such as monocytes, macrophages,
and dendritic cells (77, 78). Additionally, infected cells reside in
other compartments than the blood including the lymph nodes
and gut associated lymphoid tissue, and potentially also reside
in the brain, the genital tract, and the lungs (79–84). However,
the latter compartments are notoriously difficult to sample in
clinical trials.

Collectively, based on the current knowledge we believe there
is evidence for latency reversal following TLR (particularly TLR9)
agonist treatment in HIV-1-infected individuals. However, TLR
agonists’ potency as LRAs appear to be relatively modest but
as we outline below, certain TLR agonists are potent immune
stimulators and it is in this capacity that theymay have the biggest
role to play in HIV-1 cure strategies.

IMMUNOMODULATORY PROPERTIES OF
TLR AGONISTS

Upon TLR activation of DCs, proinflammatory cytokines such as
IL-12 and IFNs are secreted, leading to auto- and/or paracrine
activation of immune cells including other DCs, macrophages,
NK cells, and T cells (85, 86). Activation of the DCs additionally
leads to a downregulation of the inflammatory chemokine
receptor CCR6 on the DC surface and upregulated expression
of the lymphoid-homing receptor CCR7. This triggers DC
migration from tissues to lymph nodes where they can present
antigen to T and B cells and thus mediate an adaptive immune
response (22, 87, 88). IFNα-α, produced mainly by pDCs
activates both CD4+ and CD8+ T cells via their interferon
alpha receptor (IFNAR) (51, 89, 90). Krieg et al. demonstrated a
significantly increased frequency of antigen specific CD8+ T cells
(0.07–3.00%) in 8 of 8 melanoma patients receiving a melanoma
antigen vaccine adjuvanted with CpG ODNs compared to eight
control patients receiving the vaccine alone (91). Accordingly,
several clinical studies from our group have demonstrated
HIV-1 (re)activation through an IFNα-α induced CD4+ T-
cell activation and increased HIV-1-specific polyfunctionality of
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CD8+ T cells following TLR9 stimulation (74, 75, 92). Similar
effects have been demonstrated ex vivo and in vivo in TL7TLR7
agonist studies (51, 93, 94).

NK cells can mediate direct killing upon interaction with
foreign pathogens or cells exhibiting signs of stress, but they
are also the primary effector cells in mediating antibody-
dependent cellular cytotoxicity (ADCC) via their Fcγ receptor
(CD16) (26, 95). The cytotoxic effect is executed through the
release of perforins which allows secreted cytotoxic granzymes
to enter the targeted cell (96). The analogous anti-viral effector
function of activated macrophages is that of phagocytosis, where
the macrophage will devour entire infected cells (96). This
effect can, like ADCC, be enhanced by antibodies and is thus

called antibody-dependent cellular phagocytosis (ADCP). Both
macrophages and NK cells are important in clearing HIV-1
infected cells (97, 98), and TLR agonists can thus work to increase
their effector functions both directly through TLRs expressed on
macrophages and NK-cells (Table 1) and indirectly via activation
of B-cells and DCs (Figure 1).

Our group demonstrated enhanced NK cell function
following ex vivo MGN1703-stimulation of PBMCs from HIV-
1-infected individuals on long-term ART (53). The cytotoxic
(CD56dim CD16+) and cytokine-producing (CD56bright

CD16±) NK cells showed a significant 7.5- and 2.2-fold increase
in CD69-expression, respectively, after 48 h of stimulation.
Compared to unstimulated NK cells, MGN1703-stimulated

FIGURE 1 | A conceptual illustration of the effects of Toll-like receptor (TLR) agonists and broadly neutralizing antibodies (bNAbs) in combination. (A) TLR agonist

priming of innate immune cells through plasmacytoid dendritic cells (pDC). The primed innate immune cells (here depicted macrophage and natural killer (NK) cell) bind

the broadly neutralizing antibodies via the Fcγ receptors and mediate antibody-dependent cellular phagocytosis (ADCP) or cytotoxicity (ADCC) of the productively

infected CD4+ T cells. (B) TLR agonists and bNAbs-antigen complexes cross-prime CD8+ T cells. TLR agonists and bNAbs-antigen complexes bind to pDCs which

cross-presents viral antigens on the MHC class I molecule to the naïve CD8+ T cells leading to development of HIV-1-specific CD8+ T cells (graphics: Gitte

Skovgaard Jensen, AUH).
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NK cells additionally showed enhanced inhibition of HIV-1
production from autologous infected CD4+ T cells. Tsai et al.
similarly demonstrated increased levels of activated NK cells
(both CD56dim CD16+ and CD56+ CD16-) upon GS-9620
stimulation of PBMCs from HIV-1-infected donors on long-
term ART (51). Thus, both TLR7 and TLR9 agonists have
demonstrated NK cell-activating properties ex vivo which
have subsequently been confirmed in vivo (69, 70, 73–75, 99).
Broad activation of antiviral immunity evidenced by enhanced
transcription of interferon-stimulated genes (ISGs) have
been observed with TLR3, TLR7, and TLR9 agonists in vivo
(69–71, 74).

