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Recent studies have attempted to uncover the role of Group 1 Innate lymphoid cells

(ILCs) in multiple physiological contexts, including cancer. However, the definition and

precise contribution of Group 1 ILCs (constituting ILC1 and NK subsets) to metastasis

is unclear due to the lack of well-defined cell markers. Here, we first identified ILC1

and NK cells in NSCLC patient blood and differentiated them based on the expression

of transcription factors, T-bet and Eomes. Interestingly, Eomes downregulation in

the peripheral blood NK cells of NSCLC patients positively correlated with disease

progression. Additionally, we noted higher Eomes expression in NK cells (T-bet+Eomeshi)

compared to ILC1s (T-bet+Eomeslo). We asked whether the decrease in Eomes was

associated with the conversion of NK cells into ILC1 using Eomes as a reliable marker to

differentiate ILC1s from NK cells. Utilizing a murine model of experimental metastasis, we

observed an association between increase in metastasis and Eomes downregulation in

NKp46+NK1.1+ Group 1 ILCs, which was consistent to that of human NSCLC samples.

Further confirmation of this trend was achieved by flow cytometry, which identified

tissue-specific Eomeslo ILC1-like and Eomeshi NK-like subsets in the murine metastatic

lung based on cell surface markers and adoptive transfer experiments. Next, functional

characterization of these cell subsets showed reduced cytotoxicity and IFNγ production

in Eomeslo ILC1s compared to Eomeshi cells, suggesting that lower Eomes levels

are associated with poor cancer immunosurveillance by Group 1 ILCs. These findings

provide novel insights into the regulation of Group 1 ILC subsets during metastasis,

through the use of Eomes as a reliable marker to differentiate between NK and ILC1s.
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INTRODUCTION

Since the description of TRAIL+ NK cells in mouse liver in 2001 (1), extensive progress has
been made in identifying the phenotype and function of recently discovered Innate Lymphoid
Cells (ILCs) in health and disease (2–8). In both human and mouse, ILCs are the innate immune
counterparts of T-cells, with ILC1, ILC2, and ILC3 sharing features with Th1, Th2, and Th17
subsets, respectively. Together with the previously identified and well-studied natural killer (NK)
cells, ILC1s have been categorized as Group 1 ILCs. The NK cells represent the cytotoxic
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counterparts of ILCs, bearing similarity to CD8+ T cells. Based
on parallels drawn from T cells, the Group 1 ILCs are known to
depend on T-bet for their development, and produce IFNγ upon
activation (9–11). While both murine and human ILC subsets are
defined in a similar way, there is evidence suggesting differences
in their precursor populations and pathways (12). The functions
of Group 2 and Group 3 ILCs have been well-established through
rigorous research efforts (13–20), however, that of Group 1
ILCs have remained somewhat unclear. This is, in part, due
to lack of well-defined cell surface and intracellular markers to
differentiate this heterogenous population into its subtypes—
ILC1s and NK cells. As a result, most studies have referred to
ILC1 subsets as tissue-resident NKs (tr-NK) or unconventional
NKs, and this has led researchers to utilize markers common
to both cell types, to define and study the roles of NK cells
(21–23). Additionally, ILC1s and NK cells have been shown to
exert different functions under different physiological conditions.
Although, in the context of infectious diseases, the protective
role of ILC1 has been uncovered (24), their contribution to
tumor control and surveillance is controversial. While, it has
been reported that loss of immune surveillance is associated with
conversion of NK cells into ILC1s (25), another study has shown
ILC1s to exhibit potent cytotoxicity against cancer cells (26).
Furthermore, a high degree of plasticity amongst various ILC
subsets (27, 28) makes it even more challenging to identify and
examine the roles of different Group 1 ILC subsets in disease
and pathology (25, 29, 30). Therefore, since it is now known
that other subsets in addition to NK cells might exist, there is a
need to revisit these studies and characterize the actual individual
contribution of the Group 1 ILC subsets in order to reliably
associate their specific functions to different diseases.

Early attempts to differentiate between NK cells and ILC1s
utilized CD49a and CD49b (DX5) as two mutually exclusive
markers (31). Classical NK cells in the bloodstream as well
as in thymus, liver, skin, and uterus predominantly express
CD49a−CD49b+ phenotype. On the other hand, ILC1s in
the liver, skin and uterus are CD49a+CD49b−. However, a
recent study has identified an intermediate ILC1 population
which expresses CD49a+CD49b+ phenotype in the tumor
microenvironment (25). Further, it is also noteworthy that the
upregulation of CD49a and downregulation of CD49b occur
under inflammation conditions in activated NK cells, thereby
making these markers non-specific to the subsets (32). Therefore,
alternative strategies have been tested to distinctly define the two
subsets. Developmental dependence of NK cells on transcription
factors such as NFIL3 (33) and that of liver ILC1s on Hobit (34)
has been explored in attempts to study the individual function
of these cells. However, the results from these trials have been
rather unsatisfactory due to development of certain NK cells
even in Nfil3−/− and ILC1s in hobit−/− mice in the presence
of inflammatory stimuli. Likewise, a recent study identified
CD200r1 as an ILC1 specific marker in the liver. However,
its expression on ILC1s in other organs is unknown (35). For
the purpose of this study, we defined Group 1 ILCs based on
expression of T-bet and Eomesodermin (Eomes) in mouse and
human. T-bet is a T-box transcription factor needed for the
development of Group 1 ILC subsets while Eomes is needed for

NK cell development, specifically (36). While T-bet is expressed
on both ILC1s and NK cells (37), Eomes is seemingly expressed
only on murine NK cells (9), thus making it a more reliable
marker to differentiate ILC1s from NK cells (11, 38, 39).

