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Immunotherapy with immune checkpoint inhibitors can achieve long-term tumor control

in subsets of patients. However, its effect can be blunted by myeloid-induced resistance

mechanisms. Myeloid cells are highly plastic and physiologically devoted to wound

healing and to immune homeostasis maintenance. In cancer, their physiological activities

can be modulated, leading to an expansion of pro-inflammatory and immunosuppressive

cells, the myeloid-derived suppressor cells (MDSCs), with detrimental consequences.

The involvement of MDSCs in tumor development and progression has been widely

investigated and MDSC-induced immunosuppression is acknowledged as a mechanism

hindering effective immune checkpoint blockade. Small non-coding RNA molecules, the

microRNAs (miRs), contribute to myeloid cell regulation at different levels, comprising

metabolism and function, as well as their skewing to a MDSC phenotype. miR expression

can be indirectly induced by cancer-derived factors or through direct miR import via

extracellular vesicles. Due to their structural stability and their presence in body fluids

miRs represent promising predictive biomarkers of resistance, as we recently found

by investigating plasma samples of melanoma patients undergoing immune checkpoint

blockade. Dissection of the miR-driven involved mechanisms would pave the way for the

identification of new druggable targets. Here, we discuss the role of thesemiRs in shaping

myeloid resistance to immunotherapy with a special focus on immunosuppression and

immune escape.

Keywords: microRNAs, myeloid-derived suppressor cells, immunotherapy, immune checkpoints, therapy

resistance, extracellular vesicles

INTRODUCTION

Myeloid cells are involved in inflammatory processes, including cancer, and their accrual
to the tumor microenvironment (TME) leads to immunosuppression and angiogenesis,
thereby promoting tumor growth. Thanks to their plasticity, they are acknowledged
cancer allies, negative prognostic factors, and pharmacological targets. Low/negative
HLA-DR expression (1) defines monocytic myeloid-derived suppressor cells (CD14+HLA-
DRlow/neg; M-MDSCs), which influence cancer aggressiveness and resistance to immune
checkpoint inhibitors (ICIs) (2). We focused on myeloid cells for more than a decade and
first defined M-MDSCs in melanoma patients (3). We dissected underlying mechanisms
via an in vitro tumor extracellular vesicle (EV)-healthy donor monocyte-MDSC model
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and identified a set of causally involved microRNAs (miRs),
the “MDSC-miRs.” miRs are small non-coding RNAs of ∼22
nucleotides, which modulate biological processes by mostly
interacting with the 3′-untranslated region (UTR) of the target
messenger RNA (mRNA). An imperfect base-pair interaction
induces translational repression, while a perfectly base-paired
miR directly cleaves the mRNA (4, 5). However, some miRs
can also bind the 5′-UTR of mRNA, upregulating its translation
(6). We measured increased MDSC-miR levels in circulating
CD14+ cells and lesions of melanoma patients in association
with myeloid infiltrates and peripheral blood MDSC accrual
(7, 8). Matching of MDSC-miR predicted target genes with
EV-MDSC transcriptional profile revealed miR involvement in
chemotaxis, adhesion, and differentiation of myeloid cells. The
upregulation of MDSC-miRs, including miR-146a, miR-146b,
miR-155, miR-125b, miR-100, let-7e, miR-125a, and miR-99b, in
baseline plasma predicted resistance to ICIs (8). In vitro, MDSC-
miR antagonists relieved the suppressive potential of patients’
monocytes leading to autologous T cell reactivation. Thus,
MDSC-miRs could account for myeloid deregulation, implying
an involvement of blood factors in the epigenetic control
of MDSC functions. A higher MDSC frequency is associated
with poor prognosis, even upon immunotherapy, anticipating a
reduced treatment efficacy. Pharmacological MDSC reduction,
inhibition of their suppressive activities or promotion of their
differentiation are under testing at preclinical and clinical
levels (9, 10). The functional roles of miR expression by
immune cells remain controversial. In case of MDSC-miRs,
their overexpression impacts myeloid cell differentiation and
polarization by participating in immunosuppressive pathways.
Like other miRs, also MDSC-miRs are detectable in EVs, whose
size correlates withM-MDSC frequency (8). Tumor and immune
cell EVs attracted interest as reservoirs of functional messages
exchanged between adjacent cells in the TME and at a distance.
EV membrane guarantees content integrity, enabling safe
traveling of proteins, lipids, and genetic material to interaction-
prone cells. Major efforts are dedicated to investigate EVs as
biomarkers of response or drivers of resistance mechanisms
to ICIs.