Thus, both TLR7 and TLR9 agonists are very potent enhancers
of innate immune effector functions and broad stimulators of
adaptive immunity. The activation of antigen presenting immune
cells in the presence of relevant antigens helps focusing the
adaptive immune response to effectively target HIV-1. The
parallel activation of immune effector cells could boost the
clearance of infected cells and hence the ability to control the
infection. These features of TLR agonists could be valuable assets
in the development of a functional cure for HIV-1, based on the
induction of immune control of the infection.

Tissue Effects
As most TLRs are also expressed on epithelial cells throughout
the body, TLR agonists may also affect resident cells in tissue (21).
Our group investigated the effect of MGN1703 on gut mucosa
epithelial cells, which express TLR9, using biopsies of the sigmoid
colon from study participants of the short course MGN1703
treatment trial (74, 92). A global transcriptomic analysis showed
that MGN1703 upregulated an ISG signature consistent with
potent IFN-α induction. Furthermore, high levels of ISG proteins
MX1 and ISG15 were detected by in-situ hybridization during
MGN1703 stimulation in the epithelial cells. This induction was
however not accompanied by excessive inflammation, evident by
the lack of IFN-γ mRNA and absence of infiltrating neutrophils
in the gut mucosa. These findings indicate that subcutaneously
administered MGN1703 may have beneficial effects in the gut
of infected individuals, but further investigations are needed to
account for the exact mechanisms.

A sub-study to the 24-weeks MGN1703 treatment study (75)
investigated the tissue-specific effects on lymph nodes (76).
In LNMCs, augmented activation of pDCs, (CD86+ CD40+),
NK cells (CD69+), and CD8+ effector memory T cells (HLA-
DR+ CD38+) was detected and correlated with increased IFN
levels and ISG15 expression. Interestingly, lymph node B cells
displayed enhanced expression of activation-induced cytidine
deaminase (AID) which is an essential enzyme in regulating
B cell differentiation and somatic hypermutation. Consistently,
a LNMC gene expression analysis showed markedly increased
numbers of plasma cells post-MGN1703-treatment as well as
increased levels of total IgG and subtypes IgG1, IgG2, and IgG3
antibodies. The induced antibodies showed specific neutralizing
properties toward HIV-1 clade B and C, suggesting a possible
autologous vaccinal effect of MGN1703. Finally, when assessing
the architecture of the lymph nodes, it was demonstrated that

the frequency of secondary follicles increased over the 24-
weeks treatment period, suggestive of a restorative effect of
the intervention.

In conclusion, these two studies from our group demonstrated
broad immune enhancement and tissue restoration in
the gut mucosa and lymph nodes following TLR9 agonist
treatment. These results are encouraging for further clinical
development as induction of potent immune responses in tissue
compartments may be essential for the therapeutic success of
HIV-1 cure strategies.

TLR-AGONISTS IN COMBINATION WITH
OTHER THERAPEUTICS

TLR Agonists as Vaccine Adjuvants
Developing a therapeutic HIV-1 vaccine has long been an
approach to boost immune control of HIV-1. Moody et al.
tested the adjuvant properties of three different TLR agonists,
both alone and in combination, to HIV-1 envelope protein
immunogens in rhesus macaques (100). They found that the
combination of TLR9 agonist CpG ODN and TLR7/8 agonist
R848 mixed with base adjuvant Span85-Tween 80-squalene
(STS+oCpG+R848) elicited the most potent antibody response
against HIV-1 envelope gp140 and V1V2-gp70 as measured by
antibody titers. The elicited antibodies were superior in terms
of neutralizing HIV-1 when comparing animals treated with
STS+oCpG+R848 to those treated with STS alone. Additionally,
STS+oCpG+R848-elicited antibodies had greater capacity for
inducing ADCC against HIV-antigen-covered cells compared to
antibodies from control animals. However, the elicited antibodies
were short-lived with an estimated half-life of 8.5 weeks.