Emerging studies have queried the involvement of novel
Group 1 ILC subsets in disease and pathology (40–42), but
little is known about their phenotype and function in cancer.
Recently, Dadi et al. found an immuno-surveillance role for
murine ILC1-like cells in genetic models of murine mammary
carcinoma (26). On the other hand, an immune-suppressive role
of human CD56+CD3− Group 1 ILCs in Tumor Infiltrating
Lymphocyte (TIL) culture has been reported (43). In the context
of metastasis, while the role of NK cells is well-studied (44), that
of recently identified ILC1 subsets is unknown (45–48). Here, we
aimed to study Group 1 ILC subsets involved in metastasis by
analyzing the profile of Group 1 ILCs in blood samples of NSCLC
patients. We identified distinct ILC1 (Eomeslo) and NK cells
(Eomeshi) in patient blood and observed Eomes downregulation
in Group 1 ILCs (NK cells in particular), with the advancement
of post-metastatic NSCLC. Similarly, using a mouse model
of metastatic melanoma, we identified T-bet+Eomeslo and T-
bet+Eomeshi subsets within NKp46+NK1.1+Group 1 ILCs.
Subsequent ex vivo analysis of the Group 1 ILC subsets showed
increased cytotoxicity with increased Eomes expression. Based
on our findings, we propose that the Eomes levels regulate
the response of Group 1 ILCs to metastasis. Furthermore, the
weakening of Group 1 ILC anti-tumor response was associated
with Eomes downregulation, which could contribute to worse
clinical outcomes in cancer metastasis.

MATERIALS AND METHODS

Patient Samples
All patient samples used in this study were collected from the
National University Hospital (NUH), Singapore, approved under
DSRB number 2016/00698 and were taken after patient written
informed consent at least 24 h before the surgery or on the day of
the consultation. Five milliliter of peripheral blood was collected
from NSCLC patients before the treatment was started. Stages I
and II samples were collected from patients undergoing surgical
resection of lungmass while Stages III and IVwere collected from
patients consulting with National University Cancer Institute
(NCIS) at NUH. De-identified patient information is provided
in Table S1. Blood specimens were diluted 1X with HBSS and
layered onto ficoll-paque media (GE Healthcare) and centrifuged
at 400 g for 40min at 20◦C without brake and acceleration,
after which the PBMC ring was collected into a fresh tube. The
cells were then washed twice, counted and shifted to ice for
immunostaining and flow cytometry.

Flow Cytometry of Human PBMCs
Cells were resuspended in 1ml PBS and spun down at 500 g
for 5min at 4◦C. The cells were then stained for 30min
with a live-dead stain, Fixable Viability Dye (FVD)-506 at
1:1000 dilution in 100 µl PBS. Then, the cells were washed
and stained for cell-surface markers. In order to improve the
antibody binding, a blocking antibody (Biolegend) was used
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at 1:200 dilution. A lineage panel consisting of the following
antibodies was included to allow for clear identification of ILCs—
FITC-conjugated anti-CD3 (OKT3), anti-CD19 (H1B19), anti-
CD11b (M170), anti- CD11c (3.9). To this mix, the following
antibodies from Biolegend were added at 1:50 dilution: APC-
Cy7-conjugated anti-CD45(2D1), PerCP-conjugated anti-CD56
(CMSSB), PE-Cy7-conjugated anti-CRTH2 (BM16), PacBlue-
conjugated anti-CD117 (104D2) and Qdot-605-conjugated anti-
CD127 (A019D5). Cells were incubated with the antibodies for
30min on ice. This was followed by fixation permeabilization
for detection of intranuclear T-bet and Eomes markers. For
this, eBioscience Foxp3 transcription factor staining kit was
used (#005523), following which the cells were stained with
PE-conjugated anti-T-bet (4B10) and APC-conjugated anti-
Eomes antibody (WD1928) at room temperature. Intranuclear
staining with anti T-bet and Eomes antibodies was carried out
1 h before running the samples on flow cytometer. The cells
were resuspended in 500 µl 2% FBS in PBS and centrifuged
at 8,000 g to remove the supernatant. To the pellet, 400 µl
of PBS was added before the suspension was filtered through
70µm filter and run on flow cytometer. Fixed samples, prior
to intracellular staining were stored overnight at 4◦C. Samples
were run on BD LSR Fortessa flow cytometer and analyzed
using Flowjo V10. Fluorescence compensation data were
acquired using single stained compensation beads (Thermofisher
Scientific) and applied to the samples. For gating of positive
and negative populations, Fluorescence Minus One (FMO)
controls were used. For additional clarity, internal staining
controls were used, wherever mentioned. For data presentation
and statistical analysis, graphs were plotted using GraphPad
Prism 5.01.