This review discusses the role of MDSC-miRs in shaping
myeloid resistance to immunotherapy with a focus on
immunosuppression and escape.

The Role of miRs in Cancer Therapy
Resistance
As oncomiRs or tumor-suppressors, miRs can promote or inhibit
cancer development. They directly target cell proliferation and
apoptosis genes, thus being involved in chemotherapy resistance,
drug target deregulation, and drug metabolism mechanisms
(11). In immunotherapy, miRs can control the success of
ICIs by targeting PD-1 and PD-L1, MHC-antigen presentation
machinery, and TLR signaling (12). Among MDSC-miRs, miR-
155 suppresses PD-L1 through directly binding the 3′-UTR of
PD-L1 in human lymphatic endothelial cells (13). The reduction
of PD-L1 expression and the consequent disruption of the

PD-L1/PD-1 axis may contribute to sustaining T cell antitumor
responses, thereby synergizing with ICIs to improve cancer
immunotherapy outcome. This miR contributes essentially to
mounting of CD8+ T cell responses by restraining T cell
senescence and exhaustion through epigenetic silencing of
transcription factors determining their terminal differentiation
(14). Moreover, miR-155 expression correlates with TCR
stimulation of tumor-infiltrating T cells in melanoma patients
(15). The MDSC-miR-146a, 146b, 155, and let-7, bind to
the 3′-UTR of TLRs or TLR-associated genes resulting in
post-translational TLR signaling repression and inflammatory
response modulation (16). Similarly, the MDSC-miR-125a and
let-7e regulate the inflammatory response and the IL-10-
mediated tolerance to LPS, by targeting the TLR4 pathway
in monocytes (17). TLR4 can promote expansion of PD-L1+

MDSCs, an effect mediated via HSP86-TLR4 signaling pathway
activation (18). Since specific miRs can directly activate TLRs
expressed at endosomal level (19, 20), MDSC-miRs might target
these proteins and contribute to expanding PD-L1 expressing
MDSCs. Thus, targeting MDSC-miRs might potentiate ICI-
based immunotherapy.

The development of therapeutic antagomiRs and miR
mimics have entered phase I and II clinical studies (21). The
DNA-single strand antagomiRs are usually designed on first-
generation antisense oligonucleotides or modified with locked
nucleic acids to reduce the oncomiR activity by competition
with the native cancer-suppressing target transcripts (22).
MiR mimics are double strand oligonucleotides that enter
the native cellular process mimicking pre-miR duplex (23).
Cobomarsen (MRG-106), a miR-155 inhibitor, has entered
phase I trials to study safety and potential efficacy following
local or intravenous administration in lymphoma and leukemia
patients (24).

