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Liver transplantation is the ideal treatment approach for a variety of end-stage

liver diseases. However, life-long, systemic immunosuppressive treatment after

transplantation is required to prevent rejection and graft loss, which is associated

with severe side effects, although liver allograft is considered more tolerogenic.

Therefore, understanding the mechanism underlying the unique immunologically

privileged liver organ is valuable for transplantation management and autoimmune

disease treatment. The unique hepatic acinus anatomy and a complex cellular network

constitute the immunosuppressive hepatic microenvironment, which are responsible

for the tolerogenic properties of the liver. The hepatic microenvironment contains a

variety of hepatic-resident immobile non-professional antigen-presenting cells, including

hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, that

are insufficient to optimally prime T cells locally and lead to the removal of alloreactive T

cells due to the low expression of major histocompatibility complex (MHC) molecules,

costimulatory molecules and proinflammatory cytokines but a rather high expression of

coinhibitory molecules and anti-inflammatory cytokines. Hepatic dendritic cells (DCs) are

generally immature and less immunogenic than splenic DCs and are also ineffective in

priming naïve allogeneic T cells via the direct recognition pathway in recipient secondary

lymphoid organs. Although natural killer cells and natural killer T cells are reportedly

associated with liver tolerance, their roles in liver transplantation are multifaceted and

need to be further clarified. Under these circumstances, T cells are prone to clonal

deletion, clonal anergy and exhaustion, eventually leading to tolerance. Other proposed

liver tolerance mechanisms, such as soluble donor MHC class I molecules, passenger

leukocytes theory and a high-load antigen effect, have also been addressed. We herein

comprehensively review the current evidence implicating the tolerogenic properties of

diverse liver cells in liver transplantation tolerance.
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INTRODUCTION

Liver transplantation is the ideal therapeutic approach for
a variety of end-stage liver diseases. However, life-long,
systemic immunosuppressive treatment is required after
transplantation to prevent rejection and graft loss, which is
associated with high costs and severe side effects, including
infections and malignancy (1, 2). From an immunological
standpoint, a liver allograft is more tolerogenic than such
grafts for other solid organs, like the heart, kidney, and
lung. Spontaneous liver allograft acceptance without the
need for immunosuppression has been observed in multiple
experimental animal transplantation models (3–5). In clinical
practice, liver allografts show a lower rejection rate than such
grafts of other solid organs, and around half of carefully
selected liver transplant recipients are able to be completely
weaned from immunosuppression, which rarely occurs in
cases of other organ transplantation (5–7). Furthermore, liver
allografts are associated with tolerance induction for other
simultaneous or sequentially transplanted organs in human and
animal models, indicating that the liver can induce systemic
tolerance (8–12). Therefore, understanding the mechanisms
underlying the unique immunologically privileged liver organs
is valuable for transplantation management and autoimmune
disease treatment.

The liver is the central metabolic organ responsible for
metabolism, nutrient storage and detoxification and also
functions as an immunological organ. To fulfill its multifaceted
functions, the liver comprises repetitive functional units formed
by a myriad of cell types. The functional unit, known as
the hepatic acinus, consists of an irregular-shaped, roughly
ellipsoidal mass of parenchymal cells grouped around the
terminal branches of hepatic arterioles and portal venules
just as they anastomose into sinusoids (13, 14). The liver
sinusoids are lined by a thin layer of fenestrated liver sinusoidal
endothelial cells (LSECs) and lack organized basal lamina,
which facilitate the passage of blood plasma to the underlying
hepatocytes. Microvilli of hepatocytes extend into the space of
Disse, existing between sinusoids and hepatocytes and exerting
metabolic functions.

The liver receives a dual blood supply from the hepatic
artery and portal vein. The arterial blood is oxygenated, while
the venous blood is rich in pathogens, toxins and harmless
dietary antigens from the gut; the liver therefore faces constant
immunologic challenges. The arterial and portal-venous blood
undergoes confluence and runs through the liver sinusoids
toward the central vein or terminal hepatic venules at a low
speed, which facilitates the uptake of gut-derived content by
liver cells. As an important barrier between the gut and the
circulation, the liver interstitium is highly enriched in both innate
and adaptive immune cells, such as LSECs, Kupffer cells (KCs),
dendritic cells (DCs), hepatic stellate cells (HSCs), natural killer
(NK) cells, natural killer T (NKT) cells, and T cells. These cells
contribute to the formation of a local tolerogenic milieu that
ignores most harmless self and foreign antigens while retaining
immunity to pathogens in order to maintain immune system

homeostasis. The overall tolerogenic properties of the liver are
markedly manifested in the era of transplantation.

We herein comprehensively review the current evidence
implicating the tolerogenic properties of diverse liver cells in liver
transplantation tolerance (Figure 1).

