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T follicular helper (TFH) cells are powerful regulators of affinity matured long-lived plasma

cells. Eliciting protective, long-lasting antibody responses to achieve persistent immunity

is the goal of most successful vaccines. Thus, there is potential in manipulating TFH cell

responses. Herein, we describe an HIV vaccine development approach exploiting the

cytokine activin A to improve antibody responses against recombinant HIV Envelope

(Env) trimers in non-human primates. Administration of activin A improved the magnitude

of Env-specific antibodies over time and promoted a significant increase in Env-specific

plasma cells in the bone marrow. The boost in antibody responses was associated with

reduced frequencies of T follicular regulatory (TFR) cells and increased germinal center T

follicular helper (GC-TFH) to TFR cell ratios. Overall, these findings suggest that adjuvants

inducing activin A production could potentially be incorporated in future rational design

vaccine strategies aimed at improving germinal centers, long-lived plasma cells, and

sustained antibody responses.
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INTRODUCTION

Over 30 million people are currently living with HIV, and developing a protective vaccine for
HIV is still a global health priority (1). The discovery that a fraction of HIV-infected individuals
can produce antibodies (Abs) capable of neutralizing the majority of HIV circulating strains in in
vitro neutralization assays and in vivo passive transfer experiments has revolutionized the rational
design of vaccines for HIV (2–4). Indeed, it is now believed that a vaccine capable of eliciting
such broadly neutralizing Abs (bnAbs) could effectively protect vaccinated individuals from HIV
infection. The goal of generating bnAbs by immunization is an unprecedented challenge due to
many reasons, including the high level of somatic hypermutation present in most bnAbs and the

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01213
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01213&domain=pdf&date_stamp=2020-06-16
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shane@lji.org
mailto:michela.locci@pennmedicine.upenn.edu
mailto:michela.locci@pennmedicine.upenn.edu
https://doi.org/10.3389/fimmu.2020.01213
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01213/full
http://loop.frontiersin.org/people/46439/overview
http://loop.frontiersin.org/people/631051/overview
http://loop.frontiersin.org/people/61459/overview
http://loop.frontiersin.org/people/707875/overview


Carnathan et al. Activin A’s Regulation of Antibody Responses to HIV

immunodominance of non-neutralizing epitopes in HIV
envelope trimers (2, 5). To circumvent these obstacles, multiple
approaches aimed at focusing B cell responses on neutralizing
epitopes and fostering somatic hypermutation will likely be
required (3, 6). An additional issue associated with rational
design of vaccines for HIV is the durability of neutralizing
Abs (nAbs) elicited by protein immunizations. In non-human
primate (NHP) studies, immunization with BG505 SOSIP, an
immunogen mimicking native HIV envelope (Env) trimer,
can lead to the generation of high nAb titers protecting from
subsequent infections with simian-human immunodeficiency
virus (SHIV) (7). Nevertheless, the finding that this protection
is lost as nAbs progressively wane over time (7) highlights the
need for identifying approaches to improve the longevity of
vaccine-elicited nAbs.

Serological memory ismaintained for decades without antigen
re-exposure by long-lived plasma cells (LLPC) residing in
the bone marrow (8). High affinity LLPC are formed during
the germinal center (GC) reaction, a process where somatic
hypermutation is followed by positive selection of high affinity
GC B cells (9). The GC reaction, which is the foundation of
affinity maturation, is strictly regulated by a subset of CD4T cells
named T follicular helper (TFH) cells. TFH cells are necessary for
GC formation as well as for the generation of affinity matured
LLPC (10, 11).

The differentiation of TFH cells is a complex multifactorial
process (10, 11). During this process, distinct costimulatory and
cytokine-mediated signals provided by dendritic cells and B cells
integrate to coordinate a unique gene program controlling the
homing and the B cell helper properties of TFH cells. We recently
identified the cytokine activin A as potent inducer of human TFH

cell differentiation (12). Activin A, a homodimer of the inhibin
beta A protein, is a pleiotropic cytokine regulating many crucial
biological processes, including wound healing and stem cell
pluripotency (13–15). This cytokine can be promptly produced
by professional antigen presenting cells, such as dendritic cells,
upon stimulation with TLR agonists or co-stimulatory molecules
(12, 15). Type I and II receptors for activin A are expressed by
a variety of immune system cells, including naïve T cells (12),
and binding of these receptors by activin A results in activation
of the SMAD2/3 pathway and downstream regulation of target
gene expression (12, 13). We have previously shown that, in vitro,
activin A shapes multiple facets of TFH biology by modulating
the expression of molecules that are important for TFH cell
localization (CCR7, CXCR5), induction of the TFH gene program
(BCL6, PRDM1), homeostasis (PD-1) and function (CXCL13,
TNF) (12). Hence, activin A might be an appealing target to fine-
tune Ab responses in vivo during vaccination via modulation of
TFH cells. Herein, we report our attempt tomodulate TFH cell and
Ab responses during immunization of rhesus macaques (RM)
with BG505 SOSIP Env trimer.

