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In pregnancy, the semi-allogeneic fetus needs to be tolerated by the mother’s immune

system. Regulatory T cells (Tregs) play a prominent role in this process. Novel

technologies allow for in-depth phenotyping of previously unidentified immune cell

subsets, which has resulted in the appreciation of a vast heterogeneity of Treg subsets.

Similar to other immunological events, there appears to be great diversity within the Treg

population during pregnancy, both at the maternal-fetal interface as in the peripheral

blood. Different Treg subsets have distinct phenotypes and various ways of functioning.

Furthermore, the frequency of individual Treg subsets varies throughout gestation and is

altered in aberrant pregnancies. This suggests that distinct Treg subsets play a role at

different time points of gestation and that their role in maintaining healthy pregnancy is

crucial, as reflected for instance by their reduced frequency in women with recurrent

pregnancy loss. Since pregnancy is essential for the existence of mankind, multiple

immune regulatory mechanisms and cell types are likely at play to assure successful

pregnancy. Therefore, it is important to understand the complete microenvironment of

the decidua, preferably in the context of the whole immune cell repertoire of the pregnant

woman. So far, most studies have focused on a single mechanism or cell type, which

often is the FoxP3 positive regulatory T cell when studying immune regulation. In this

review, we instead focus on the contribution of FoxP3 negative Treg subsets to the

decidual microenvironment and their possible role in pregnancy complications. Their

phenotype, function, and effect in pregnancy are discussed.

Keywords: regulatory T (Treg) cells, pregnancy, preeclampsia, Tr1 regulatory cells, Th3 regulatory cells, HLA-G

Treg, immune tolerance, recurrent pregnancy loss (RPL)

PLACENTAL DEVELOPMENT AND IMMUNE EVASION BY
TROPHOBLASTS

The most striking feature of pregnancy is that a semi-allogeneic fetus is tolerated by the maternal
immune system. This is in sharp contrast with solid organ transplantation, where an allograft will
be rejected by the patient’s immune system unless the patient takes immunosuppressive drugs.
Since direct contact between maternal and fetal cells occurs at the maternal-fetal interface in the
placenta, it is thought that maternal immune cells in the placenta do not attack the fetal cells
(trophoblasts) because of the tolerogenic microenvironment created by regulatory T cells (Tregs)
and other immune cells.
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FIGURE 1 | Schematic overview of the maternal-fetal interface at different trimesters. (A) During first-trimester, the maternal immune cells in the decidua can come

into contact with fetal syncytiotrophoblasts, when around weeks 11–12 the maternal blood flow commences (B) a second maternal-fetal interface occurs. The

maternal immune cells in the periphery can come into contact with fetal syncytiotrophoblasts, while the maternal decidual immune cells are in contact with the fetal

extravillous trophoblasts. Indicating immunotolerance needs to adapt during the shift in gestation.

Trophoblast Development
The main function of the placenta is to provide oxygen and
nutrients to the developing fetus. In the first-trimester, nutrients
are mainly provided by uterine glands in a hypoxic environment
as no active maternal blood flow has been established yet. Once
active maternal blood flow in the placenta has commenced
around weeks 11–12 of gestation, oxygen and nutrients are
exchanged over a thin lining of fetal cells. Since the fetus is semi-
allogeneic, as it inherits both maternal and paternal antigens, the
fetal trophoblast cells may potentially be recognized as foreign
by maternal immune cells. Three main types of trophoblasts can
be distinguished: cytotrophoblasts (CTBs), syncytiotrophoblasts
(SCTs), and extravillous trophoblasts (EVTs). At the beginning
of the first trimester, the maternal-fetal interface consists of
the maternal parenchymal cells in the decidua and the fetal
SCTs (Figure 1A). Later in pregnancy, this interface is mainly
represented by maternal decidual cells and the EVTs (Figure 1B),
where a distinction is made between decidua basalis and decidua
parietalis. Importantly, a second maternal-fetal interface is
established when active maternal blood flow in the placenta
has commenced. The maternal peripheral blood then comes
into contact with the SCTs lining the fetal villi. From the
moment these maternal-fetal interfaces have been established,
it is of utmost importance for maternal immune cells to keep
the balance between tolerizing the semi-allogeneic fetus, and at

Abbreviations: Tregs, regulatory T cells; tTreg, thymic derived regulatory T

cell; pTreg, periphery induced regulatory T cell; EVTs, cytotrophoblasts (CTBs),

syncytiotrophoblasts (SCTs), and extravillous trophoblasts; HLA, human leukocyte

antigen; APCs, antigen presenting cells; KIR, killer-cell immunoglobulin-like

receptor; TCR, T cell receptor; IDO, indoleamine 2,3-dioxygenase; dNK, decidual

NK; RPL, recurrent pregnancy loss; PE, pre-eclampsia; SNPs, single nucleotide

polymorphisms; NK, natural killer; ILCs, innate lymphoid cell; DCs, dendritic

cells; DC-10, tolerogenic DCs; mTOR, mammalian target of rapamycin; NO, nitric

oxide; TGF-β, transforming growth factor-beta; IFN-γ, interferon gamma.

the same time maintaining the ability to form a robust immune
response against pathogens upon infection.