HEPATIC PARENCHYMA MEDIATED
TOLERANCE EFFECTS

Role of Hepatocytes
Approximately 60–80% of the total liver cell population
is composed of parenchymal hepatocytes, which robustly
express and secrete large amounts of proteins involved in
metabolism, glycogen synthesis and toxin decomposition (15,
16). There is growing evidence showing that hepatocytes
are involved in immunity by expressing immune receptors,
such as pattern recognition receptors, major histocompatibility
complex (MHC) and adhesion molecules (16–18). The special
physiological and immunological functions of hepatocytes
and their complex interaction with non-substantive cells of
the liver have a significant impact on the host’s immune
system and can promote immune tolerance in cases of
liver transplantation.

The microvilli of hepatocytes can make contact with the
filamentous pseudopodia of T cells across the endothelial
fenestrations, thereby presenting antigens to T cells (19, 20).
Hepatocytes continuously express MHC class I and are capable
of presenting antigens to CD8+ T cells to trigger CD8+ T cell
activation and proliferation (21). Hepatocytes can alternatively
present antigens to CD8+ T cells through cross-presentation,
which is controlled by a specific molecular chaperone called
collectrin in the endoplasmic reticulum-Golgi intermediate
chamber (22). However, due to the lack of necessary survival
factors, CD8+ T cells activated by hepatocytes quickly undergo
apoptosis through BCL-2-interacting mediator (bim)- and
caspase-dependent apoptosis after transient proliferation and
cytotoxic T lymphocyte (CTL) function (20, 23). Hepatocytes
can also actively induce CD8+ T cell apoptosis via the FAS or
TNF pathway (24). Furthermore, hepatocytes primed CD8+ T
cells produce abundant amounts of interleukin (IL)-10 in the
absence of IFN-β-producing NKT cells co-activated by the same
hepatocytes, thus exerting immunosuppressive function (25).
When confronted with an inflammatory response, hepatocytes
can be induced to express MHC class II and present antigens to
CD4+ T cells (26, 27). Hepatocytes were found to mediate the
Th2 differentiation of uncommitted CD4+ T cells and abrogate
the capacity of established Th1 cells to secrete IFN-γ (28).
Interestingly, hepatocytes promote the conversion of CD4+ T
cells into CD4+CD25+Foxp3+ regulatory T (Treg) cells and thus
induce immune tolerance through the Notch signal pathway (29).
Moreover, exosomes or paracrine factors secreted by hepatocytes
can also be involved in immune tolerance by interacting with
lymphocytes (30, 31).

In brief, hepatocytes regulate immune tolerance in liver
transplantation directly and indirectly, and more studies in
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FIGURE 1 | Mechanisms of tolerogenic hepatic microenvironment. The liver sinusoids are lined by a thin layer of fenestrated LSECs and lack organized basal lamina,

which facilitate the passage of blood plasma to the underlying hepatocytes. Microvilli of hepatocytes extend into the space of Disse, existing between sinusoids and

hepatocytes. The oxygenated arterial and nutrient- rich portal-venous blood undergoes confluence and runs through the liver sinusoids, carrying pathogens, toxins

and harmless dietary antigens from the gut. The liver is highly enriched in both innate and adaptive immune cells, such as LSECs, KCs, DCs, HSCs, NK cells, NKT

cells, and T cells. The unique liver microenvironment, with its slow blood flow and fenestrated endothelium in the narrow hepatic sinusoids, permits the continuous

functional interaction between circulating naive T cells and the diverse hepatic-resident immobile non-professional APCs, such as hepatocytes, LSECs, KCs, DCs,

and HSCs. This makes the liver the only non-lymphoid organ that can prime naïve T cell locally. These cells contribute to the liver tolerance through direct cell-cell

interaction signaling by surface inhibitory molecules, as well as immunosuppressive milieu through secretory factors. The hepatocytes could also release massive

amounts of soluble MHC class I molecules and destroy activated CD8+ T cells through “suicidal emperipolesis” mechanism. HSC, hepatic stellate cell; LSEC, liver

sinusoidal endothelial cell; DC, dendritic cell; NK, natural killer cell; NKT, natural killer T cell; KC, Kupffer cell; IL-10, interleukin (IL)-10; TGF-β, transforming growth

factor (TGF)-β; LSECtin, LSEC C-type lectin; MHC-I, major histocompatibility complex class I; PD-L1, programmed death ligand 1; FasL, Fas ligand; LPS,

lipopolysaccharide; IL-27, interleukin (IL)-27; 15d-PGJ2, 15-Deoxy-Delta-12,14-prostaglandin J2; ARG1, Arginase-1; APC, Antigen-presenting cell; PGE2,

Prostaglandin E2.

the future are needed to clarify the mechanism underlying
hepatocyte-mediated immune tolerance.