MATERIALS AND METHODS

Animals
Twelve outbred male Indian RMs (Macaca mulatta) between
3 and 4 years of age were housed at the Yerkes National

Primate Research Center and maintained in accordance
with NIH guidelines. This study was approved by the
Emory University Institutional Animal Care and Use
Committee (IACUC). All animals were treated with anesthesia
(ketamine) and analgesics for procedures as per veterinarian
recommendations and IACUC approved protocol. Animals
were grouped to divide age and weight as evenly as possible
(Supplementary Table 1).

Immunizations and Treatment
All animals were immunized two times, 2 months apart
(week 0 and week 8). Subcutaneous immunizations were
administered divided between right and left mid-thighs. For
each immunization site, 50 µg of BG505 SOSIPv5.2 mixed with
30U of ISCOMATRIX (CSL Limited) were injected in each
leg for a total of 100 µg of antigen and 60U of adjuvant.
Recombinant, carrier-free human/mouse/rat activin A produced
in a Chinese Hamster Ovary cell line (R&D Systems) was
previously shown to have biological activity on rhesus monkeys
(12). Lyophilized activin A was dissolved in PBS and injected
in 500 µl/leg. Half the animals were given activin A at 50
µg/kg daily for 3 days beginning on the day of immunization.
The dose was split between legs via subcutaneous injection
close to the inguinal area but not in the inguinal fold.
Animals were euthanized at 14 weeks after the start of the
immunization series.

Lymph Node (LN) Processing and Blood
Collection
Iliac LNs were collected at the necropsy time point
(week 14). Iliac LNs were grouped as “right” and “left”
samples and analyzed independently. The samples
were dissociated through 70µM strainers and washed
with PBS. Blood was collected at various time points
using serum collection tubes and serum samples were
subsequently frozen.

BG505 Native-Like Env Trimer
Immunogens
BG505 SOSIP.v5.2 were generated by Dr. Ward’s group.
The experimental procedure has been previously described
in detail (16). BG505 SOSIP.v5.2 trimers were expressed in
HEK293F cells by transient co-transfection with furin. The
BG505 SOSIP.v5.2 trimer builds upon the v4.1 design, with the
addition of a second disulfide bond (A73C-A561C) between
gp120 and gp41 to further increase trimer stability (17).
The proteins were purified using PGT145-affinity columns
followed by SEC. These proteins had no His-tag (terminal
residue D664 of gp41). Fractions corresponding to trimer
were pooled and concentrated down to ∼0.8 mg/ml in
Tris-buffered saline (50mM Tris pH 7.4, 150mM NaCl).
Structural validation of trimers was performed by analyzing
negative-stain electron microscopy (EM) 2D class averages.
All samples were filter sterilized prior to aliquoting and
flash freezing.
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Flow Cytometry
Multi-color flow cytometric analysis was performed on
mononuclear cells isolated from iliac LN samples. The
following antibodies were used: LIVE/DEAD dead cell
stain kit (Invitrogen); anti-CD8a (clone RPA-T8), anti-CD4
(clone OKT4), anti-PD-1 (clone EH12.2H7), anti-ICOS (clone
C398.4A), anti-CD25 (clone BC96), anti-CXCR3 (clone
G025H7) (BioLegend); anti-CXCR5 (clone MU5UBEE), anti-
FOXP3 (eBioscience); anti-Bcl-6 (clone K112-91), anti-CD95
(clone DX2), anti-CD3 (clone SP34-2), and anti-Ki-67 (clone
B56) (BD Biosciences); and anti-CD20 (clone B9E9), IgG (clone
G18-145), IgM (G20-127) (Beckman Coulter).