Mice Models and Cell Lines
The experiments and breeding of mice were performed under
Institutional Animal Care andUse Committee (IACUC approved
protocols: R17-0209 and BR-1142, respectively). All the mice
used in this study were housed at Comparative Medicine
at MD1, National University of Singapore. Throughout this
study, C57BL/6J female wild type (WT) mice between 6 and
8 weeks of age were used. T-bet KO and CD45.1 congenic
mice were purchased from Jacksons lab while Eomes-GFP
reporter mice were a kind gift from Dr. Thierry Walzer, Centre
International de Recherche en Infectiologie, Inserm, Lyon,
France. B16F10 melanoma cells were purchased from ATCC
and were maintained in DMEM containing 10% FBS. Mouse
melanoma B16F10 cells were tested to be mycoplasma-free.
To set up a model of pulmonary metastasis in B6 mice, 0.2
million B16F10 cells in PBS were administered intravenously
through the tail vein. Subsequently, the mice were euthanized,
and lung and spleen tissues were harvested at different time
points. The cells were then isolated and characterized as
discussed below.

Cell Isolation
White blood cells were isolated from mouse lungs, spleen,
and liver using enzymatic and mechanical dissociation. After
slicing the spleen into small fragments of ∼2mm, in PBS, a

10ml syringe and plunger was used to release the cells further.
For lung, tissue chunks were first incubated in 0.5 mg/ml
Collagenase D and 20 U/ml DNase (Merck) for 20min, followed
by mechanical dissociation using Miltenyi tissue dissociator.
Liver was perfused with 1mM EDTA in PBS, isolated, and
mechanically homogenized by using Miltenyi tissue dissociator.
Dissociated tissue samples were then filtered through a 70µm
nylon filter (Miltenyi Biotec). For lungs and liver, the cells were
resuspended in 40% Percoll PLUS density gradient medium
(GE Healthcare) and overlaid on 70% Percoll Plus medium
and centrifuged at 500 g for 30min at 20◦C The interphase
containing lymphocytes was collected, washed and subjected
to lysis of red blood cells using ACK lysis buffer, together
with splenic cells. The isolated cells were then stained as
described below.

Flow Cytometry and Sorting of Group 1
ILCs
For staining of mouse samples, the following antibodies were
used: From eBioscience: PacBlue-conjugated anti-CD45.1 (104),
PE-Cy7-conjugated anti-NKp46 (29A1.4), APC/APC-Cy7-
conjugated anti-NK1.1 (PK136), APC-conjugated anti-CD49b
(DX5), PerCP-cy5.5-conjugated anti-CD11b (M1/70), AF488-
conjugated anti-CD27 (LG.7F9), APC-conjugated anti-CD62L
(MEL-14), FITC-conjugated anti-CD44 (IM7), PerCP-cy5.5-
conjugated anti-Ki67 (So1A15), AF488-conjugated anti-IFNγ

(XMG1.2), PerCP-cy5.5-conjugated anti-TNFα (MP6-XT22),
PE conjugated anti-T-bet (4B10), PE-TexasRed-conjugated
anti-Eomes (Dan11mag). PerCP-cy5.5-conjugated anti-CD49a
(Ha31.8) was from BD Biosciences. A cocktail of biotin-tagged
antibodies (eBioscience) containing anti-mouse CD3, CD19,
CD5, γδTCR, TER119, Gr-1, F4/80 was used to separate NK
cells from other immune cells. Fixable Viability Dye (FVD)-
506 (65-0866, eBioscience) was used to separate live from
dead cells, and cells were fixed using Foxp3 Fix/perm kit
(88-8824-00, eBioscience). Flow cytometry of the cells was
performed with BD LSR Fortessa and data were analyzed
using FlowJo V10. In order to sort ILC1s/NKs, spleen from
multiple Eomes-GFP reporter mice were pooled and processed
to isolate single cells. For depletion of lineage cells, streptavidin
beads were used to remove lineage-positive cells stained
with biotin antibodies (StemCellTM Technologies, Catalog
#19860). The cells were stained with PacBlue-conjugated
anti-CD45.1 (104), PE-Cy7-conjugated anti-NKp46 (29A1.4),
APC-conjugated anti-NK1.1 (PK136) and Eomes was detected
using GFP expression. After staining, cells were sorted on
BD FACS Aria and Eomeslo and Eomeshi Group 1 ILC
fractions were collected in complete RPMI. MFIs (mean
fluorescence intensity) of pre- and post-sorted cells were
compared and a 99% pure population of Eomeshi cells
was isolated.

Adoptive Transfer
2 × 105 Eomeshi cells were adoptively transferred into CD45.1
mice at day 4 post-B16F10 cancer cell injection. The lungs were
then harvested and analyzed at day 10 using flow cytometry,
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and donor cells in the recipient CD45.1 mouse were detected
as CD45.2+CD45.1−.

QUANTITATIVE REVERSE
TRANSCRIPTION POLYMERASE CHAIN
REACTION (qRT-PCR)

Flash frozen lung lobes from mice were thawed on ice
and 500 µl Trizol was added to carry out RNA extraction.
The lung lobe was finely excised and homogenized using a
tissue dissociator (GentleMACS c tube, Miltenyi). Chloroform-
isopropanol extraction was used to precipitate the RNA followed
by another round of extraction with Trizol to achieve higher
purity. The RNA pellet obtained thereafter was re-suspended
in water and reverse-transcribed using superscript cDNA kit
(ThermoFisher). The cDNA obtained was diluted 5 times
and qRT-PCR using Promega master-mix was performed. All
measurements were relative to reference gene, Rpl27, which
was used as an internal loading control. The PCR primers for
Melan-A were: F- 5′ GAGAAATCCCATCAGCCCGT 3′ and R-
5′ AGCGTTCTCAGGAGTTTCCC 3′, and for Pmel were: F- 5′

GCCACATGGTAGCACTCACT 3′ and R- 5′ AACAAAAGCC
CTCCCGCAAG 3′.