Kasturi et al. attempted to assess the issue of short-lived
antibodies by altering the formulation of the adjuvant in a NHP
preventive vaccine study (101). The adjuvants R848 and TLR4
agonist monophosphoryl lipid A were packed in nanoparticles
(NP) and administered with soluble recombinant SIVmac239-
derived envelope gp140 and Gag protein 55, together referred
to as the protein-NP vaccine. This protein-NP vaccine elicited
a durable antibody response present in both serum and mucosa
of the rhesus macaques. Ten NHPs in each group received 1
of 4 combinations of immunogens and adjuvants (virus-like
particles or soluble envelope combined with either gag + NP
or alum). The vaccines were administered 4 times: at week
0, 8, 16, and 25. The protein-NP group had a significantly
greater peak in antibody responses at week 27 with an envelope-
specific IgG level of 680.77µg/mL compared to 104.47, 78.71,
and 19.81µg/mL, in the three other groups. The protein-
NP group also showed significantly higher levels of envelope-
specific plasma cells in bone marrow and draining lymph nodes.
In addition, the protein-NP group exhibited the most potent
protection when all study animals were challenged 12 times
intravaginally with low-dose SIV once weekly starting at week
41 after the first vaccination. Although the protection against
infection was stronger in the protein-NP vaccination group, 5
of 10 NHPs still became infected after 10 challenges, stressing
that although the NP administration improved the adjuvating
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effect of the TLR agonists, this was not sufficient to elicit
complete protection.

Borducchi et al. conducted a study on SIV-infected Indian
origin rhesus macaques, testing a novel therapeutic vaccine
compound named Ad26/MVA. The vaccine comprised an
adenovirus vector (Ad26) expressing SIV gag-pol-env, which was
boosted by modified vaccinia Ankara (MVA), also expressing
gag-pol-env and adjuvanted by TLR7 agonist GS-986 (93).
Levels of IFN-γ were increased and CD4+ and CD8+ T cell
activation was evident by increased CD69-expression in the
vaccine group, indicating effective immune stimulation. Upon
ART discontinuation, the 9 NHPs receiving the Ad26/MVA
vaccine adjuvanted with GS-986 showed a 2.5-fold delay in time
to viral rebound compared to sham controls. Additionally, three
of the nine animals that initially appeared to have rebounded after
ART cessation regained durable virologic control throughout 160
days. None of the three components administered alone were able
to induce similar levels of control suggesting a synergistic effect
of the TLR7 agonist and the Ad26/MVA vaccine.

In 2008, our group investigated the immunostimulatory effect
of TLR9 agonist CpG 7909 as adjuvant to pneumococcal vaccines
in a randomized double-blinded, placebo-controlled trial among
97 HIV-1 infected individuals (102). All study participants
received a 7-valent pneumococcal conjugate vaccine (7vPnC) at
0 and 3 months and a 23 valent pneumococcal polysaccharide
vaccine (PPV-23) at 9 months. The experimental group received
1mg of CPG 7909 as adjuvant with each vaccine dose, while
the control group received a placebo adjuvant. At 9 months,
the proportion of high vaccine responders, defined as a 2-fold
increase in IgG levels for at least 5 of 7 of the 7vPnC serotypes,
was 48% in the experimental group (n = 48) compared to 25%
in the control group (n = 49). CpG 7909 significantly enhanced
the immunogenicity of the pneumococcal vaccine. Interestingly,
10 individuals in each study group were treatment-naïve. In
the experimental group, the treatment-naïve individuals had a
slight increase in plasma-HIV-1 RNA compared to the control
treatment-naïve individuals which may reflect broad immune
activation (102). A post-hoc analysis by Winckelmann et al.
showed a significant reduction of 12.6% in the level of total
HIV-1 DNA in PBMCs among individuals receiving CPG 7909
as adjuvant, compared to those receiving placebo (saline) (103).
These findings triggered the further investigation into the TLR9
agonist MGN1703 as immunomodulator and latency reversing
agent described in the sections above.

TLR Agonists in Combination With bNAbs
Based on the immunological findings outlined above it has been
proposed that administration of a TLR agonist in combination
with bNAbs may enhance killing of infected cells by enhancing
antibody-dependent effector mechanisms such as ADCC and
ADCP (Figure 1). bNAbs function through three mechanisms:
by direct viral neutralization, by opsonizing infected cells for
immunemediated killing, and by activating the adaptive immune
system via HIV-1-epitope-antibody-complexes (104–106).