For each BG505 SOSIPv5.2 Env trimer probe analysis,
the biotinylated probes were individually premixed with
fluorochrome-streptavidin conjugates (SA-Alexa647 and
SA-BV421, Thermo Fisher Scientific and BioLegend) at
room temperature (RT) for 20min. After surface staining
followed by washes, cells were fixed and permeabilized using
FoxP3/Transcription Factor Staining Buffer kit (Thermo
Fisher Scientific) according to manufacturer’s protocols. Upon
permeabilization, cells were stained with intranuclear Abs,
washed twice and acquired on an LSR Fortessa Cell Analyzer
(BD Biosciences). Flow cytometry data were analyzed with
FlowJo (Tree Star).

BG505 Env Trimer and Env-V3-Loop ELISA
The detailed protocol of BG505 Env trimer ELISA was
previously described (16). Endpoint titers were calculated as
dilution at which O.D. signal was 0.1 above background using
GraphPad Prism.

V3-peptdide ELISA assays weres performed exactly as BG505
Env trimer ELISAs, with the following modification: BG505
V3-peptides (TRPNNNTRKSIRIGPGQAFYATG) were directly
coated to 96-well plates at 2.5µg/mL in PBS overnight.

ELISPOT for the Detection of Env
Trimer-Specific Ab Secreting Cells
ELISPOT for the detection of Env trimer-specific Ab secreting
cells has been previously described (18).

Pseudovirus Neutralization Assays
A detailed description of the neutralization assays was previously
published (16). Neutralizing titers were measured in 3
independent experiments and average neutralization titers
were calculated.

Statistical Analysis
Graphpad Prism v7.0 or 8.0 was used for all statistical analyses.
Significance of differences were calculated using unpaired, two-
tailed Mann–Whitney tests.

RESULTS

To assess the adjuvanticity of activin A and its ability to foster
TFH cells and Ab responses in vivo, we designed a study
where 12 rhesus monkeys (RM) were immunized with BG505

SOSIPv5.2 HIV Env trimer protein formulated with an ISCOM-
class saponin adjuvant (ISCOMATRIX). All the animals were
immunized twice, 8 weeks apart. Recombinant activin A was
administered to one group (6 RM) of immunized animals for
three consecutive days upon the first and second immunizations
(Figure 1A). Env trimer-specific IgG were measured 2 weeks
after the booster immunization (week 10) and at the time
of necropsy (week 14, 6 weeks post boost). Due to variable
background noise detected in the serum of some animals
pre-immunization (Supplementary Figure 1), we calculated Env
trimer IgG titers as fold change over time. Administration
of activin A was associated with a moderate but significant
increase in Env trimer IgG titer fold change at week 10 (p =

0.04, Figure 1B). Moreover, Env trimer-specific IgG titers were
significantly higher in activin A treated animals at 6 weeks
post boost (p = 0.03, Figure 1B). Interestingly, the treatment
with activin A did not result in a significant change of Env
V3-loop-specific IgG (Figure 1C), which are “easy to generate”
non-neutralizing Abs against the V3 loop tip that becomes
inadvertently exposed on non-native Env trimers. The finding of
enhanced Env trimer-specific IgG titer fold change was coupled
with a trend for higher neutralizing Ab titers at week 10 (p =

0.065, Figure 1D). In line with higher Env trimer-binding IgG
titers at week 14, activin A-treated animals developed 5-fold
more Env trimer-specific IgG secreting cells in bone marrow
(Figure 2). Overall, these data suggest that activin A influenced
the quality and the persistence of Ab responses to HIV Env
trimers in a primate model.

We hypothesized that activin A might work as an adjuvant
in vivo and boost Ab responses by promoting GC B cells
and TFH differentiation. Thus, we first measured the frequency
of GC B cells in draining iliac lymph nodes (LN) at the
necropsy time point (6 weeks post-booster immunization)
by flow cytometry (Figure 3A). A non-significant trend was
observed for higher GC B cell frequencies in animals previously
treated with activin A (p = 0.08, Figure 3B). By taking
advantage of fluorescently-labeled BG505 Env trimer probes,
we monitored the generation of Env trimer-specific B cells
and GC B cells (Figure 3C). While no difference reached
statistical significance, there was a trend of increased frequency
of Env trimer-binding B cells and GC B cells at necropsy in
RMs that received activin A (p = 0.10, Figure 3D). Next, we
assessed the frequency of GC PD-1hiCXCR5+ GC-TFH cells
at the necropsy time point (Figure 4A), and found that GC-
TFH cell frequencies were not elevated at this late time point
(Figure 4B).