Despite the therapeutic potential of miRs, their delivery
remains challenging, due to undesired off-target effects, hindered
cell uptake, and short circulation half-life (25). Synthetic
nanoparticles (NPs) mediate specific cell uptake and prevent miR
clearance (26). In preclinical models, effective miR supply was
obtained via neutral lipid emulsion-based approach for miRs
of the let-7 family, as well as neutral liposomes and synthetic
polyethylenimine-based nanocarriers for miR-145. Lastly, pH
low insertion peptide-modified antagomiRs were able to inhibit
the oncomiR miR-155 (27). Otherwise, miR-155-loaded NPs
can repolarize tumor-associated macrophages (TAMs) from
pro-tumorigenic M2 to anti-inflammatory M1-like phenotype,
reversing the immunosuppressive TME (28). In clinical setting,
NP-based miR manipulation comprises liposomal (DOPC)-
encapsulated siRNAs targeting EphA2 in solid tumors (29),
bacterial derived nanocells EDVs (EnGeneIC Delivery Vehicle),
or TargomiRs, for miR-16 mimic delivery (30). EVs may be
also suitable for miR delivery (31). Healthy donor plasma miR-
loaded EVs promoted apoptosis in HCC cells (31), while miR-
sponge engineered EVs reduced glioblastoma volume in rats
(32). Finally, the natural exchange of endogenous miRs between
immune cells, such asmiR-155 andmiR-146a carried by dendritic
cell EVs, controls inflammatory gene expression or promotes
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apoptotic cell clearance, as in case of endothelial cell EVs
transferring miR-125a to macrophages (33).

Specific miR inhibition is accomplished by Small Molecule
Inhibitors of miRs (SMIRs), which target synergistically tumor
cells and oncomiRs, such as linifanib. This VEGF- and
PDGF-receptor tyrosine kinase-inhibitor effectively inhibits the
oncogenic function of miR-10b in preclinical cancer models
(34). Finally, several miRs are related to tumor radioresistance
management, where, thanks to the inhibition of ATM protein,
they can modulate DNA damage response sensitizing tumor cells
to radiotherapy (35).

Epigenetic Regulation of Immune Cell
Functions by MDSC-miRs
The upregulation of miR-146a, miR-146b, miR-155, miR-125b,
miR-100, let-7e, miR-125a, and miR-99b can skew immune cells
into inhibitors of response to immune and other cancer therapies
(Table 1). Of note, five miRs out of eight show a coordinated
expression pattern due to their transcription as clusters. The
miR-125a∼99b∼let-7e cluster is hosted in the first intron of
the long non-coding RNA NCRNA00085, whereas miR-125b,
miR-100, and let-7a are hosted in MIR100HG (17, 58). A clear
association of miR-125a∼99b∼let-7e cluster and acquisition of a
myeloid immunosuppressive phenotype has been demonstrated
(17, 36, 59, 60). In particular, stimulation of monocytes with
GM-CSF, IL-4, and R848 TLR7/8 agonist upregulates the miR-
125a∼99b∼let-7e cluster, activates STAT3, and induces the
acquisition of an immunosuppressive phenotype. Conversely, the
depletion of the cluster reverses immunosuppressive functions
and MDSC phenotype hallmarks, by downregulating PD-
L1 and IDO, while increasing HLA-DR expression. This
contributes to STAT3 stabilization through downregulation of
TRIB2, a suppressor of MAPK signaling, and SOCS1, a key
regulator of cytokine signaling and STAT3 inhibitor. The miR-
125a∼99b∼let-7e cluster is negatively regulated by IFNγ, while
it is induced by STAT3 and SMAD3, in turn activated by IL-
10 and TGFβ immunoregulatory cytokines. miR-125a and let-7e
also exert their anti-inflammatory activity by targeting the TLR
signaling pathway molecules TLR4, CD14, and IRAK1, leading
to decreased pro-inflammatory cytokine release by myeloid cells
(17, 59).

MIR100HG and its encoded miR-125b and miR-100
are induced by TGFβ, the main cytokine released by M2
macrophages (61). TGFβ promotes cancer epithelial-to-
mesenchymal transition (EMT) through MIR100HG induction
and SMAD2/3 transcription factor activation. The dysregulation
of this cluster is also causally linked with drug resistance
in several tumor types (58, 62). In immune cells, miR-125b
expression is usually linked to antitumor M1-like macrophages,
whereas in T cells it inhibits CD4T cell differentiation and γδ T
cell activation (37). In contrast, little is known about miR-100
expression and function in immune cells. In regulatory T cells
(Tregs) increased levels of the edited variant of miR-100 changes
its target gene from MTOR to SMAD2, resulting in limited
differentiation and increase of Treg plasticity (38).