THE INNATE IMMUNE TOLERANCE
MECHANISMS

Role of LSECs
LSECs constitute about 50% of non-parenchymal cells in the liver
and line the hepatic sinusoids (16). Due to the special structure
and abundant blood supply of hepatic sinusoids, LSECs filter
out antigens in the blood and play a vital role in maintaining
the homeostasis of the hepatic immune microenvironment (32).
LSECs express a variety of recognition receptors and scavenger

receptors to clear away pathogens in a non-specific manner
thus to maintain immune homeostasis of the liver (33–36). In
addition, LSECs express MHC class I and II to present antigens
to CD8+ and CD4+ T cells, acting as important hepatic resident
non-professional APCs (32, 34, 37, 38). On the other hand,
LSECs collect MHC class I molecules from their neighbor cells
for cross-presentation to CD8+ T cell (39).

LESCs primed naïve CD4+ T cells toward Treg differentiation
and suppressed the Th1 and Th17 function via IL-10 and
PD-1 signaling (33, 38, 40). Studies have shown that LSECs
promote the growth of IL-4-expressing Th2 cells and induce a
mass of IL-10 secretion through the Notch pathway, thereby
creating an immunosuppressive environment within the liver
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FIGURE 2 | The hypothesis of NK cells in liver transplantation tolerance. In the liver, donor hepatic NK cells promote tolerance, possibly by directly killing recipient

immune cells including activated T cells and recipient immature DCs recruited to the allograft, which limited the immune rejection responses. Recipient NK cells would

switch to a tolerant phenotype in the tolerogenic hepatic microenvironment. In the secondary lymphoid organs, recipient NK cells kill donor passenger DCs, thereby

limiting the activation of T cells by the direct pathway, but favoring the indirect pathway-primed alloreactive T cell response, which contributes to tolerance induction.

DC, dendritic cell; NK, natural killer cell; APC, Antigen-presenting cell.
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FIGURE 3 | The fate of T cells in liver tolerance. The unique liver microenvironment determines the fate of T cells after activation. T cells were primed by DCs in

secondary lymphoid organs or diverse hepatic-resident immobile non-professional APCs in the liver, such as hepatocytes, LSECs, KCs, and HSCs. They are

insufficient to optimally prime T cells, which lead to the removal of alloreactive CTLs and suppress the differentiation of proinflammatory Th1 and Th17 cells but favor

the skewing of immunosuppressive Th2 and Tregs. The liver is also referred as the graveyard of T cells, suggesting the specific ability of the liver to destroys T cells.

(Continued)
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FIGURE 3 | Activated T cells would largely eliminate through clonal deletion, clonal anergy, apoptosis, “suicidal emperipolesis,” NK cell killing and T cell exhaustion,

thus leading to liver tolerance. HSC, hepatic stellate cell; LSEC, liver sinusoidal endothelial cell; DC, dendritic cell; NK, natural killer cell; CTL, cytotoxic T lymphocyte;

KC, Kupffer cell; Th1, T helper cell 1; Th2, T helper cell 2; Th17, T helper cell 17; Treg, Regulatory T cell; PD-L1, programmed death ligand 1; FasL, Fas ligand; APC,

Antigen-presenting cell.

(41). Furthermore, LSECs are able to induce CD4+ T cells
apoptosis via the Fas/FasL pathway (42). LSECs-mediated CD8+

T cell tolerance is antigen-dose-dependent, meaning that low-
dose cross-presenting antigens induces immune tolerance, while
high-dose induces effector T cells (43). CD8+ T cells activated by
LSECs may exhibit a distinctive phenotype of CD25lowCD44high

CD62Lhigh, which fails to show specific cytotoxicity in vivo (44).
The interaction of LSECs with naïve CD8+ T cells would in turn
promote the tolerogenic maturation of LSECs, characterized by
increased expression of MHC class I and programmed death
ligand 1 (PD-L1). LSECs can also induced CD8+ T cells apoptosis
in a PD-L1 -dependent manner (44). Besides, researchers found
that LSEC C-type lectin secreted by LSECs negatively regulates
the immune response by specifically recognizing activated T cells
via CD44 (45, 46).