Ab responses can be suppressed by T follicular regulatory
(TFR) cells. During immune responses, TFR differentiate from
T regulatory (TREG) cells to acquire several features of TFH

cells (CXCR5, BCL6), while lacking B cell helper activity (19,
20). Thus, a vaccine approach capable of promoting TFH cell
responses while dampening TFR cells could theoretically elicit
superior antigen-specific Ab responses. Given the improved Ab
and bone marrow PC responses mediated by activin A, we
next sought to determine if activin A administration at the
time of immunizations was associated with reduced TFR cell
frequencies. TFR cells express the chemokine receptor CXCR5,
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FIGURE 1 | Activin A modulated generation of BG505 SOSIP Env trimer-specific Abs. (A) Timeline of immunizations (blue) and activin A administration (green). (B,C)

Env trimer (B) and Env-V3-loop (C)-specific IgG titers at week 10 and week 14 are shown as fold change in titers [ratio between Env-specific ELISA endpoint titers at

week 10 or week 14 and the pre-immune titers (week-1)]. (D) Neutralizing Ab (nAb) titers were measured at week 10 post immunization. Limit of detection of the

neutralization assay is 1:10. In (B–D), violin plots show median and quartiles. Each symbol represents an individual animal *p < 0.05.

along with signature molecules of TREG cells such as FOXP3 and
CD25 (19, 20) (Figure 4A). Interestingly, activin A treatment
dampened TFR frequencies (p = 0.03, Figure 4C) and led
to significantly increased GC-TFH to TFR ratios (p < 0.03,
Figure 4D). Altogether, the data generated in this study indicated
that activin A can enhance the quality and durability of Env-
specific Ab responses, and those outcomes correlated with a
favorable bias in the GC-TFH to TFR ratios.

DISCUSSION

TFH cells are crucial regulators of Ab responses and are necessary

for the generation of high affinity LLPC and memory B cells
(10, 11). In line with the importance of TFH cells in modulating
affinity-matured Ab responses, highly functional blood TFH

cells have been found by us and others to correlate with
bnAb generation in HIV infected people (21, 22). This finding
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FIGURE 2 | Activin A’s regulation of bone marrow Ab-secreting cells. Bone

marrow Env trimer-specific IgG secreting cells were measured by ELISPOT at

the necropsy time point. Bars show geometric mean with geometric SD.

Dotted line represents limit of detection. *p < 0.05.

paved the road to the idea that a vaccine approach capable of
fostering TFH differentiation/function could theoretically elicit
superior HIV-specific Ab responses (5). Indeed, TFH cells limit
the magnitude of GC reactions, and fostering TFH responses
might influence the extent of somatic hypermutation as well as
the recruitment of rare precursor of nAbs into the GC (5). In
light of activin A’s capacity to potently shape TFH cell biology
in vitro (12, 23), we hypothesized that the administration of
activin A in vivo during immunizations with BG505 SOSIP
Env trimers would promote Env trimer-specific Ab responses
via modulation of TFH cell biology. Interestingly, activin A
administration simultaneously strengthen Env trimer-specific
IgG plasma titers as well as bone marrow Env trimer-specific
PCs 6 weeks after the booster immunization. Although future
experiments with extended evaluation of post-immunization Ab
kinetic will be required to fully assess the impact of activin A
on Ab longevity, the data observed in this study suggested a
role for activin A in regulating the durability of Ab responses
by supporting LLPC development. This is a potentially relevant
finding, considering that one limitation of current vaccine
approaches for HIV is the inadequate persistence of protective
Abs (7). An intrinsic adjuvant effect of activin A on TFH

cell biology may contribute to the observed improvement of
Ab responses, as suggested by the trend in higher TFH cell
frequency of activin A treated animals at the necropsy. The

increase of TFH cells in response to activin A was moderate
and did not reach statistical significance, conceivably because
of the time point of analysis. Indeed, our necropsy time point
was far from the peak of TFH responses, which usually occurs
7–9 days post immunization in mice (24, 25) and between
2 and 3 weeks post immunization in rhesus macaques when
combined with a strong adjuvant (18, 26). Additionally, activin
A was last administered 5 weeks before the analysis of TFH