MDSC-miRs and Response to
Immunotherapy
Under physiological conditions the miR-146 family (miR-146a
and miR-146b) and miR-155 actively control innate immunity,
whereas in cancer these miRs have gained attention for their
deregulation and acquisition of oncogenic roles. Both are
transcriptionally regulated by NFkB, but with opposite functions:
miR-146 represents the anti-inflammatory and miR-155 the pro-
inflammatory counterpart. miR-146a/b act as negative feedback
regulators of TLR signaling through inhibition of the NFkB
pathway by downregulation of TRAF6 and IRAK1 (63), thereby
dampening the production of pro-inflammatory mediators (64).
On the other hand, miR-146b is also induced by TLR4 signaling
via an IL-10-mediated STAT3-dependent loop (65), and it
inhibits macrophage activation by targeting IRF5 (39). miR-146a
is an essential regulator of immune cell activation and malignant
transformation (64), and knockout mice are affected by chronic
NFkB dysregulation and myeloid malignancies (40, 41). Several
studies proposed miR-146a as an immunotherapeutic target: its
overexpression reduces the metastatic potential of breast cancer
(BC) cell lines through NFkB inhibition (42), whereas it supports
the M2-like phenotype of TAMs in endometrial cancer (43).
In a preclinical model of HCC, miR-146a inhibition alters the
STAT3 activation-associated cytokine profile improving the anti-
tumor effect of lymphocytes (44). Mastroianni et al. identified
miR-146a as a central negative regulator of the STAT1/IFNγ

axis, affecting migration, proliferation, and inducing PD-L1
expression. Combined PD-1 blockade and miR-146a antagomiR
improve survival of melanoma-bearing mice (45). We found
that high miR-146a levels, concomitantly with the other MDSC-
miRs, are associated withMDSC induction and ICI resistance (8).
In myeloid leukemia, miR-146a mimics can inhibit tumorigenic
NFkB activity (46). Finally, miR-146a is also involved in ICI-
mediated immune-related adverse events (irAEs), as shown
by knockout mice exhibiting increased T cell activity and
inflammation during ICI intake. These effects could be restrained
by miR-146a mimics (47).

The pro-inflammatory miR-155 is induced upon TLR/IFNγ

stimulation in monocyte/macrophages and drives their response
by regulating mRNA targets with inhibitory effects on innate
immune cell activation (66). In tumor cells, intrinsic miR-
155 mediates pro- or anti-tumor effects (67). Similarly to
miR-146a, miR-155 upregulation promotes cell proliferation,
colony formation, and xenograft tumor growth in BC models
by negative regulation of SOCS1 and SHIP1, leading to
constitutive STAT3 activation and pro-tumor inflammation (48).
Deficiency of miR-155 can also foster tumor growth through
MDSC recruitment and potentiation of their tumor promoting
functions, as demonstrated in BC. Here, miR-155 loss in
myeloid cells impairs TAM activation, while in tumor cells
it stimulates C/EBP-β-mediated cytokine production in turn
stimulating tumor-infiltrating MDSCs (49, 50). Similar results
were obtained in mouse models of melanoma and lung cancer
(51). As for other miRs also miR-155 appears to cover apparently
contradictory roles depending on the expressing cell or the
setting. Li et al. showed that upregulated miR-155 together with
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TABLE 1 | Role of MDSC-miRs in tumorigenesis and response to cancer therapies.

miR Cells Expression Target genes/Pathways Phenotype References

miR-125a∼

99b∼let-7e

Monocytes ↑ TRIB; SOCS1 Immunosuppressive properties mediated by STAT3

activation

(36)

miR-125a and

let-7e

Monocytes ↑ TLR4; CD14; IRAK1 ↓ Anti-inflammatory activity and cyto/chemokines (17)

miR-125b Macrophages ↑ IRF4 Acquisition of M1 phenotype (37)