Mechanisms by Trophoblasts for Avoiding
and Modulating Immune Responses
The classical human leukocyte antigen (HLA) class I molecules
HLA-A, -B, and -C are normally present on virtually all nucleated
cells in the body and present intracellular antigens to surveilling
T cells. Non-classical HLA molecules are selectively present, and
have initially been described on trophoblasts in the placenta
(1) and later also in other tissues (2–4). HLA class II is
mainly expressed by antigen-presenting cells (APCs), including
dendritic cells (DCs), macrophages, and B cells. Since the fetus
inherits half of its genes from the father, it also inherits half of
the paternal HLA alleles, which can potentially be recognized as
foreign by the maternal immune system.

One way for the trophoblasts to evade recognition by the
maternal immune system is lack of the polymorphic HLA-A, -
B, and HLA class II molecules on their cell surface. Interestingly,
EVTs do express polymorphic classical HLA-C molecules. The
regular function of these molecules is to present a wide variety
of pathogen-associated peptides to surveilling CD8+ T cells (5).
Since HLA-C is polymorphic, its presence on trophoblasts can
possibly also lead to allorecognition of the inherited paternal
HLA-C by maternal T cells (6). EVTs may help to tip the local
maternal immune balance toward tolerance by their expression
of non-classical HLA-E and HLA-G (7), and possibly also HLA-F
(8). The mechanisms responsible for the presence or absence of
the specific HLA class I types on trophoblasts have not fully been
elucidated yet (5). Expression of HLA molecules on trophoblasts
allows them to escape natural killer (NK) cell recognition (9).
HLA-G was first described on CTBs and has been shown to
induce immune tolerance (10, 11) (described below). HLA-E also
has tolerogenic properties as it can bind to the NK cell receptor
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CD94/NKG2A upon which NK cell activity is inhibited (12).
SCTs, which are in direct contact with the maternal blood, do not
express any HLA molecules (13), which would potentially render
them sensitive to NK cell-mediated killing (13). However, for NK
cells killing an activating ligand needs to be present on the target
cell, which is likely missing on trophoblasts (14).

Trophoblasts express several molecules that are thought to
dampen alloimmune reactivity, including PD-L1, PD-L2, CD200,
and FasL (15–19), some of which are differentially expressed
throughout gestation (17). Trophoblasts are also known to
produce soluble factors with an immune-modulatory action,
such as soluble HLA-G (sHLA-G), transforming growth factor-
beta (TGF-β), and indoleamine 2,3-dioxygenase (IDO). TGF-β is
known to have various functions and will be extensively discussed
below. Since IDO causes local tryptophan deprivation (20), which
is an essential amino acid required for T cell activation, elevated
local IDO levels lead to inhibition of T cell activation. Recently,
the role of galectins in pregnancy has become more apparent,
as they were found to play an important role in suppressing the
maternal immune system (21). Galectins on human trophoblasts
modulate a number of regulatory mechanisms (22), such as
induction of T cell apoptosis (23) and induction of Treg cell
development (24).

Maternal Immune Cells in the Decidua
Not only the composition of fetal cells in the placenta but also
the composition of maternal immune cells changes throughout
gestation. Already before conception, as early as seminal plasma
exposure, activation and proliferation of fetus-specific maternal
T cells in uterine draining lymph nodes have been observed in
murine models (25). In humans, maternal APCs and CD8+ T
cells seem to get recruited to the ectocervix upon coitus, but
their specificity remains unknown (26). In the first trimester of
human pregnancy, maternal leukocytes account for 30–40% of all
cells in the decidua (27). During this period, the most prominent
immune cells are decidual NK (dNK) cells (∼60%), macrophages
(∼20%), and T cells (∼10%) (27–29). During gestation, dNK cell
frequencies decrease, macrophage frequencies remain relatively
stable, and T cell frequencies increase (29). Next to these main
immune cell populations, innate lymphoid cell (ILCs) other than
NK cells, DCs, B cells, NKT cells, granulocytes, and mast cells are
found in the decidua (30–32).

Despite the many mechanisms that trophoblasts have to evade
an alloimmune response, fetus specific immune recognition
has been observed in mice (33). Furthermore, fetus-specific
CD8+ T cells (34, 35) and inherited paternal antigen (IPA)-
specific antibodies are found in maternal peripheral blood during
pregnancy (36–38). Both HLA-C and HLA-E restricted CD8+

T cells, specific for viral and bacterial peptides, are present in
humans (39). However, maternal CD8+ T cells could recognize
the paternally inherited HLA-C from the fetus or fetal minor
histocompatibility antigens, and if not suppressed are likely to
attack the fetal trophoblasts (34, 35). Besides this, ∼30% of
pregnancies result in the formation of paternal HLA-specific IgG
antibodies (38, 40). Allo-antibodies directed against HLA-C of
the fetus do not necessarily appear to be detrimental to pregnancy
outcome (41), but some studies do show that they are associated
with spontaneous preterm deliveries and recurrent pregnancy

loss (RPL) (42, 43). Therefore, to inhibit the effect of maternal
immune components, it is thought that local immune regulation
is required to prevent anti-fetal immunity.