Role of KCs
KCs are liver-resident macrophages and account for one-
third of the non-parenchymal cells in the liver and almost
90% of all residential macrophages in the body (47). Under
physiological conditions, KCs are maintained by self-renewal
from local precursors, whereas in response to inflammation,
KCs are differentiated from infiltrated bone marrow-derived
monocytes. KCs predominantly reside in the periportal region
of the sinusoidal lumen, where they are optimally located to
respond to systemic or gut-derived antigens and circulating
immune cell populations. KCs are equipped with an array of
scavenger receptors, Toll-like receptors, complement receptors
and Fc receptors through which they detect, bind and internalize
pathogens, accompanied by the production of cytokines and
chemokines, such as tumor necrosis factor-α (TNF-α), IL-1β, IL-
6, IL-12, and IL-18 (37, 48, 49). Under steady-state conditions,
KCs also serve as tolerogenic APCs by expressing low levels
of MHC class II molecules and costimulatory molecules and
secrete anti-inflammatorymediators, such as IL-10, transforming
growth factor (TGF)-β1, nitric oxide, or prostaglandin E2, which
can suppress antigen-specific T cells activation (50–53). KCs
also strongly express the coinhibitory molecules programmed
death (PD-1) and PD-L1, which can also inhibit the proliferation
and functions of T cells by directly contacting them (54, 55).
Furthermore, the interplay between KCs and hepatic Tregs is
critical for IL-10 production and the induction of systemic
T cell tolerance to hepatocyte-derived antigens (56). The role
of KCs in organ transplantation induction has long been
implicated in animal transplantation model (57–59). Early
studies reported that KCs could contribute to absorption and
subsequent clearance of alloreactive antibodies (60, 61). More
recently, Chen et al. demonstrated that the deletion of graft
KCs using gadolinium trichloride prevented the apoptosis of
recipient T cells and consequently spontaneous graft acceptance

in a rat liver transplantation model. The apoptosis of T cells
induced by KCs was related to nuclear factor kappa B (NF-κB)
activity and the Fas/FasL pathway, which was associated with
spontaneous liver tolerance (62). However, when this approach
was examined in a mouse liver transplantation model, the
deletion of graft KCs using clodronate liposomes retained liver
allograft acceptance (63). It is also worth to note that in the setting
of transplantation, a large proportion of donor-derived KCs are
being substituted by recipient-derived macrophages over time
after transplantation. The recipient-derived macrophages are
thought to be more immunogenic and thus able to promote graft
pathology (55, 64, 65).

Role of Liver DCs
DCs are professional APCs that play critical roles in the
instigation and regulation of immune responses (66, 67).
The general ontogeny, function and classification have been
well-described elsewhere (68, 69). The liver harbors more
interstitial DCs than any other non-lymphoid organs, including
classical myeloid DCs (mDCs) and plasmacytoid DCs (pDCs)
(70). They predominantly reside around the portal triad and
central vein, with a few cells scattered interstitially between
hepatocytes. Due to continuous in situ exposure to gut-derived
factors, freshly isolated murine hepatic DCs are resistant to
lipopolysaccharide (LPS)-mediated maturation, which is termed
the endotoxin tolerance phenomenon and is also observed in
macrophages/monocytes (71, 72). Compared with secondary
lymphoid tissue DCs, freshly isolated hepatic DCs are immature
and less immunogenic, express low levels of MHC class II and
costimulatory molecules (CD80 and CD86) and secrete low
levels of IL-12 (73–76). They prefer to produce IL-10 and IL-
27 in response to LPS (77) and are less effective in priming
naïve allogeneic T cells and Th1 skewing while favoring Th2
cell polarization (71, 73, 78, 79). Human hepatic DCs favor the
generation of Th2 cells and Tregs through an IL-10-dependent
mechanism (80, 81). The liver is particularly enriched in pDCs,
which can suppress effector T cells through IL-27/Stat3 pathway-
dependent PD-L1 expression and induce IL-10-producing Tregs
via inducible costimulatory ligand (ICOS-L) expression (82, 83).

DCs were thought to be key mediators in spontaneous hepatic
allograft tolerance due to their central roles in regulating the
immune response. The trigger of allograft immunity relies on
three antigen recognition pathways: the direct pathway, indirect
pathway, and semi-direct pathway (84, 85). Donor hepatic DCs
quickly migrate to the recipient graft-draining lymphoid tissues
as passenger leukocytes, where they directly present intact, donor
(allogeneic) MHC molecules to alloreactive T cells. The direct
allorecognition pathway is considered the dominant pathway of
acute rejection. Although this phenomenon exists in almost all
types of organ transplantation, the phenotype and function of
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donor DCs determines the fate of alloreactive T cells, resulting
in either graft tolerance or graft rejection. The tolerogenic
properties of hepatic DCs may tilt the balance toward graft
tolerance. Liver allografts were acutely rejected when donor
hepatic DCs were depleted using a CD11c-DTR mouse model
before transplantation (86). However, when the interstitial DC
quantity was significantly increased by FMS-like tyrosine kinase
3 ligand (Flt3L) treatment of the donor, liver allografts were
also rejected acutely (87, 88). Acute rejection is associated with
a marked IL-12 reduction by donor DCs. IL-12 neutralization
enhanced the apoptotic death of T cells within both the grafts and
the spleen and prolonged the survival of grafts from Flt3L-treated
donors. Donor grafts fromDAP12−/− mice, whosemDCs exhibit
a more mature phenotype than that of naïve mice with enhanced
migratory and T cell allostimulatory abilities, failed to induce
tolerance and were rejected acutely (89).