Borducchi et al. investigated the effect of combining a bNAb
(PGT121) with a TLR7 agonist (GS-9620) in a study with
simian-human immunodeficiency virus (SHIV) infected rhesus

macaques (99). The 44 NHPs were infected intrarectally with
SHIV and ART was initiated at day 7 post-infection and
continued for 96–104 weeks before bNAb and TLR7 agonist
administration. ART was continued for another 16 weeks after
the last administration of PGT121 before an ATI was initiated
at week 130. By day 196 following ART cessation, only 6 of 11
NHPs in the PGT121+GS-9620 group had rebounded compared
to 9 of 11 in the PGT121 group, 10 of 11 in the GS-9620 group,
and 11 of 11 in the sham group. Of note, the viral reservoir
measured as SHIV DNA in PBMCs was undetectable across all
groups indicating that all animals hadvery small SHIV reservoirs,
presumable due to the early initiation of ART. However, viral
DNA was detectable in LNMCs and here, the PGT121+GS-
9620 group had lower levels compared to the other groups.
Subsequent anti-CD8α mediated CD8+ T-cell depletion in the
non-rebounding NHPs failed to induce plasma viremia. Finally,
adoptive transfer experiments where performed. PBMCs and
LNMCs were first collected from the 2 PGT121+GS-9620 treated
NHPs, who showed transcient rebound followed by durable
virologic control. Cells were collected during the control phase
of the ATI, but when transferred to SHIV-naïve NHPs, the cells
induced infection. In contrast, adoptive transfer of cells from
the 5 PGT121+GS-9620 treated NHPs who did not rebound
upon ATI, did not cause infection in SHIV-naïve NHPs. These
findings indicated that the viral SHIV reservoir was significantly
reduced, maybe even completely eradicated in some animals by
the combination of PGT121 and GS-9620 and have engouraged
further investigations of this combination.

Along these lines, our group is performing an ongoing double-
blinded randomized placebo controlled phase IIa clinical trial
testing the TLR9 agonist MGN1703 and a combination of two
bNAbs (3BNC117 and 101074) in HIV-1-infected donors on
long-term ART, aiming to reduce the viral reservoir and induce
immunological HIV-1 control (NCT03837756).

TLR Agonists and Programmed Death-1
(PD-1) Inhibition
The PD-1 receptor is a marker of T cell exhaustion, which
is upregulated following prolonged antigen-stimulation during
infection (107) and in cancer (108). By alleviating this T cell
exhaustion, immunotherapy with antibodies blocking the PD-
1 receptor has dramatically improved the prognosis of many
different types of cancers such as malignant melanoma and
renal cell carcinoma (109–111). In HIV-1 cure research the
hope is that treatment with anti-PD-1 antibodies might lead
to a more efficient targeting of the latently infected cells by
HIV-specific T cells.

Bekerman et al. tested the immunomodulatory effect of a
chimeric anti-PD-1 antibody and the TLR7 agonist GS-9620 in
chronically SIV infected rhesus macaques (94). In a four-arm
controlled design, NHPs received 0.15 mg/kg GS-9620 by oral
gavage every other week for a total of 10 administrations, alone
or in combination with 10 mg/kg anti-PD-1 antibody. Upon
ART cessation all of the 20 NHPs rebounded within 14 days
with no delay compared to the placebo group. Assessment of
the viral reservoir measured by total SIV DNA levels in PBMCs
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similarly showed no reduction. Proportions of IFN-γ- and IL-
2-producing SIV-specific T cells also did not differ between the
groups. Previous studies have found beneficial effects of PD-
1 receptor inhibition during SIV infection in rhesus macaques,
when intervening in viremic animals or shortly after ART
initiation (112, 113). Importantly, Bekerman et al. administered
the PD-1 receptor antibody and TLR7 agonist after 2 years of
suppressive ART. This suggests that the possible therapeutic
benefits of PD-1 receptor blockade may depend on timing of
administration in relation to ART initiation.

CONCLUDING REMARKS

Emerging preclinical and clinical studies strongly indicate that
TLR agonists have great potential as immune boosting and
priming agents in HIV-1 cure research. However, not all TLR
agonist are created equally and so far, the most promising results
have been observed following TLR7 and TLR9 administration.
Expression patterns of TLRs in humans and the diverse response
of the TLR subtypes are important factors to consider when
assessing the potential clinical effect of TLR agonist treatment
in HIV-1. Further investigation is needed into the physiological

function of TLRs on immune cell subsets, differences in TLR
expression in blood and tissue, as well as gender determined
differences. TLR agonists should probably only be considered as
moderately potent LRAs but while much interest in TLR agonists
have evolved around their potential use as LRAs, we believe
that pre-clinical and clinical findings demonstrate that the most
important aspect of TLR agonists is their ability to enhance innate
and adaptive immunity. This is underscored by the durable
virologic control in the absence of ART achieved in NHPs by
combining TLR agonists with AD26/MVA-vector SIV vaccines or
bNAbs. Cross-priming of the CD8+ T cell response could be an
important element of the antigen-dependent mechanisms seen
with TLR agonist. Novel clinical trials testing these very concepts
are now underway and their highly anticipated results will further
inform the research field of the potential of TLR agonists as
components in HIV-1 cure strategies.
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