MATERNAL TREG CELLS DURING
GESTATION

To prevent a detrimental immune reaction against the fetus,
maternal immune cells need to be regulated. The level of both
FoxP3+ and Foxp3− Tregs is increased in the peripheral blood
of pregnant women compared to non-pregnant control women
(44, 45).While the proportion of total T cells in the decidua is low
during the first trimester (∼10%), of which 10-30% of the CD4+

T cells are Tregs (28, 29, 46, 47), later in pregnancy the proportion
of Tregs significantly increases in the decidua [(46); van der
Zwan et al. submitted]. In mice the importance of Tregs during
implantation and for maintenance of a healthy pregnancy is
evident. This was shown in murine studies by injecting abortion
prone mice with CD25+ Tregs from wild-type pregnant mice,
which led to a significantly increased litter size (48). Alternatively,
depleting CD25+ Tregs during the implantation period of non-
synergistically mated mice caused high fetal resorption (49).
Depleting Tregs in the mid-gestation phase in non-sterile mice
also resulted in high fetal resorption (50). In a systematic
review of 17 studies on human pregnancy, it has been shown
that the number and functionality of Tregs are diminished in
women experiencing RPL, both in the peripheral blood and
in the decidua, compared to control women (51). Similarly, in
women with pre-eclampsia decreased Treg frequencies in both
the periphery and the decidua and impairment in the signaling of
peripheral blood Tregs have been found (45, 52, 53).

Using extensive mass cytometry panels containing more than
38 immune cell markers, we have previously shown that there is
great heterogeneity in immune cell subsets among the different
trimesters (van der Zwan et al. submitted). Interestingly, five
Treg-like clusters were found to be differently distributed over the
three trimesters. This could be attributed to the developmental
changes in the placenta, causing a constant change in the possible
cell-cell interactions between immune cells and different EVT
subsets that seem to exist over different trimesters (54). Apart
from that, a deficit in Treg presence and functionality has been
observed in pregnancy complications such as PE, infertility,
and RPL (55). Such complications arise at different periods of
pregnancy, i.e., during implantation, <22–24 weeks of gestation
or throughout gestation (56, 57). Taken together, as both Treg
subsets and the initiation of complications can be prominent in a
particular time frame of gestation, it might be that disbalances
in different Treg subsets could play a role in the onset of
different complications. Therefore, it is important to investigate
the presence and functioning of the wide range of Treg subsets
present during pregnancy.

ADVANCES IN TREG IDENTIFICATION

Regulatory T cells were originally named suppressor cells (58).
Ideas and insights changed over time, and suppressor cells have
endured much debate. In 1983 it was shown in mice that both
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CD8 (Lyt-2+) and CD4 (Lyt-2−) suppressor cells were present
that expressed the I-J molecule (59). When the I-J molecule
turned out not to exist and suppressor cells could not be
identified in any other way, interest in these cells waned. The
arrival of novelmolecular technologies propelled new knowledge,
which made immunological tolerance become more evident and
revived interest in T suppressor cells, now referred to as Tregs
(60). In 2001, the FoxP3 gene was identified in scurfy mice and
later as a key transcription factor for Treg cell development
and function in both humans and mice (61, 62). Subsequently,
several FoxP3− Treg subsets were identified, as will be discussed
below. Initially, it was hypothesized that Tregs could only be
generated in the thymus (tTregs), but in the 2000s this concept
was challenged by studies showing that Tregs could be induced
from conventional T cells in the periphery (pTregs) (63, 64).
It is thought that tTregs and pTregs function in distinct ways,
recognize different types of antigens (autoantigens vs. foreign
antigens), and are needed in different immunological events such
as preventing T cell trafficking to an organ and preventing T cell
priming by APC, respectively (65).

Because tTregs and pTregs can have different roles, there is
a need for phenotypic markers to distinguish the two. While
Helios and Nrp-1 have been proposed as markers for tTregs
in mice (66, 67), it has been shown that Helios deficiency or
Nrp-1 deficiency does not impede tTreg development (65, 68).
Consequently, there is no consensus on which markers can
distinguish tTregs from pTregs (65, 69, 70). Helios is associated
with the promoter regions of apoptosis/cell survival genes, and
Helios deficient FoxP3+ Tregs show increased inflammatory
cytokine expression, which suggests the importance of Helios
in suppressing the production of effector cytokines (71). Even
though Nrp-1 is not essential for tTreg development, it seems to
increase Treg immunoregulatory properties, such as an increased
capacity for tumor infiltration (69, 72). When comparing Nrp-1
and Helios there is no consistent overlap in expression of these
markers (65). In humans, Helios is found on Tregs, but Nrp-
1 is not found on peripheral blood Tregs and can, therefore,
be excluded as tTreg marker (66, 73). More recently CNS1
has been suggested to distinguish between tTregs and pTregs.
However, since CNS1 is a FoxP3 enhancer, it is debatable whether
this marker distinguishes FoxP3− tTreg and pTreg populations
(74, 75).

Treg subsets are often identified by their co-signaling
molecules. Many Treg subsets express co-signaling molecules,
such as ICOS, PD-1, TIGIT, and TIM-3, which upon interaction
with their ligand can alter their function to either activation
or senescence (76–78). These co-signaling molecules, which
can be present on both FoxP3+ and FoxP3− Tregs, have
widely been discussed in several reviews (79–81). Similarly,
the heterogeneity within FoxP3+ Tregs, generally described as
CD4+CD25+CD127− in functional assays, has been extensively
reviewed elsewhere (82–87). However, the heterogeneity within
the FoxP3− compartment has not been elaborated on and will be
discussed here in the context of pregnancy. Besides co-signaling
molecules, several soluble factors affect the action of Tregs and
are produced by these cells to mediate their immune regulatory
effects. These will first be briefly reviewed.