Following transplantation, donor-derived hepatic DCs were
quickly diminished and replaced by recipient DCs, which
peaked on post-operative day 7 and persisted indefinitely.
These recipient DCs acquired and expressed intact donor MHC
molecules via cell-cell contact or extracellular vesicles and were
thus termed cross-dressed DCs (90–94). Interestingly, around
60% of host DCs in liver grafts are cross-dressed DCs. They
express high levels of PD-L1 and IL-10, subvert the host
anti-donor T cell responses and promote liver transplantation
tolerance (95). In contrast, the non-cross-dressed DCs show a
minimal suppressor function.

Although the role of DCs in spontaneous hepatic allograft
tolerance remains to be further investigated, the manipulation
of DCs, such as by in situ targeting or infusion after ex vivo
generation, has been shown to be a promising approach for
promoting donor-specific tolerance. The ex vivo generation of
regulatory DCs can be achieved by culturing DC progenitors
using low concentrations of granulocyte-macrophage colony-
stimulating factor (GM-CSF) ± IL-4, with the addition of one
or more pharmacological agents, such as IL-10, dexamethasone,
Vitamin D3, or rapamycin (96–98). The in situ manipulation
of DCs, such as by the delivery of immunomodulatory factors
targeting DCs to regulate alloreactive T cell responses, is an
alternative approach to achieve donor-specific transplantation
tolerance (99). In experimental transplantation models, the
manipulation of DCs showed encouraging efficacy and safety
in organ-specific tolerance induction (99–101). Several early-
phase clinical trials of ex vivo-generated DCs in living-donor liver
transplantation have recently been initiated (clinicaltrials.gov
identifier: NCT03164265 and NCT04208919) (99, 102).

Role of HSCs
HSCs account for about 5–8% of liver non-parenchymal cells
(103). HSCs are distributed in the space of Disse, in which
the cytoplasm is rich in retinoid lipid droplets and vitamin A
and regulate the blood flow in the sinusoids of the liver. HSCs
undergo activation in response to liver injury and inflammatory
events (104, 105). Activated HSCs secrete cytokines, chemokines
and extracellular matrix to participate in the pathogenesis of
liver fibrogenesis.

The HSCs are potent liver-resident APCs that have the
ability of tolerizing T cells. They can induce T cells apoptosis
through the PD-L1, B7-H4, and the Fas/FasL signaling pathways
and veto the activation of CD8+ T cells through a CD54-
dependent pathway, thereby suppressing the T cell immune
response and maintaining homeostasis and tolerance in the
liver (106–111). In a mouse islet transplantation model, co-
transplantation of HSCs and islet cells reduced the rejection rate
and prolonged the survival of the graft through TRAIL-mediated
T cell apoptosis and reduced immune cell infiltration in the graft
(112, 113). Activated HSCs induce the conversion of mature
monocytes into myeloid-derived suppressor cells (MDSCs),
which may contribute to liver immunosuppression (114, 115). In
addition, HSCs also participate in immune tolerance by secreting
the immunosuppressive factors TGF-β1 and all-trans retinoic
acid, thereby promoting the differentiation and proliferation
of Foxp3+ Tregs (116–119). In liver transplantation models,
activated HSCs induced immune tolerance by inducing T
cell apoptosis and stimulating IL-10 and TGF-β1 production
(110). Activated HSCs also promote transplantation tolerance by
inducing selective expansion of allogeneic Tregs and reducing
inflammation and alloimmunity (117).

Role of NK and NKT Cells
NK cells and NKT cells are innate lymphocytes particularly
enriched in the liver. Following transplantation, NK cells and
NKT cells persist in the liver and blood, unlike donor T cells,
B cells, and DCs, which migrate into secondary lymphoid
organs and are rejected rapidly. This phenomenon suggests
that these cells are resistant to rejection and may contribute
to liver tolerance (120). NK cells represent ∼30–50% of total
lymphocytes in the liver, with constitutive cytolytic functions
that are responsible for exogenous pathogen clearance and tumor
immunity (121–123). The function of NK cells is controlled
by the balance of a series of activatory and inhibitory signals
receptors constitutively expressed on the cell surface. NK cells
can readily recognize allogeneic cells via a unique self-non-self
recognition system, termed “missing self ” or “missing ligand”
recognition, asMHC-incompatible allogeneic cells lack self MHC
class I molecules to engage NK inhibitory receptors (124, 125).
However, the exact role of NK cells remains unclear. There is
evidence that NK cells contribute to both allograft rejection and
tolerance in liver transplantation.