cells, and recombinant cytokines have a limited half-life in
vivo. Thus, it is reasonable to speculate that an extended
treatment with activin A or the usage of a strong activin A-
inducing adjuvant could result in a more evident persistence
of TFH cell at later analysis time points. Activin A might
also play a role in the function of TFH cells in vivo, thus
modulating the quality of Ab responses. Consistent with this
scenario, we found enhanced production of BG505 trimer
binding Abs and a slight increase of nAbs in RM that were
treated with activin A, while V3-specific IgG were unchanged.
A recent study from our group demonstrated that slow
delivery immunization with Env trimers gives rise to enhanced
neutralizing Ab persistence over time (26). Although the
underlying mechanism described in this study is the modulation
of immunodominance driven by the extended release of Env
trimers, it would be intriguing to assess if the prolonged exposure
with antigens adjuvanted in soluble ISCOMs-class saponin
triggers a sustained in situ production of activin A, which in
turn contributes to the Env trimer-specific Abmagnitude, quality
and persistence.

Another interesting observation that might explain the
outcome in the regulation of Env trimer-specific Ab responses
is the decreased TFR cell frequency combined with elevated
GC-TFH to TFR ratios within CXCR5+ CD4T cells. Although
during the course of acute viral infections TFR cells develop
at late time points and their main purpose appears to consist
in restraining the formation of autoreactive Ab secreting cells
(25), multiple papers have shown that upon immunization with
certain protein antigen-adjuvant combinations TFR cells can
suppress GC reactions and the production of Ag-specific Abs
(27–29). Interestingly, it was suggested in some studies that
the proportion of TFH relative to TFR cells might be used
as proxy for predicting the magnitude of GC responses and
antigen-specific Ab generation (30–32). The skew in favor of
GC-TFH cells that we observed in our study could result from:
(1) a direct effect of activin A in promoting TFH differentiation
(as discussed above); (2) an inhibitory role of activin A
in TFR differentiation/maintenance; or (3) a combination of
these two mechanisms. While no study directly assessed the
effect of activin A in TFR differentiation from TREG cells,
the analysis of publicly available transcriptome data from
monkeys (31) and mice (33) revealed a detectable expression
of activin A receptors on TREG cells. Hence, local activin A
concentrations might be sensed by TREG cells and influence
their differentiation toward TFR in vivo. Since we previously
described that activin A drives a strong expression of PD-1 in
naïve CD4T cells in vitro, we speculate that a similar induction
of PD-1 might divert TREG cells from TFR differentiation.
Indeed, PD-1 has previously been shown to restrain TFR cell
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FIGURE 3 | Effect of activin A administration on B cell responses. B cell populations were analyzed by flow cytometry in iliac lymph nodes at week 14. (A)

Representative flow cytometry analysis of GC B cells. (B) Graph shows quantitation of GC B cell frequency as percentage of CD20+ live cells. (C) Representative flow

cytometry staining of Env trimer-specific B cells. (D) Graphs show quantitation of Env trimer-specific B cell and GC B cell frequency as percentage of CD20+ live cells

and BCL6+KI-67+CD20+ live cells, respectively. In (B,D) each symbol represents a pool of “right” or “left” iliac LNs from an independent animal. Bars show mean +

s.e.m.

differentiation in mice (29). Future studies will be required to
further address the direct effect of activin A on TFH and TFR

cell biology in vivo, and might be able to shed light on the

mechanisms required for the generation of protective, long-
lasting Ab responses against pathogens difficult to neutralize,
such as HIV.
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FIGURE 4 | Modulation of TFH and TFR cells by activin A. T cell populations were analyzed by flow cytometry in iliac lymph nodes at week 14. (A) A representative

gating strategy is depicted for GC-TFH cells and TFR cells. Initial plot is gated on CD20− live cells. (B,C) Graphs show quantitation of: (B) GC-TFH cell frequency as

percentage of CD4+CD8−CD3+CD20− live cells; and (C) TFR cell frequency as percentage of CXCR5+CD4+CD8−CD3+CD20− live cells. (D) Ratio of GC-TFH cells to

TFR cells within CXCR5+ CD4T cells at the necropsy time point. In (B–D) each symbol represents a pool of “right” or “left” iliac LNs from an independent animal. Bars

show mean + s.e.m. *p < 0.05.

In sum, our study highlights the beneficial activity of
activin A in promoting antibody responses in vivo in the
context of vaccination. Since recombinant cytokines are
not suitable to be exploited as adjuvants in commercial
vaccine formulations due to production cost and stability
issues, we suggest that increasing efforts should be directed
at characterizing and potentially pursuing activin A-
inducing adjuvants for future vaccine rational design

with the goal of fostering superior humoral responses
to vaccines.
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