SOLUBLE FACTORS

IL-10
IL-10 is an immunomodulatory cytokine that is produced by
many immune cells in the decidua, including most known
Treg subsets. It has an effect on trophoblasts and innate- and
adaptive immune cells within the decidua (88). Single nucleotide
polymorphisms (SNPs) in the promoter region of IL-10 correlate
with adverse pregnancy outcomes in humans (89). Next to that,
the administration of recombinant IL-10 or IL-10 producing B
cells to mice leads to reduced incidence of fetal resorption (90).
Concomitantly, IL-10 null mice in sterile cages showed normal
litter size, whereas administration of a danger signal in the form
of a low dose of LPS to these mice resulted in increased fetal
resorption (91, 92). These data suggest that IL-10 is an important
mediator of immune regulation during pregnancy. In human
pregnancy, decreased serum IL-10 levels or IL-10 production
by PBMCs are associated with the occurrence of PE and RPL
(93–98). This suggests that IL-10 producing immune cells are
important for maintaining an uncomplicated pregnancy.

IL-10 induces expression of HLA-G on trophoblasts,
which has direct and indirect immune suppressive effects
(described below) (99). IL-10, together with HLA-G, can
induce monocyte-derived DCs in vitro to differentiate into
tolerogenic DCs (DC-10) that have immunosuppressive
properties (100, 101). They exert their immunosuppressive
properties by the production of IL-10, expression of HLA-G,
and upregulation of inhibitory receptors for HLA-G (namely
ILT2, ILT3, and ILT4). Furthermore, these tolerogenic DCs
downregulate co-stimulatory molecules CD80 and CD86, as well
as HLA-DR (102–104). DC-10s induce Tregs by their expression
of ILT4 and by IL-10 production (105). Macrophages are also
regulated by IL-10 (106). It has been shown that IL-10 acts on
macrophages by controlling their metabolic pathways, causing
activation, proliferation, and inflammatory responses to be
inhibited (106, 107). Next to that, CD4+ T cell proliferation is
suppressed by IL-10, antigen-experienced specific CD4+ T cells
can be induced into an anergic state, and conventional T cells
can be induced to convert to Tregs (103, 108–110).

TGF-β
TGF-β is produced by and has an immunomodulatory effect on
multiple cell types present in the decidua (111–120). In the early
implantation phase, TGF-β is important for trophoblast invasion
in the endometrium (121, 122). In humans, TGF-β serum levels
are elevated in pregnant women compared to non-pregnant
women, and serum levels are higher in early pregnancy compared
to late pregnancy (123). However, women experiencing RPL
display a decrease in TGF-β serum levels compared to women
undergoing elective termination for non-medical reasons (124).
Interestingly, there are indications frommouse studies that TGF-
β induced Tregs could prevent spontaneous abortion, but this
effect needs to be elucidated further (111, 125).

TGF-β can inhibit NK cell and T cell activation and
proliferation by repressing the mammalian target of rapamycin
(mTOR) signaling pathway (126, 127), and similarly, suppress
activation of dNK cells (120). Since dNK cells are important
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contributors to angiogenesis at the maternal-fetal interface, their
cytotoxicity needs to be suppressed but they should still be able
to execute their role in angiogenesis. A balanced TGF-β level
may, therefore, be important to maintain correct functioning of
dNK cells (120). Furthermore, TGF-β can affect T cells directly by
inhibiting their proliferation and differentiation (128, 129), and
indirectly by its inhibitory effect on APCs. HLA-class II on APCs
is downregulated, activation of macrophages is downregulated,
and maturation of DCs is prevented by TGF-β (116, 130–134).
Next to that, the presence of TGF-β is needed for the induction
of several FoxP3+ and FoxP3− Treg subsets by APCs (135–138).

HLA-G
As discussed above, HLA-G was first described on trophoblasts
(1). Interestingly, also myeloid and lymphoid cells, such as the
below described FoxP3−HLA-G+ Treg, can express HLA-G and
secrete sHLA-G (139–141). HLA-G is oligomorphic and has
seven isoforms, of which some are membrane-bound (HLA-
G1 to -G4), and others are secreted as a soluble form (sHLA-
G5 to -G7) (142). Several polymorphisms in the untranslated
region (UTR) of theHLA-G gene have been associated with lower
sHLA-G levels in both blood and seminal plasma (143, 144).
In both PE and RPL, a reduction in serum sHLA-G levels has
been observed compared to healthy control women (145–148).
Together these observations highlight the possible importance of
(s)HLA-G during pregnancy.