Donor-derived NK cells play a major role in liver tolerance,
while recipient-derived NK cells are inclined to reject allografts
(126). Following transplantation, donor-derived NK cells migrate
from liver grafts into the recipient circulation and sustained
for ∼2 weeks (127). While some of them may persist within
the liver graft for decades (128). Donor hepatic NK cells
promote tolerance, possibly by directly killing recipient immune
cells including activated T cells, as suggested by an in vitro
study in which alloantigen-activated T cells express stress-
induced NKG2D ligands via the ATM/ATR pathway and became
susceptible to autologous NK cell lysis (129). Alternatively,
hepatic NK cells may kill recipient immature dendritic cells
recruited to the allograft, as suggested by the fact that NK cells
lyse immature DCs at sites of inflammation (130). However, there
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is no clear in vivo evidence of the above hypothesis (Figure 2).
Infusion of donor liver NK cells could attenuate liver allograft
acute rejection and prolong graft survival in rats (131). Although
recipient NK cells can mediate rejection by directly lysing
allogeneic liver cells, they become phenotypically distinct and
functionally less responsive after migrating to the liver, due to the
hepatic microenvironment (132). Recently, Jamil et al. reported
that recipient NK cells switched to a tolerant phenotype, as
reflected by reduced activating receptor expression, cytotoxicity
and cytokine production (133). The tolerance of recipient NK
cells occurs upstream of the MHC class I-mediated education
via perturbation of the IL-12/STAT4 signaling pathway. Outside
of the liver, recipient NK cells kill donor passenger DCs,
thereby limiting the activation of T cells by the direct pathway,
but favoring the indirect pathway-primed alloreactive T cell
response, which contributes to tolerance induction (134–137). In
addition, clinical data also showed the correlation of NK cells
with allograft tolerance in liver transplantation, but information
regarding the origin of the NK cells (from the recipient or donor)
was lacking (130, 138, 139).

NKT cells are liver-resident lymphocytes that actively patrol
the liver. They share features of both NK and T cells and
recognize the lipid antigens from either the host or a microbe
presented by the non-classical MHC class I-like molecule CD1.
NKT cells contribute to most of the immune responses in
the liver and play diverse roles in acute liver injury, liver
fibrosis and tolerance. NKT cells are believed to promote liver
tolerance induction (140). NKT (Jα281) knockout in the donor
liver graft was associated with extensive lymphocytic infiltration
of portal triads and bile duct epithelium and significantly
impaired the graft survival in mouse liver transplantation
models (141).

THE ADAPTIVE IMMUNE TOLERANCE
MECHANISMS

The Fate of T Cells
T cells are the major executor of transplantation rejection,
doing so by directly destroying allograft cells. The fate of
T cells after their activation determines the outcome of
transplantation: either allograft tolerance or rejection. Naïve
T cells usually lack permission to enter the parenchyma of
most organs, due to the lack of the adhesion molecules
and chemokine receptors required for adhesion to endothelial
cells or subsequent transendothelial migration (142). Naïve
T cells circulate in the blood and migrate into secondary
lymphoid organs, where they are activated by interacting
with DCs. The T cell activation results in adhesion molecule
and chemokine receptor upregulation, which allows them
to migrate and infiltrate tissues. In the liver, however, the
situation is different. The unique liver microenvironment,
with its slow blood flow and fenestrated endothelium in the
narrow hepatic sinusoids, permits the continuous functional
interaction between circulating naive T cells and the diverse
hepatic-resident immobile non-professional APCs, as mentioned
above. This makes the liver the only non-lymphoid organ that

can prime naïve T cells locally independently of DCs and
secondary lymphoid organs (143). These non-professional APCs
are generally tolerogenic, as reflected in their low expression of
MHC molecules, costimulatory molecules and proinflammatory
cytokines but rather high expression of coinhibitory molecules
and anti-inflammatory cytokines (43, 44, 51, 52, 108, 144–148).
They are insufficient to optimally prime the T cells, which
leads to the removal of alloreactive T cells, thus promoting
tolerance (49, 149–151).