T cells ↑ IFNG; IL10RA; IL2RB; PRDM1 Suppression of CD4+ T cell differentiation (37)

T cells ↑ CD107a; TNFA; IFNG Inhibition of γδ T cell activation (37)

miR-100 Tregs ↑ SMAD2 ↓ Treg differentiation and ↑ plasticity (38)

miR-146b Macrophages ↑ IRF5 ↓ M1 macrophage and inflammation (39)

miR-146a Monocytes ↓ TRAF6; IRAK1 ↑ chronic NFkB driving myeloid malignancy (40, 41)

Breast cancer ↓ TRAF6/IRAK1 ↑ NFkB activity and metastasis (42)

Endometrial cancer ↑ NIFK-AS1 ↑ M2-like phenotype of TAMs (43)

Hepatocellular carcinoma ↑ STAT3 Immunosuppression by ↑TGFβ, IL17, VEGF and

↓type I IFN

(44)

Melanoma ↑ STAT1/IFNγ axis; PD-L1 Melanoma migration, MDSC promotion and

resistance to ICIs

(8, 45)

MDSCs ↑ NFkB ↓ NFkB-mediated inflammation (46)

T cells ↑ IFNγ and perforin ↓ ICI-mediated irAEs severity (47)

miR-155 Breast cancer ↑ SOCS1/SHIP1 Activation of STAT3 signaling and pro-tumor

inflammation

(48)

Myeloid cells ↓ C/EBP-β Breast tumor growth by MDSC infiltration and TAM

tolerance

(49, 50)

MDSCs ↓ HIF-1α ↑ MDSC recruitment and function, ↑ solid tumor

growth

(51)

MDSCs ↑ SHIP1 ↑ STAT3 activation and expansion of functional

MDSCs

(52)

Colorectal cancer ↑ SOCS1 ↑ MDSC activity and tumor growth (53)

T cells ↑ SHIP1 ↑ IFNγ production, ↑ T cell-mediated antitumor

immunity

(54)

Melanoma ↑ ND MDSC induction ↑ resistance to immunotherapy (8)

T cells ↑ T cell activation markers ↑ T cell response (55)

T cells ↑ PRC2/Phf19 ↑ cancer immunotherapy by ↑ CD8+ T cell function (14)

T cells ↑ TIM3 Cytolytic activity of CD8+ T cells against HCC (56)

T cells ↑ ND ↑ antitumor activity of CD8+ T cells (57)

ND, not defined; ↑, increased; ↓, decreased.

miR-21 led to MDSC expansion, whereas their loss reversed this
effect. In particular, by targeting SHIP1 and PTEN these miRs
synergistically increase STAT3 activity, promoting MDSCs (52).
In this line, loss of miR-155 can enhance antitumor T cell activity
by reducing MDSC immunosuppression and tumor infiltration
(53). In contrast, miR-155 expression by T cells promotes
antitumor immunity and ICIs hinder miR-155-deficiency-
induced immune escape (54). We found that miR-146a and
miR-155 along with the other MDSC-miRs contribute to MDSC
induction (8), suggesting that the expression levels of different
miRs can influence the fine-tuning of pro- or anti-inflammatory
pathways depending on the cell type. Interestingly, in tumors
with highmutational burden, such as melanoma and lung cancer,
miR-155 was associated with a strong immune signature and
improved clinical outcomes (55). Likewise, miR-155 potentiates
immunotherapy through epigenetic regulation of CD8+ T
cell differentiation via PRC2/Phf19 signaling (14). Yan and

coworkers demonstrated that miR-155-induced downregulation
of TIM3, a negative immune checkpoint, enhanced the
cytolytic activity of anti-HCC CD8+ T cells (56). Finally,
miR-155 overexpression can optimize CD8+ T cell antitumor
activity and improve adoptive-transfer in low-affinity antigen
tumors (57).