Ex vivo Stimulation and Intracellular
Staining
IFNγ and TNFα production by murine Group 1 ILCs was
measured through intracellular cytokine staining after ex vivo
stimulation with 25 ng/ml Phorbol Myristate Acetate (PMA,
Sigma) and 500 ng/ml ionomycin (Thermofisher Scientific) in
complete RMPI at 37◦C for 5 h. Secretion of the cytokine was
blocked by the addition of GolgiPlugTM (Beckton-Dickinson)
to the media. Cells were then fixed using Foxp3 Fix/perm kit
(88-8824-00, eBioscience) for 30min on ice, and stained with
anti-IFNγ AF488 and anti-TNFα antibody.

Co-culture of Group 1 ILCs With Cancer
Cells
For co-culture of mouse Group 1 ILC fractions with B16F10
cells, flow sorted Eomeshi and Eomeslo Group 1 ILC subsets
were resuspended in RPMI and co-cultured with B16F10 cells
in a 4:1 effector to target ratio. For measurement of Eomes
MFI, cells cultured without B16F10 cells were used as controls
and cytotoxicity was normalized against spontaneous cell death
in “B16F10 only” wells. Cells were harvested onto ice at
different time points and cytotoxicity was detected through
7AAD staining. The Eomes levels were measured through GFP
expression. The cytotoxicity was determined by calculating [%
dead cells / (% dead cells+ % live cells)].

Cytokine Administration and in vivo NK
Cell Expansion
Intranasal administration of cytokines was carried out to evaluate
the response of Group 1 ILC subsets to in situ stimulation. For
this, the experimental mice were given 50 µl of 0.5 µg IL-12 and
1.0 µg IL-18 in 1x PBS while the control group received 50 µl

of 1x PBS only. The mice were anesthetized in the gas chamber
using isofluorane. This was done on days 1, 3, and 5, followed by
harvesting and isolation of cells on day 7.

Statistical Tests
Prism (GraphPad) was used for statistical analysis. Individual
statistical tests used are described in the corresponding figure
legend. p-values are shown in figures or included in the
figure legend. For all animal studies, points represent biological
replicates, for co-culture analysis technical replicates were used
and representative experiments are shown. For NSCLC patient
sample analysis, each point represents unique patient data. Bar
position represents the mean, and error bars represent± s.e.m.

RESULTS

Eomes Downregulation in Circulating NK
Cells Accompanied NSCLC Progression
To investigate the role of Group 1 ILCs in cancer, we analyzed
peripheral blood samples of NSCLC patients across various stages
of cancer prior to treatment initiation. Group 1 ILCs in the blood
were broadly classified as CD45+Lin−c-kit−CRTH2− live cells
and were subdivided into ILC1s and NK cells. ILC1s were defined
as CD127+CD56− and NK cells as CD127−CD56+, as described
previously (49) (Figure 1A). Since the expression of T-bet and
Eomesodermin (Eomes) on human Group 1 ILCs is not well-
defined (39, 50, 51), we analyzed the profile of these transcription
factors in circulating ILC1s and NKs in NSCLC. Interestingly,
we noticed a decrease in the expression levels of Eomes post-
metastasis (Stages III and IV) compared to early stage (Stages
I and II), while T-bet levels did not change significantly
(Figures S1A,B). We also noted a concomitant increase in
the frequency of Eomeslo cells (among the T-bet+ Group 1
ILCs) with NSCLC advancement (Figure 1B). This suggested
downregulation of Eomes in Group 1 ILCs, particularly NK
cells, during metastasis (Figures S1C,D). We also investigated
Eomes levels in individual ILC1 andNK cell subsets and observed
significantly elevated Eomes expression in NK cells, compared
to ILC1s (Figure 1C). While T-bet was highly expressed in both
NK cells and ILC1s, there was a notably higher expression in
NK cells compared to ILC1s (Figure 1D). Based on this, we
propose that circulating ILC1s exhibit T-bet+Eomeslo profile
while NK cells express T-bet+Eomeshi phenotype during NSCLC
progression (Figure S1E). Interestingly, we did not observe any
significant difference in the ratio of NK cells to ILC1s with cancer
advancement (Figure S1F).

Murine Eomeslo Group 1 ILCs
Accumulated in the Lung and Spleen
During Metastatic Progression
In light of these findings, we questioned whether Eomes
downregulation in Group 1 ILCs during tumor progression
was associated with acquisition of ILC1-like phenotype in
NK cells. Furthermore, using a model of murine metastasis,
we asked whether Eomes could also be used as a reliable
marker to differentiate ILC1s from NK cells in the tumor
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FIGURE 1 | Human Group 1 ILCs expressed Eomes differentially during NSCLC progression. (A) Gating for identification of Group 1 ILC subsets in peripheral blood of

NSCLC patients. Group 1 ILCs were gated as CD45+ Lineage (CD3, CD19, CD11b, CD11c)−c-Kit−CRTH2−; ILC1s were further gated as CD127+CD56− and NK

cells as CD127−CD56+ (B) Percentage of Eomeslo subset gated over CD45+ Lineage (CD3, CD19, CD11b, CD11c)−c-Kit− CRTH2−T-bet+ cells at early stage

(Stage I and II) vs. late stage (III and IV). Cancer progression is accompanied with increase in frequency of cells expressing lower Eomes levels (C) Quantification of

Eomes expression in Group 1 ILC subsets, viz, ILC1, and NK cells. Peripheral blood NK cells showed higher Eomes levels compared to circulating ILC1s (D)

Quantification of T-bet expression in Group 1 ILC subsets, viz, ILC1, and NK cells. Peripheral blood NK cells showed higher T-bet levels compared to circulating ILC1s.