A classic theory refers to the liver as the graveyard of T cells,
suggesting the specific ability of the liver to retain and eliminate
activated T cells (152, 153). The liver destroys T cells undergoing
apoptosis or activated T cells recognizing their antigen in
situ by clonal deletion, clonal anergy and T cell exhaustion.
Activated CD8+ T cells perfused through the liver are selectively
retained primarily by ICAM-1-expressing hepatocytes, LESCs
and KCs and subsequently undergo apoptosis (154). Another
important mechanism involved in liver tolerance is the
phenomenon that liver-activated T cells may be rapidly destroyed
by endosomal/lysosomal-depended degradation following an
active invasion of hepatocytes expressing the recognition of
their cognate antigens (155). This unique mechanism of
peripheral deletion was termed “suicidal emperipolesis” and
results in the deletion of at least 75% of antigen-specific
CD8+ T cells within the first 24 h following activation in
the liver.

Other hepatic non-professional APCs, such as LESCs, KCs,
and HSCs, also play an important role in liver tolerance
through clonal anergy or the deletion of T cells within
the hepatic microenvironment. In mouse liver transplantation
models, activated CD8+ T cells infiltrating the liver allograft
were eliminated by locally induced apoptotic cell death (156).
Thus, the systemic administration of mouse IL-2, which
rescued CD8+ T cells from apoptosis, induces acute graft
rejection (156, 157). In human liver allografts, prominent T
cell apoptosis in the sinusoids was also evident in biopsy
specimens (158). Even if some activated CD8+ T cells
survive these early depletion processes, they may progress to
a functionally defective state, known as exhaustion. T cell
exhaustion is another pattern of T cell dysfunction that has
been frequently studied in the era of chronic viral infection
and antitumor immunity (159). T cells become exhausted when
encountering a persistent high load of antigens or receiving
inhibitory signals, and this condition is characterized by a
progressive loss of effector functions and proliferative capacity
(160–164). This would most likely happen in the setting
of liver transplantation, where the allograft is a large-sized
mass and the immunosuppressive microenvironment has an
abundant amount of inhibitory signals. Direct evidence of
alloreactive CD8+ T cell exhaustion was observed following
the rapid and extensive activation of T cells early after
transplantation in mice (165). However, the contribution of
T cell exhaustion to spontaneous liver tolerance needs to be
further explored.

CD4+ T cells help coordinate immune responses primarily by
secreting cytokines that target other immune cells to orchestrate
a synchronized immune response (166). After activation, naive
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CD4+ T cells differentiate into distinct T helper cell lineages,
including IFN-γ-producing Th1 cells, IL-4-producing Th2 cells,
IL-17-producing Th17 cells, and Tregs (167). The cytokine
environment dictates the differentiation and conversion of CD4+

T cells. The profile of the hepatic microenvironment suppresses
the differentiation of proinflammatory Th1 and Th17 cells
but favors the skewing of immunosuppressive Th2 and Tregs,
which promote allograft tolerance. Tregs are the most well-
known suppressor T cells and play an important role in both
transplantation tolerance induction and maintenance (168–170).
The frequency of Tregs was shown to be increased in liver grafts
and host spleens after transplantation (171). The depletion of
host Tregs enhanced the T cell response and reduced apoptosis,
thereby abrogating spontaneous liver allograft acceptance in a
mouse model (171, 172).

OTHER PROPOSED LIVER TOLERANCE
MECHANISMS

Role of Soluble Donor MHC-I Molecules
Liver allografts release massive amounts of soluble MHC class
I molecules that persist in the recipient circulation at high
concentrations (173), which may act as a plausible mechanism
of liver transplantation tolerance. The activation of T cells
requires the first signal to be provided by the MHC/antigen-
peptide complex and the second signal to be provided by the co-
stimulatory signal. Stimulation of T cell receptors in the absence
of a co-stimulatory signal induces T cells apoptosis (174). Due to
the lack of costimulatory molecules, the binding of soluble MHC
molecules to T cells leads to tolerance of antigen-specific T cells
and is widely used in the study of allogeneic transplantation. A
large number of soluble MHC class I molecules are released into
the circulatory system in liver transplantation and are involved
in inducing immune tolerance and promoting the graft survival
(173, 175–178).

Although earlier studies reported that MHC class I-deficient
liver allografts were still accepted indefinitely (179), the low
immunogenicity due to MHC-deficient makes these studies
difficult to interpret. Other studies have shown that soluble
MHC molecules inhibit transplant rejection and prolong the
graft survival by inhibiting allergic T cells and inducing CTL
apoptosis in a dose-dependent manner (180–185). The advent
of MHC/antigen-peptide multimer technology has provided T-
cell receptor (TCR) with a relatively high-affinity ligand and an
effective way of regulating the activation and function of T cells.
Soluble MHC class I molecules can also neutralize antibodies
by binding to alloantibodies, thereby preventing alloantibody-
mediated rejection (175). Furthermore, researchers constructed
a mouse soluble MHC dimer and found that it was able to
bind to TCR specifically and regulate the TCR expression
and phosphorylation, thereby inhibiting the activation and
cytotoxicity of T cells (186, 187). Fried et al. reported in 2005
that rat RT1.A-Fc dimers were able to prolong the survival time
of heart grafts, suggesting the utility of soluble MHC dimers for
inhibiting transplant rejection. pMHC dimer may therefore be
useful for inhibiting transplant rejection (188).