(s)HLA-G exerts its immunoregulatory effects on a wide
variety of immune cells because of its interactions with
several inhibitory receptors, of which ILT2 seems to be most
prominent (149). Other receptors for (s)HLA-G are ILT4,
KIR2DL4, and CD8. The ITL2 receptor is expressed on
monocytes/macrophages, DCs, B cells, and some NK and T cells
(150), while the ILT4 receptor is mainly present on macrophages,
NK cells, and neutrophils (150, 151). Upon ILT2 or ILT4 binding
to HLA-G, NK cells and T cells receive a signal that leads
to inhibited killing capacity (152–154). In CD8+ T cells, this
inhibited killing capacity is reflected by the down-regulation
of granzyme B expression (155). KIR2DL4 has been identified
on dNK cells and some T cell subsets. Engagement of this
receptor with sHLA-G results in activation and secretion of
different types of cytokines and chemokines, but does not result
in direct cytotoxicity (156). Binding of sHLA-G with KIR2DL4
on NK cells results in the upregulation of a restricted set of
chemokines and cytokines that can promote vascular remodeling
(156). CD8 is not only expressed by cytotoxic T cells but also
by some NK cell subsets (79, 157). When sHLA-G binds to
CD8, this interaction inhibits cytotoxic activity and triggers FasL-
mediated apoptosis in both the CD8+ T cells and CD8+ NK
cells (158). Besides effector cells, APCs can also be affected by
HLA-G. For example, in concert with IL-10, HLA-G induces
DCs to differentiate into tolerogenic DC-10 cells (100, 101).
Additionally, macrophages obtain a tolerogenic phenotype upon
binding to HLA-G with their ILT2 or ILT4, and subsequently
show reduced expression of HLA class II, CD80, and CD86.
Such macrophages have been described to be similar to decidual
macrophages as they also express IDO (159). Together this
suggests that decidual macrophages are under the constant

influence of HLA-G, produced by either trophoblasts or HLA-
G+ Tregs.

FOXP3− REGULATORY T CELLS

FoxP3− HLA-G+ Tregs
In the lymphoid compartment, HLA-G expressing CD4+ and
CD8+ cells show reduced proliferation in response to allogeneic
and polyclonal stimuli (139). CD4+HLA-G+CD25−FoxP3−

Tregs (Figures 2, 5,Table 1) suppress T cell proliferation through
the expression of membrane-bound HLA-G1 and secretion of
IL-10 and sHLA-G5 in a reversible, cell-contact independent
and cell-contact dependent manner (139, 169). They have
functionally been compared to other Treg populations such as
FoxP3+ Tregs and Tr1 Tregs (discussed below), and represent a
population that is distinct from tTregs (169–171). Interestingly,
CD4+ and CD8+ T cells can also acquire a similar HLA-
G1+ phenotype in vitro through trogocytosis (160), meaning
the uptake of membrane fragments from another cell. Resting
and activated CD25+ T cells that acquire HLA-G1 expression
by trogocytosis differ functionally from the HLA-G+ tTregs,
and they do not secrete sHLA-G5 and IL-10. They have
been shown to exert their immune-suppressive capacity in a
cell-contact dependent manner only (160), and will not be
discussed further.

HLA-G+ tTregs accumulate at sites of inflammation to
regulate immune responses (172) and importantly, have also
been found in the decidua (141, 173). CD4+HLA-G+ Treg
frequencies are increased in peripheral blood throughout
pregnancy compared to non-pregnant controls (45, 141).
Interestingly, sHLA-G serum levels are also increased during
pregnancy, while these levels are decreased in complicated
pregnancies compared to healthy pregnancies (145–148).
However, it is unlikely that a direct correlation between
CD4+HLA-G+ Treg frequencies and serum sHLA-G levels
exists, since other cells (in the placenta) produce sHLA-G as
well. CD4+HLA-G+ Treg frequencies within the CD4+ T
cell compartment are even higher in the decidua compared
to those in peripheral blood (141, 173), suggesting a role
in local immune regulation. In women with PE, decidual
CD4+HLA-G+ Tregs are decreased, whereas in the peripheral
blood their numbers remain unchanged compared to healthy
control pregnancies (45, 173), indicating that in a healthy
pregnancy these cells are induced locally, but to a lesser extent
during PE.

Tr1 Treg
Tr1 Tregs (Figures 3, 5, Table 1) suppresses T cell proliferation
mainly through IL-10 and TGF-β production. They also produce
low amounts of IFN-γ, IL-5, and IL-2, and express granzyme B
(109, 112, 174). Next to cytokine production, they can suppress
other immune cells in a cell-contact dependent manner by
using their KIR receptors or ectoenzymes (161). Tr1 Tregs are
peripherally induced upon chronic antigen stimulation in the
presence of IL-10 (175). Both HLA-G and IL-10 provided by
APCs, like DC-10 cells, play a role in Tr1 Treg induction (103),
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FIGURE 2 | Main tolerogenic mechanisms of the FoxP3−HLA-G+ regulatory T cell. HLA-G+ regulatory T cells can suppress in a cell-contact dependent manner via

HLA-G1. It inhibits the killing capacity of T cells and NK cells, downregulates HLA class II, CD80, and CD86 in DCs and macrophages, and makes them tolerogenic by

inducing IDO production in macrophages and the induction of DCs to DC-10 cells. HLA-G+ regulatory T cells produce IL-10 and soluble HLA-G5 that helps to create

a tolerogenic decidual microenvironment. HLA, human leukocyte antigen; NK, natural killer cell; DC, dendritic cell; IDO, indoleamine 2,3-dioxygenase; IL-10,

interleukin-10; DC-10, tolerogenic DCs.

indicated by their reduced induction by DC-10s when anti-HLA-
G is added in vitro. Additionally, their induction is reverted when
agonistic anti-ILT4 antibodies are added, but not when agonistic
anti-ILT2 antibodies are added (103). Interestingly, EVTs are also
able to induce Tr1-like cells via HLA-G directly (119).