MFI is Mean Fluorescence Intensity, n = 16 for stage I, n = 4 for stage II, n = 4 for stage III, n = 7 for stage IV. Data are presented as mean ± s.e.m.; significance was

tested using unpaired two tailed students’ t-test.

microenvironment. After observing the loss of expression of
Eomes in NK cells and increase in Eomeslo ILC1s in human
peripheral blood with cancer progression, we queried the profile
of murine Group 1 ILCs during metastasis using a mouse model
of B16F10 metastatic melanoma. To this end, we injected B16F10
cancer cells into the tail vein and monitored tumor development
over 21 days (Figure 2A). The tumor burden in the lungs was
quantified using qRT-PCR, based on Melan-A and Pmel, which
are two melanocyte-specific markers with zero basal expression
in mock-treated lungs (52). These genes were expressed at higher
levels over time, indicating increased tumor burden in the lungs
(Figure 2B). Next, we investigated the profile of pulmonary
Group 1 ILCs during metastatic establishment and colonization.
For this, we used the NK cell surface markers, NKp46 and NK1.1,
to define Group 1 ILCs (9). Since Group 1 ILCs consist of ILC1s
and NK cells which share similar phenotypic profile, we used
Eomes as a marker to differentiate ILC1s and NK cells. Like with
human samples, we probed for Group 1 ILC subsets in mice
tissues based on Eomes and T-bet levels, revealing two different
Group 1 ILC subsets: T-bet+Eomeslo and T-bet+Eomeshi cells
in the lung and spleen (Figures 2C,E). Since ILC1s are generally
Eomes− but NK cells in most organs express Eomes (38), and

our findings in human patient samples show that ILC1 expressed
lower levels of Eomes compared to NK cells, we hypothesized
that the pulmonary and splenic Eomeslo and Eomeshi subsets
represent ILC1 and NK cells, respectively. Quantification of
pulmonary and splenic Eomeslo and Eomeshi NK cells showed
accumulation of these subsets with increase in tumor progression
(Figures 2D,F). Furthermore, analysis of the ratio of Eomeshi to
Eomeslo cells at different time points showed decrease in Eomeshi

cells with increase in metastatic burden, suggesting increase of
the number of Eomeslo cells in the lungs (Figure S2A). However,
due to reduced infiltration of CD45.2+ immune cells into the
lungs, we did not detect any Group 1 ILCs at day 21, coinciding
with massive tumor burden at that time point (Figure S2B).

Eomeslo Group 1 ILC Subset Is Not Derived
From Eomeshi Cells in the Tumor
Microenvironment
Cancer cells are known to polarize the tumor milieu in order
to dampen the effector function of various immune cells (53).
Since we identified increase in the frequency of T-bet+Eomeslo

population in the lung and spleen, we questioned whether the
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FIGURE 2 | Eomeslo Group 1 ILCs accumulate in the lung during B16F10 metastatic progression. (A) Schematic for setting up B16F10 murine metastatic melanoma

study model in B6 mice. Mice were sacrificed and lungs were harvested at various time points. (B) Quantification of tumour burden in the lungs using

melanocyte-specific genes Melan-A and Pmel relative to Rpl27 housekeeping gene. (C) Identification and representative flow plot of pulmonary Eomeslo and Eomeshi

cells in the lung at day 0 and day 14. (D) Quantification of Eomeslo and Eomeshi cell numbers with increase in metastatic burden in the lungs. Both these cell subsets

were not detectable (N.D.) at day 21. (E) Identification and representative flow plot of splenic Eomeslo and Eomeshi cells at day 0 and day 14. (F) Increase in splenic

Eomeslo and Eomeshi numbers with increase in metastasis. Both these cell subsets were not detectable (N.D.) at day 21. Cell populations were gated over

NKp46+NK1.1+CD45.2+ live Group 1 ILCs for (C–F). For (C,E), FMO controls are overlaid. MFI is Mean Fluorescence Intensity, n = 4 for each group. Data are

representative of three independent repeats; Data are presented as mean ± s.e.m.; statistical significance was tested using one-way ANOVA (B) two-tailed students’

t-test (D,F). **p < 0.005 and **p < 0.0005.