Role of Passenger Leukocytes and
Microchimerism
Passenger leukocytes are donor leukocytes that circulate in
the recipient’s lymphatic tissue after transplantation (189,
190). Microchimerism refers to the persistently low levels of
donor cells (<1 per 104 or 105 cells) within the peripheral
circulation of the transplant recipient (191). The role of passenger
leukocytes and microchimerism in organ transplantation has
been controversial. Studies have found that passenger leukocytes
are important factors for promoting graft rejection in skin,
lung and kidney transplants (192–194). However, in liver
transplantation, passenger leukocytes and microchimerism can
induce transplant immune tolerance.

Liver passenger leukocytes include B cells, T cells, NK
cells, NKT cells, and DCs, which quickly enter the recipient’s
peripheral circulation and then enter the secondary lymphoid
organs after transplantation (120). Previous studies detected
a large number of donor passenger leukocytes in recipient
secondary lymphoid organs or peripheral blood after liver
transplantation in rat, mouse and human models (4, 189, 195).
Starzl et al. proposed that liver allografts induced tolerance by
the lymphocyte balance between the host and the passenger
leukocytes (i.e., the ability to reach a stable chimeric state) (191).
Subsequent studies have shown that passenger leukocytes interact
with allogeneic CD8+ T cells in secondary lymphoid organs,
which is an early event in spontaneous liver tolerance (120, 196).
Removal of passenger leukocytes by irradiating the donor graft
before transplantation results in acute rejection of the graft (196,
197). However, tolerance can be restored by supplementation
of liver passenger leukocytes or spleen lymphocytes (196–198).
Further research found elevated IL-2 and IFN-γ mRNA levels
and apoptotic T cells in transplant-tolerant recipients’ secondary
lymphoid organs (195, 199). However, other researchers have
also suggested that microchimerism is not a major factor
in spontaneous liver tolerance, as it fails to predict patients
who are suitable for the discontinuation of immunosuppressive
therapy (200, 201). Therefore, microchimerism may be the result
of tolerance rather than the cause (202). In summary, more
research is needed on the role of passenger leukocytes and
microchimerism in immune tolerance in liver transplantation.

Role of the High-Load Antigen Effect
The liver is the largest internal solid organ in the body, which
may favor allograft tolerance due to its large tissue mass
and high-load alloantigens (MHC molecules). The high-load
alloantigens dilutes the finite T cell clones and cytokine levels,
leading to a low density of alloreactive T cells and insufficient
cytokines, and thus potentially result in exhaustion of T cells
and subsequent tolerance. This hypothesis was supported by
the results of animal transplantation experiments, which showed
that larger skin grafts extended the survival (203, 204), as did
multiple organ transplantation (205). In contrast, small grafts
have higher rejection rates in rat liver transplant models (206–
208). In the reduced-volume liver transplantation model, the
recipient’s tolerance to the graft increased as did the antigen load,
which is consistent with other findings (209). In clinical studies,
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combined liver-kidney transplantation has been associated with
a weaker immune response, lower rejection rate and higher
survival rate (9, 10, 210). These findings suggested that a
high antigen load may partially account for liver tolerance,
although the mechanism remains unclear. Some researchers have
proposed plausible explanations for liver tolerance: first, the
liver’s large size dilutes alloreactive T cells and cytokines, which
lower the alloimmune responses (211, 212); second, the liver
allograft harbors a large number of passenger leukocytes that may
contribute to tolerance as discussed above; last, the high-load
antigens favor T cell exhaustion (213).

CONCLUDING REMARKS

The unique tolerogenic hepatic microenvironment is due to
the hepatic acinus anatomy and the complex cellular network,
thus enabling the local activation of naïve T cells by interacting
with diverse hepatic-resident immobile non-professional APCs
and resulting in the dysfunction and depletion of T alloreactive
T cells. Outside the liver graft, passenger hepatic DCs and
recipient NK cells also limit the priming of alloreactive T cells.
In addition, soluble donor MHC I molecules, the passenger
leukocyte theory and the high-load antigen effect may also
be important for achieving liver tolerance. These tolerogenic

mechanisms determine the fate of T cells toward clonal deletion,
clonal anergy and exhaustion, which eventually leads to tolerance
(Figure 3). However, other critical mechanisms may exist, so
further studies are yet needed. Understanding the mechanisms
underlying the unique immunologically privileged liver organ
is valuable for transplantation management and autoimmune
disease treatment.
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