Recently, co-expression of CD49b and LAG-3 has been
described as phenotypic markers for Tr1 Tregs in mice and
humans (176). This observation is under debate since a
subsequent study only detected a small proportion of IL-10+

Tregs co-expressing CD49b and LAG3 (177). Due to their lack
of a clear phenotype, Tr1 Tregs are often described as Tr1-like
cells, as they have similar properties, such as IL-10 production.
Tr1 Tregs can express the co-signaling molecules PD-1, CTLA-4,
TIM-3, and ICOS (136, 177–179), and several other molecules
related to their function, including GARP, LAP, ectoenzyme
CD39, and CD73 (180), as well as KIRs and ILT receptors. FoxP3
is only transiently expressed by Tr1 Tregs. Since functional Tr1
Tregs are found in patients who have a mutation in the FoxP3
gene, FoxP3 appears not to be required for their development
(110, 174).

Tr1-like Tregs have been identified in peripheral blood and
various tissues (181), including the human decidua (119). These
Tregs express high levels of PD-1, express granzymes, and lack
FoxP3. They produce IL-10 and IFN-γ, and thereby may have
a similar suppressive mechanism as bona fide Tr1 Tregs (119).
Similar to Tr1 Treg, decidual Tr1-like Treg induction by EVTs
can be partially reverted when agonistic anti-HLA-G antibodies
are added, but not by anti-ILT2 (119). Tr1 Tregs are able to
selectively lyse APCs in a cell-contact dependent manner, but

not B and T cells (161). Lysis of APCs can cause amplification
of the tolerogenic process since decreased numbers of activated
APCs will generally lead to less activation of T cells. For this,
the Tr1 Treg needs HLA-class I recognition of the APC through
its KIR receptors, CD54/LFA-1 mediated adhesion, CD58/CD2
interaction, as well as CD155/CD226 ligation (161). Furthermore,
the Tr1 has been described to directly affect T cells by their
expression of ectoenzyme CD39 and CD73, which disrupts the
metabolic state of effector T cells (180).

Th3 Tregs
The main suppressive effects of Th3 Tregs (Figures 4, 5, Table 1)
are mediated by TGF-β production, in a cell-contact independent
manner (135). Phenotypically these cells are CD25− and FoxP3−,
they are thought to express Helios, and express LAP and GARP,
which can be used as surrogate markers for TGF-β production
(182, 183). Th3 cells also produce IL-10, but unlike Tr1 Tregs,
they produce this in conjunction with IL-4 (113, 184). Similar
to Tr1 Tregs, Th3 Tregs are peripherally induced upon antigen
stimulation (135). The mechanism underlying the induction
into either Th3- or Tr1 Treg remains poorly understood and is
thought to depend on their microenvironment during priming
(114, 185). Another question that remains to be answered is
whether Tr1 and Th3 Tregs truly represent different subsets or
differentiation states and whether they differ depending on the
microenvironment in which they reside.

With the limited markers identified so far, it is difficult
to phenotypically identify Th3 Tregs, which may explain the
limited number of articles describing the presence of the Th3
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FIGURE 3 | Main tolerogenic mechanisms of the Tr1 regulatory T cell. Tr1 regulatory T cells can in a cell-contact dependent manner lyse APCs via their KIR receptors

and disturb the metabolic state of T cells. They produce IL-10 and TGF-β that helps to create a tolerogenic decidual microenvironment. APC, antigen-presenting cell;

KIR, killer-cell immunoglobulin-like receptor; IL-10, interleukin-10; TGF-β, transforming growth factor-beta.

TGF-β + IL-10 + IL-4
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FIGURE 4 | Main tolerogenic mechanisms of the Th3 regulatory T cell. Th3 regulatory T cells suppress in a cell-contact independent mechanism only by the

production of TGF-β, IL-10 and differ here from the Tr1 regulatory T cell by the production of IL-4. TGF-β, transforming growth factor-beta; IL, interleukin.

cell during pregnancy. Dimova et al. observed in paired decidua
and peripheral blood samples mRNA cytokine profiles similar to
Th3, the first description of a possible presence of Th3 cells in
the decidua (163). Importantly, no functional testing has been
performed for Th3-like cells from the decidua, and their presence
and role in pregnancy remains to be confirmed. Regardless,
Th3 Treg was first described to have an important role in
oral tolerance (182). Interestingly, exposure to semen through
oral sex has been proposed to be beneficial for subsequent
pregnancy outcomes in couples experiencing PE or RPL (186–
188), providing a possible mechanistic explanation for this effect.

Other Treg Populations
Besides FoxP3− HLA-G+, Tr1, and Th3 Tregs, other immune
regulatory T cell populations that have been described, albeit to
a lesser extent, include CD8+ Tregs, nitric oxide (NO) induced
FoxP3− Tregs, TIGIT+ Tregs, FoxP3dim Tregs, and γδ T cells
(Figure 5, Table 1).

CD8+ Tregs are increasingly being recognized, even though
they remain difficult to identify as there is no consensus on
their phenotype. Both FoxP3+ and FoxP3− CD8+ Tregs have
been described to have suppressive activities, indicating there
also is heterogeneity in the CD8+ Treg population (189). Shao
et al. showed that a CD8+ Treg subset can be activated by
trophoblast cells. This activation appears not to beHLA restricted
since their expansion is unaffected when cultured in the presence
of pan-HLA class I blocking antibodies (164). When cultured
with PBMCs, these CD8+ Tregs suppress the secretion of
immunoglobulins in a cell-contact dependent manner, as shown
using a trans-well system. While humoral immunity seemed to
be dampened, these CD8+ Tregs did not have any suppressive
effect on effector T cells. Phenotypically these cells can be
identified as being CD101+ and CD103+ (164). Even though in
a mixed lymphocyte reaction these CD8+ Tregs do not appear
to suppress CD4+ and CD8+ T cells, they could potentially be
important for preventing formation and suppressing production
of IPA-specific antibodies.
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TABLE 1 | Overview of FoxP3− immune regulating T cells discussed in this review, how they are induced or activated, their main suppressive mechanism and how they

function, their localization, animal models depletion assays, master genes for differentiation, and cell volume changes in complicated pregnancies.