increase in Eomeslo subset is due to Eomes downregulation in
the tumor microenvironment, viz, could they have arisen from
Eomeshi cells? To this end, we first adoptively transferred FACS-
sorted Eomeshi cells isolated from the spleen of Eomes GFP
reporter mice (CD45.2) into congenic CD45.1 mice at day 4
post-injection of B16F10 cells or PBS (mock). Since we observed
an increase in Eomeslo cells as early as day 7 after injection of
B16F10 cells, we followed a similar timeline for adoptive transfer
experiment. At day 10 after B16F10 injection, we analyzed the cell
frequency and population (Figures 3A,B). However, we did not
observe any decrease in Eomes expression (based on GFP MFI)

in the adoptively transferred cells isolated from tumor-bearing
recipient mice at day 10 compared to mock naïve recipient
mice (Figure 3C). Likewise, we did not observe any increase in
the frequency of Eomeslo cell population upon the transfer of
Eomeshi cells into tumor-bearing mice, suggesting that Eomeslo

cells did not arise from Eomeshi cells at day 10 (B16F10 vs. mock)
(Figure 3D). This suggests that Eomes downregulation did not
occur as a result of the transformation of Eomeshi into Eomeslo

cells in the tumor microenvironment, which could indicate that
Eomeslo and Eomeshi cells perhaps belonged to different lineages.
Since ILC1s need T-bet for development and NK cells rely on
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FIGURE 3 | Eomeslo and Eomeshi subsets correspond to different cell lineages. (A) Scheme of adoptive transfer of Eomeshi cells into CD45.1 mice bearing cancer

(relative to mock). After injection of B16F10 cells (day 0), Eomeshi cells were harvested from donor Eomes-GFP mice and adoptively transferred into recipient mice at

(Continued)

Frontiers in Immunology | www.frontiersin.org 7 June 2020 | Volume 11 | Article 1190

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Verma et al. Eomes Defines Group 1 ILCs

FIGURE 3 | day 4. The mice were then sacrificed at day 10 and lungs were harvested and analyzed. (B) Eomeslo and Eomeshi cells in Eomes-GFP mice (Red)

overlaid with Eomes FMO (blue) (left panel). Two distinct populations can be seen upon running live cells under flow cytometer; Sorting efficiency ∼99% middle panel);

Donor cells after transfer of CD45.2+ Eomeshi-GFP+ cells into CD45.1 mice (right panel). (C) Eomes (MFI) after transfer of donor derived Eomeshi GFP+ cells in

cancer-bearing (B16F10) and cancer-lacking (mock) hosts at day 10. No significant difference in Eomes MFI was observed between cancer and mock mice. (D)

Frequency of Eomeslo GFP− cells amongst donor NK cells at day 10 post-injection of B16F10 cells (E) Flow plots and graphs show near absence of Eomeslo cells in

T-bet KO mice (∼0.8%) compared to WT mice (∼29.1%), indicating that T-bet is needed for development of Eomeslo cell development (Red—NKp46+NK1.1+ cells;

Blue—Eomes FMO). MFI is Mean Fluorescence Intensity, n = 3–4 for each group. Results are representative of three independent repeats; data are presented as

mean ± s.e.m.; Significance was tested using two-tailed students’ t-test.

FIGURE 4 | Eomeslo Group 1 ILCs represent both cNK and tr-NK (ILC1) phenotype and function. (A) Representation of CD127, CD49a, CD49b expression in

Eomeslo and Eomeshi subsets. Ki67 (proliferation marker) and CD44, CD62L (endothelial cell interaction/recruitment marker) levels on Eomeslo and Eomeshi cells were

measured relative to FMO controls; red—Eomeslo, black—Eomeshi, gray—control. (B) Maturation status of NK cells using Cd11b and CD27 markers, with gating

based on FMO controls; red—Eomeslo, black—Eomeshi (C) CD49a and CD49b expression levels in lung Eomeslo compared to liver Eomeslo cells relative to FMO

(Fluorescence Minus One) controls. MFI is Mean Fluorescence Intensity, n = 4 for each group. Data are representative of three independent repeats.

it for maturation, we would anticipate the absence of ILC1s in
T-bet knockout mice whereas immature NKs would be present.
To test this hypothesis and to assess the source of Group 1 ILC
subsets, we checked the profiles of Eomeslo and Eomeshi subsets
in T-bet knockout mice. Since accumulation of these two subsets
peaked at day 14 (Figure 2D), we compared cell numbers in T-
bet knockout and wild type mice at this time point. Interestingly,
we observed a significant reduction of Eomeslo cell population in
the lungs while Eomeshi cells were the majority, supporting the
hypothesis that Eomeslo cells represent ILC1s while Eomeshi cells
are NK cells (Figure 3E).

Murine Eomeslo and Eomeshi Group 1 ILC
Subsets Share Phenotypic Similarities With
ILC1s and cNKs, Respectively
After establishing that Eomeslo subset did not arise from
Eomeshi Group 1 ILCs, we sought to determine whether the T-
bet+Eomeshi and T-bet+Eomeslo subsets represent conventional