EVs as miR Shuttles and MDSC Modulators
All cell types release EVs, membrane-surrounded structures
devoted to intercellular communication. EVs are present in
body fluids including plasma, serum, lymph, urine, saliva,
tears, and milk (68). Their content of proteins, nucleic acids,
lipids, and their stability, make EVs potential biomarkers and
therapeutic targets of disease (69, 70). Recent evidence shows
the ability of tumor-derived EVs to blunt anti-tumor immunity
at multiple levels (71). They can operate within the TME or
at a distance by boosting angiogenesis, triggering tumor cell
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EMT, activating cancer-associated fibroblasts, and shaping the
immune environment toward a condition of immune escape.
Tumor EVs can induce myeloid cell dysfunctions and increase
MDSC expansion (7, 8, 18, 72, 73). Indeed, EVs derived from
melanoma cell cultures as well as those from plasma of melanoma
patients contain the MDSC-miRs and promote the acquisition
of MDSC characteristics by healthy donors’ monocytes (8). The
potential of these miRs to induce such dramatic changes might
depend on their integrity, protected by the EV membrane, as
well as on their way of transfer. In fact, the internalization
of whole EVs carrying different miRs or EV receptor-ligand
interaction might account for diverse effects (74). In support of
our findings, Gerloff et al. (75) found that miR-125b encapsulated
in melanoma EVs promotes a TAM phenotype in macrophages
through targeting of lysosomal acid lipase (LIPA). In fact,
LIPA deficiency stimulates MDSC expansion in mice, and their
tumor promoting functions are driven by mTOR pathway
overactivation (76).

As a major obstacle to immunotherapy, it is crucial to
study MDSC effects in the TME (77). Myeloid EVs may
support immune activation or tolerance (78). Like other
cells, also MDSCs release EVs, taking part in intercellular
communication. Proteomics of MDSC EVs of BALB/c mice
bearing 4T1 or 4T1-IL-1β+ mammary carcinoma showed a
higher expression of 63 pro-inflammatory proteins in 4T1-
IL-1β+ mice, due to a more inflammatory environment. The
MDSC chemotactics S100A8 and S100A9 are abundant in

MDSC EVs and polarize macrophages into M2 phenotype (79).
These pro-inflammatory proteins are characterized by multiple
ubiquitination sites, and MDSC EVs were identified as carriers of
enzymes catalyzing ubiquitination (80). Interestingly, EVs from
TME-resident MDSC display a stronger immunosuppressive
potential than those deriving from spleen or bone marrow
MDSCs, suggesting the existence of different phenotypes and
functions (81). In contrast, the miR content of MDSC EVs is
still elusive, but the dissection could contribute to targeting
MDSC EVs release and spreading (82). EVs modulate innate
and adaptive immune responses via ligand-receptor interaction
or via miRs (83, 84). Indeed, a set of miRs including miR-155,
regulate PD-L1 protein expression (85) and induce MDSCs if
released via EVs by CLL cells (86). EVs also express immune
checkpoints. Actually, PD-L1 carried by EVs was investigated
for its role as biomarker and functional inducer of PD-1-
mediated immunosuppression (87–90). TIM3 and GAL9 bound
to EVs were proposed as prognostic biomarkers in NSCLC
patients (91).