Subset Induction/

activation

Suppressive

mechanism

Function Localization Depletion in

animal models

Master genes of

differentiation

Cell volume

changes in

complications

CD4+HLA-

G+ Treg

(139, 160)

Natural occurring

(139)

Secretion of

sHLA-G and IL-10

(139), and cell

interaction with

HLA-G (160)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10

Inhibition of

macrophages, NK cells

and T cell killing

Found in

peripheral blood

(45) and decidua

(141)

Has not been

performed

Not known Found to be

increased in

peripheral blood of

pre-eclampsia

patients (45)

Tr1-(like) Treg

(109, 119)

Via trogocytosis

(160)

Secretion of IL-10

and TGF-β, and

cell interaction

(136, 161)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10

Lysis of APCs,

disruption of metabolic

state of T cells

Found in

peripheral blood

and decidua (119)

Has not been

performed

Not known Has not been

described

Th3 Treg

(162)

By APC in an

IL-10 dominant

microenvironment

(110)

Secretion of TGF-β

and IL-10 (162)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10

Inhibition of NK cell and

T cells and APC

by TGF-β

Found in the

decidua (163)

Has not been

performed

Not known Has not been

described

CD8+ Treg

(59)

By APC in

presence of TGF-β

and IL-4

(113, 135)

Suppress the

secretion of

immunoglobulins

(164)

Prevent formation and

suppressing production

of IPA-specific

antibodies.

Found in

peripheral blood

(CD8+HLA-G+

Treg) (45) and

decidua (164)

Has not been

performed

Not known CD8+HLA-G+

Treg are increased

in peripheral blood

of pre-eclampsia

patients (45)

NO-Treg (165) CD101+CD103+

are induced by

trophoblasts (164)

Secretion of IL-10

(165, 166)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10.

Found in

peripheral blood

(165)

Has not been

performed

Not known Has not been

described

TIGIT+ Treg

(119)

Depends on nitric

oxide, p53, IL-2,

and OX-40 (165)

Secretion of IFNγ

and IL-2 (119)

Induction of IL-10

production by APCs.

Suppression of CD4+

effector T cells

Found in decidua

(119)

Has not been

performed

Not known Has not been

described

Vδ1+ γδ T cell

(167)

Unknown Secretion of IL-10

and TGF-β (115)

Induction of HLA-G

expression by

trophoblasts, DC-10s

and Tregs by IL-10

Inhibition of NK cell and

T cells and APC

by TGF-β

Found in

peripheral blood

and decidua (168)

Has not been

performed

Not known Decreased

amount in an

abortion prone

mice model (111)

Niedbala et al. described NO-induced Tregs (NO-
Tregs) in mice (165). These cells are characterized as
CD4+CD25+GITR+CD27+T-betlow, GATA3+, and FoxP3−,
and they are induced from CD4+CD25− T cells via p53, IL-2,
and OX-40 (165). Experimentally, the development of NO-Tregs
was induced when using adoptive transfer of CD4+CD25−

T cells into SCID mice, together with application of an NO
synthase inhibitor. NO-Tregs produce IL-4 and IL-10, but
no IL-2, TGF-β, or IFN-γ. Addition of antagonistic anti-IL4
antibodies led to reduced proliferation of NO-Tregs, whereas
blocking IL-10 blocked their suppressive effect on CD4+CD25−

cell differentiation (165, 166). These data suggest that NO-Tregs
suppress through IL-10, in a cell-contact independent manner.

While NO-Tregs has not yet been studied in the context of
pregnancy, NO appears to be involved in pregnancy with NO
levels fluctuating throughout the different gestational ages
and being lower during PE (190–193). It would, therefore,
be interesting to retrospectively study first-trimester blood
samples of women who develop PE, to test if NO levels are
already lower at this early time point of pregnancy, and to
study NO-Treg formation in these patients in comparison to
healthy controls.

Salvany-Celades et al. identified three types of functional
Tregs in the decidua, of which two subsets were negative
or low for FoxP3 (119). One of these is the PD-1high, Tr1-
like cell, which has been described above. The second is the
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FIGURE 5 | Overview of FoxP3− immune regulating T cells discussed in this review and their main tolerogenic mechanisms in pregnancy. All Tregs described in this

review can exert immunosuppressive properties in a cell-contact independent mechanism that together contributes to a tolerogenic decidual microenvironment. Next

to that, the HLA-G+ Treg, Tr1 Treg, and CD8+ Treg can exert their immunosuppressive properties in a cell-contact dependent mechanism.