NK cells (cNK) and unconventional tissue resident NK cells
(tr-NK)/ILC1, respectively, as in the liver and uterus (36, 54).
To this end, we screened these subsets for various cell surface
markers. Both of these subsets lacked the expression of CD127
(Figure 4A), a subunit of IL-7 receptor, suggesting that IL-7
was not needed for their maintenance. Next, we noted that
Eomeslo cells expressed higher levels of CD49a than Eomeshi

subset, pointing at an ILC1-like phenotype of Eomeslo subset.
Conversely, Eomeshi cells expressed higher levels of CD49b than
Eomeslo subset suggesting an NK-like phenotype of Eomeshi

cells. Quantification of the percentage of CD49a+ and CD49b+

cells showed similar results (Figures S3A,B). We also measured
cell proliferation and recruitment markers, Ki67 and CD44,
CD62L, respectively (Figure 4A). We did not find any major
difference in Eomeslo and Eomeshi subsets except that Eomeshi

cells comprised of 79.3% of double positive CD62L+CD44+

cells, suggesting their potential recruitment from other organs
or the bloodstream while Eomeslo cells consisted of 51.4%
double positive population. Therefore, compared to Eomeslo
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FIGURE 5 | Eomes upregulation is correlated with Group 1 ILC-mediated cytotoxicity. (A) Representation of IFNγ expression in Eomeslo and Eomeshi subsets relative

to FMO controls; red—Eomeslo, black—Eomeshi; Cells were isolated and stimulated ex vivo with PMA and Ionomycin (NS = non-stimulated) (B) Increase in Eomeslo

and Eomeshi cell numbers in response to IL-12 and IL-18 stimulation in vivo. The lungs were harvested, and cells were counted at day 7. Here, n = 4 biological

replicates. (C) Percentage killing of B16F10 melanoma cells by Eomeshi subset relative to Eomeslo cells at 24 and 48 h, normalized to spontaneous death (B16F10

only). (D) Measurement of Eomes MFI across 24, 48, and 72 h in flow-sorted murine Eomeshi Group 1 ILC in co-culture with B16F10 cells compared to Eomeshi

subset alone. Cells were isolated from Eomes-GFP reporter mice; Eomes MFI is indicative of GFP MFI in the cells. Target to Effector ratio (T:E) was maintained at 4:1.

MFI, Mean Fluorescence Intensity, n = 3 technical replicates, Data are representative of three independent repeats; data are presented as mean ± s.e.m.; Significance

was tested using two-tailed students’ t-test; n.s., not significant *p < 0.05.

cells, the Eomeshi subset showed larger proportion of cells with
circulating cell phenotype. These observations are in alignment
with an ILC1-like phenotype the Eomeslo subset and NK-like
phenotype for Eomeshi cells as suggested by other studies (31).
Next, in order to rule out the possibility that these Eomeslo

cells were immature NK cells, we examined the expression
of NK maturation markers, CD11b and CD27, on these cells.
While both Eomeslo and Eomeshi subsets consist of various
fractions of immature NK cells (indicated by CD11b−CD27+

and CD11b+CD27+), the majority of Eomeshi and Eomeslo

cells represented terminally mature cells (CD11b+CD27−)
(Figure 4B), precluding the possibility that Eomeslo subset
cells were immature NK cells. Similar analysis of splenic
Eomeslo and Eomeshi subsets showed a comparable profile for
CD49b and CD49a (Figure S3C), whereas liver cell subsets
showed higher expression of CD49a in liver Eomeslo cells
(Figure 4C).

Eomeslo Subset Has Reduced Effector
Function Compared to Eomeshi Group 1
ILCs
In order to characterize the function of the two subsets, we
measured IFNγ and TNFα produced by these cells. We did
not observe measurable levels without cell stimulation, however,
upon stimulation with PMA and Ionomycin, Eomeslo cells

produced significantly lower IFNγ compared to Eomeshi cells, at
day 14 (Figure 5A). Similarly, a larger fraction of Eomeshi cells
produced IFNγ compared to that of Eomeslo cells (Figure S3D).
On the other hand, TNFα did not show any difference in MFI
(Figure S3E). This could be due to inherent differences in the
nature of these cells or change in the activation status as a result
of the polarization of the tumor microenvironment toward a
pro-tumor milieu, albeit transient. Next, since Group 1 ILCs are
activated by cytokines IL-12, IL-15, and IL-18 (8), we checked
the response of NKp46+NK1.1+ subsets to these cytokines as
per the treatment scheme (Figure S4A). Eomeshi cells were more
sensitive to the stimulation, and the cell numbers increased
significantly compared to Eomeslo cells upon stimulation with
IL-12 + IL-18 (Figure 5B, Figure S4B). Since murine Eomeslo

ILC1-like subset produced lower IFNγ production compared to
Eomeshi subset, we next queried the role of Eomes in cytotoxicity
of Group 1 ILCs. For this, we performed FACS sorting of
Eomeshi and Eomeslo Group 1 ILCs and independently co-
cultured them with B16F10 cells ex vivo. Interestingly, Eomeshi

cells were more cytotoxic compared to Eomeslo at 24 and 48 h
time points (Figure 5C). Furthermore, we observed an increase
in the killing ability of Eomeshi from 24 to 48 h with increase
in intracellular Eomes expression (Figures 5C,D). This indicates
that Eomeslo ILC1s are less cytotoxic than Eomeshi NK cells and
cell cytotoxicity is positively associated with Eomes expression.
Overall, we conclude that Eomeslo and Eomeshi Group 1 ILCs
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FIGURE 6 | Graphical summary. Naïve lungs consist mainly of Eomeshi NK cells. However, metastatic colonization leads to increase in the number of Eomeslo ILC1.