Translational Implications
Large scale profiling studies demonstrated the association of
specific circulating miRs with certain types of human cancer,
proposing miRs as biomarkers (92). Their detection could
contribute to early cancer diagnosis, patient stratification, and
evaluation of therapy outcomes (93). miRs can be found free or
EV-bound in peripheral blood or other body fluids (94). Among

FIGURE 1 | Graphic representation of miRs shaping myeloid resistance to ICIs. Immune and tumor cells, both expressing miRs, mutually interact through miR-loaded

EVs. MDSC-derived miRs, including miR-146a, miR-146b, miR-155, miR-125b, miR-100, let-7e, miR-125a, and miR-99b can intervene in cancer progression and

interfere with the success of cancer immunotherapy by regulating immune checkpoints (ICs) and different molecular immune targets. Delivery of antagomiRs or miR

mimics with NPs, as well as SMIR drugs, represents the current therapeutic strategies to overcome resistance to ICIs induced by miRs. NPs, nanoparticles; SMIR,

small molecule inhibitor of miR; ICIs, immune checkpoint inhibitors; EVs, extracellular vesicles.
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MDSC-miRs, the miR-125a∼99b∼let-7e cluster was identified as
a potential diagnostic biomarker inmany tumor types. Colorectal
and ovarian cancer patients display lower levels of EV-bound
miR-99b compared to healthy controls (95, 96). Dysregulated
levels of free circulating let-7e were observed in retinoblastoma,
papillary thyroid carcinoma, lung, and prostate cancer (97–100),
whereas altered levels of EV-bound let-7 characterize esophageal
adenocarcinoma and lung cancer patients (101, 102). miR-125a
also represents a potential biomarker of treatment outcome
for HCC patients (103) and altered levels of this miR were
detected in certain blood malignancies (104, 105), where they
predicted response to chemotherapy, as demonstrated in patients
with myelodysplastic syndromes (106). In serum, increased miR-
146b levels correlate with papillary thyroid carcinoma recurrence
(92), while elevated miR-146a is associated with higher overall
response rate and survival in NSCLC (107). Furthermore, lower
EV-bound miR-146a levels correlate with cisplatin resistance
and shorter progression-free survival in NSCLC patients (108).
BC patients display high plasma miR-155 levels and in the
absence of disease, its increase is associated with treatment failure
(109). Interestingly, also urinary miR-155 can be correlated with
BC development (93, 110). In NSCLC, an increase of miR-
155 in plasma identifies stage I-II patients, implying this miR
as diagnostic tool (93, 111), although it was not suitable as a
prognostic biomarker (112). miR-155 expression is also related to
risk of relapse in colorectal cancer patients and chemoresistance
in pancreatic ductal adenocarcinoma, where anti-apoptotic
mechanisms are driven by tumor cell exchange of miR-155
containing EVs (93, 113, 114). Concerning MIR100HG, reduced
miR-100 expression coincides with diagnosis and prognosis
of bladder cancer (115). In contrast, higher circulating miR-
100 levels were found in HCC and esophageal squamous cell
carcinoma patients and predicted poor survival (116, 117).
Lastly, circulating miR-125b was identified as a biomarker of
diagnosis and poor prognosis in NSCLC, BC, colorectal, and
epithelial ovarian cancer patients, also during chemotherapy or
after surgery (118–123).

CONCLUSION

Despite major advances, the role of miRs, includingMDSC-miRs,
expressed by immune cells remains controversial. For instance,
both pro and antitumoral potentials are ascribed to miR-155,
depending on its expression levels (124). Of interest is also their
interplay: miR-146a−/− mice succumb to chronic inflammation
and miR-155 expressed by T cells contributes to shortening
lifespan by activating autoimmunity (125). The continuous
technical improvement will facilitate in-depth investigations
of the finely-tuned mechanisms governing the miR balance,
expression levels, and consequent repression/overexpression of
target genes to clarify the mechanisms governing myeloid
cell dysfunctions and MDSC activity. This will be of major
relevance also for cancer therapies. In fact, similarly to
SMIRs, also ICIs may induce changes in myeloid MDSC-
miR expression potentially related to clinical responses. The
complex tumor-immune relationship regulated by miRs and the

miR-based therapeutic approaches are summarized in Figure 1.
Thus, the dissection of therapy-induced miR modulation in
immune cells may contribute to decipher and antagonize
resistance mechanisms.
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