TIGIT+ Treg that is characterized by TIGIT positivity, low
expression of CD25 and FoxP3, and intermediate expression
of PD-1. TIGIT+ Tregs express high levels of IFN-γ and IL-2,
and low levels of IL-10. TIGIT+ Tregs mainly suppress CD4+

effector T cells in proliferation assays, but not consistently
CD8+ effector T cells. Interestingly, TIGIT+ Tregs seem
to vary in their characteristics, depending on the trimester
in which they are encountered (119): first-trimester TIGIT+
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Tregs show an increased expression of IL-10 compared to
term TIGIT+ Tregs. This difference in trimesters could be
due to the microenvironment influencing their phenotype,
or because they truly represent different subsets. TIGIT has
been described to be expressed on multiple Treg subsets,
and it can bind CD155 on APCs, which thereby increases
their IL-10 production (194, 195). Binding of TIGIT induces
Tregs to produce IL-10 and fibrinogen-like protein 2 (Fgl2).
By usage of Fgl2 the Tregs obtain the capacity to suppress
Th1 and Th17 cells in vitro, but not Th2 cells (77, 195). It
would be interesting to determine the presence of TIGIT+

Tregs during pregnancy complications and to investigate their
possible role in providing a tolerogenic microenvironment in
successful pregnancies.

In the first-trimester decidua, γδT cells produce high amounts
of IL-10 and TGF-β (115, 196). As described above, these
cytokines are important for establishing an immune suppressive
microenvironment in the decidua. Transfer of uterine γδ T
cell culture supernatant, containing a high concentration of
TGF-β, into the uterus of mice before pregnancy prevents fetal
resorption (111). Terzieva et al. identified the TCR repertoire
from decidual γδ T cells and compared this to the repertoire
of γδ T cells in peripheral blood. In 1st and 3rd trimester
decidua they mostly found Vδ1+ TCR, whereas this particular
δ chain was hardly present in the peripheral blood (168). Vδ1+

T cells are described to have a tolerogenic effect (167, 197). The
possible role of γδ T cells in pregnancy is further suggested by
another study showing higher numbers of γδ T cells in peripheral
blood from women experiencing RPL compared to controls. The
specific presence of the Vδ1 chain was not investigated (198). It
would be interesting to determine the frequency and immune-
suppressive effect of Vδ1+ T cells in the decidua of women
experiencing RPL compared to women with elective termination
of pregnancy.

CONCLUDING REMARKS

In this review we have discussed several types of Tregs
that may contribute to a tolerogenic environment in
the decidua (Figure 5, Table 1) besides FoxP3+ Tregs.
Decidual Tregs seem to assist other cells in creating and
maintaining a microenvironment where inflammatory
signals are generally overruled by tolerogenic signals. Next
to Tregs, this tolerogenic microenvironment is established
and maintained by factors from paternal, maternal and
fetal origin. Paternal contribution to this tolerogenic
microenvironment comes early on from seminal fluid that
contains tolerogenic factors such as TGF-β and paternal
antigens for priming. Fetal trophoblasts contribute by their
expression of tolerogenic HLA-G and HLA-E molecules,
galectins, and PD-L1, and by their production of sHLA-G,
IDO, and TGF-β. Next to this, the maternal contribution in
maintaining a tolerogenic microenvironment in the decidua
is provided by the decidual immune cells, which do not have

an activated phenotype and produce IDO, TGF-β, IL-10,
and sHLA-G.

It remains to be elucidated which mechanisms exactly attract
Tregs to the decidua, if they are activated locally by APCs
in the decidua or in the lymph nodes, where they proliferate,
and if they are specific for fetal antigens. In mice, it has been
shown that fetus-specific Tregs are already detectable in the
uterine draining lymph nodes shortly after semen exposure and
that their numbers increase upon pregnancy (199). While this
could be similar in the human situation, in vitro fertilization
with donor semen, where there is no paternal semen exposure,
often results in a healthy uncomplicated pregnancy, albeit at
a lower rate than in naturally conceived pregnancies (200).
More information on the basic mechanisms of FoxP3− Tregs,
as well as how they are initiated, is needed to provide insight
in the deviations in frequencies or functionality of FoxP3− Treg
subsets in pregnancy complications. Likewise, from a therapeutic
point of view such basic mechanisms need to be clarified
before possible novel therapeutic strategies can be developed.
These therapies could be based on therapy designs similar to
those proposed for FoxP3+ Tregs, such as infusion of Tregs or
application of the cytokines needed for induction of specific Treg
subsets (201).

While it is clear that FoxP3+ Tregs play a role in maintaining
pregnancy, the relevance of the different types of FoxP3− Tregs
herein needs to be established. FoxP3− Tregs with proven
suppressive capacities are found in the decidua and are, therefore,
likely to contribute to the tolerogenic microenvironment.
However, studies such as depletion assays in mice need to be
performed to confirm whether they play a non-redundant role
in maintaining a healthy pregnancy. Since pregnancy is crucial
for the existence of mankind, it is not surprising that there
would be multiple mechanisms in play to establish a regulatory
microenvironment to maintain a healthy pregnancy. Pregnancy
complications for which no clear cause can be identified do
occur, and it is plausible that many of these are related to a
disbalance in maternal immune regulation. It would be helpful
to get a better understanding of the function of all regulatory
T cells present in the decidua, to be able to recognize their
relevance in healthy and complicated pregnancies. As such,
the use of multiple omics techniques to identify the decidual
microenvironment by a holistic approach could give insights in
the presence, frequency, and distribution of the different types
of Tregs in pregnancy [(32, 202, 203); van der Zwan et al.,
submitted]. It is important to note that the time point of sampling
is a crucial factor in such experiments, given the dynamic nature
of the placental microenvironment.
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