This increase in Eomeslo ILC1s is associated with increased metastatic burden due to lower cytotoxic potential and reduced IFNγ production by this subset of ILC1s,

compared to NK cells. This in turn supports proliferation of cancer cells and prevents apoptosis and cancer cell death. However, despite lowering of Eomes levels in

Group 1 ILCs, Eomeslo ILC1s did not seem to be derived from Eomeshi NK cells, thus eliminating the possibility of plasticity under the conditions tested. Therefore, we

propose that (i) the reduction in Eomes levels is associated with a worse metastatic burden and (ii) this could be due to production of immune-suppressive factors by

Eomeslo cells (iii) immunotherapeutic targets designed to augment Eomes levels could prove useful in the treatment of metastasized cancers.

are fundamentally different and represent ILC1s and NK cells.
Figure 6 illustrates our findings in a hypothetical model.

DISCUSSION

While Group 1 ILC subsets are considered to play an important
role in cancer regulation due to their similarity to CD4 Th1
cells and production of IFNγ, their involvement and function in
metastasis is rather unclear. This is due to phenotypic similarity
to the well-knownNK cells as well as evidence of plasticity among
ILC subsets. In this study, we first identified ILC1 and NK cells
in NSCLC patient blood using CD127 and CD56 markers. We
further noted lower levels of Eomes in ILC1s compared to NK
cells. Additionally, Eomes levels in NK cells were reduced with
increase in disease severity. This prompted us to fully characterize
Group 1 ILCs in murine models based on the expression of
Eomes. Since Eomes and T-bet have been shown to be reliable
in differentiating various subsets of Group 1 ILCs, we used

these markers to study pulmonary Group 1 ILCs using a mouse
model of B16F10 experimental metastasis. Since we observed
a drop in Eomes levels in NK cells, post-metastasis (Stages
III and IV), this murine model of metastasis was adopted to
mirror similar conditions to confirm the role of Group 1 ILCs
in cancer metastasis. Like in human cells, we noticed a decrease
in the frequency of murine Eomeshi NKp46+NK1.1+ cells with
increase in tumor burden, giving rise to T-bet+Eomeslo and T-
bet+Eomeshi ILC1 subsets in the lungs. Further phenotypic and
functional characterization of these subsets revealed an ILC1-like
signature for Eomeslo subset and NK-like properties for Eomeshi

cells. Interestingly, none of the cellular subsets showed specificity
for NK or ILC1 markers, thus resulting in an “intermediate”
ILC1 population as has been reported recently (29). In alignment
with this, adoptive transfer of Eomeshi subset did not give
rise to Eomeslo subset, suggesting different lineage of the two
cell types. Our findings are also in line with a study showing
immune-evasion by cancer cells through conversion of NK cells
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into ILC1-like cells where Eomeslo ILC1s produced significantly
lower IFNγ and had reduced cytotoxicity compared to Eomeshi

NK cells (25). While we did not observe conversion of Eomeshi

cells into Eomeslo cells under the conditions analyzed, the
increase in the number of murine Eomeslo ILC1s positively
correlated with metastatic advancement. This observation,
coupled with Eomes downregulation in human Group 1 ILCs
with NSCLC progression, suggests that loss of Eomes is
associated with a reduction in the anti-cancer effector function
of Group 1 ILCs. Our findings provide an avenue for future
elucidation of the molecular mechanism through which Eomes
modulates cancer cell death. Additionally, it is interesting to note
that the presence of B16F10 cells on the in vivo assays did not
increase the levels of Eomes on ILC1 and NK cells (Figure 3C)
but led to increased Eomes expression ex vivo in the killing
assay (Figure 5D). We speculate that this perceived differences
in the expression level could be due to different time points at
which the cells were being analyzed. Eomes levels in Figure 3C

were measured 6 days after adoptive transfer (at which point
the Eomes levels could have stabilized) while in Figure 5D, the
increase in eomes expression is detected at 24 and 48 h. It is
also important to note that at 72 h time point in the killing
assay, there was no observable change in Eomes levels, which
further corroborates the in vivo data. Furthermore, while we
observed near absence of Eomeslo group 1 ILCs in T-bet KOmice,
suggesting ILC1-like behavior, it is important to note that because
of the compensatory nature of T-bet and Eomes, mice deficient
in T-bet may have upregulated Eomes, which could in turn lead
to their mis-identification as Eomeshi. Therefore, to ultimately
define the developmental profile and origin of these cells, lineage
tracing with knockout mice deficient in transcription factors
crucial for development of ILC1 but not for NK cells must be
carried out in future.

In the context of cancer, while it is conceivable that various
group 1 ILC subsets play an anti-cancer effector function
due to their IFNγ production, caution is needed since the
modulation of the immune cell response might occur in the
tumor microenvironment, thus changing the role of these cells
from anti- to pro-tumor phenotype as reported for other immune
cell types (55, 56). Furthermore, whether these murine Eomeslo

and Eomeshi subsets are similar to human Eomeslo ILC1s and
Eomeshi NK cells remains to be confirmed. While the phenotype
and profile of various Group 1 ILC subsets (e.g., cNKs and ILC1),
have been identified in the past decade in liver, thymus, kidney,
uterus and skin, such information on lung Group 1 ILCs in
metastasis is hitherto unavailable. Therefore, to our knowledge,
this is the first study on the role of ILC1s in metastasis in human
and mouse. Finally, although our studies do suggest that the
phenotype of Eomeslo and Eomeshi cells resembles that of ILC1

and NK cells, respectively, we cannot preclude the possibility that
these cells could be under different activation states of the same
cell types which developed out of distinct lineages. Future studies
involving determination of the lineage would help to further
elucidate the development and function of these cells.
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