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Mutation-derived neoantigens are taking central stage as a determinant in eliciting

effective antitumor immune responses following adoptive T-cell therapies. These

mutations are patient-specific, and their targeting calls for highly personalized pipelines.

The promising clinical outcomes of tumor-infiltrating lymphocyte (TIL) therapy have

spurred interest in generating T-cell infusion products that have been selectively enriched

in neoantigen (or autologous tumor) reactivity. The implementation of an isolation step,

prior to T-cell in vitro expansion and reinfusion, may provide a way to improve the

overall response rates achieved to date by adoptive T-cell therapies in metastatic

cancer patients. Here we provide an overview of the main technologies [i.e., peptide

major histocompatibility complex (pMHC) multimers, cytokine capture, and activation

markers] to enrich infiltrating or circulating T-cells in predefined neoantigen specificities

(or tumor reactivity). The unique technical and regulatory challenges faced by such highly

specialized and patient-specific manufacturing T-cell platforms are also discussed.

Keywords: cancer immunotherapy, adoptive cell therapy (ACT), tumor-infiltrating lymphocyte (TIL), neoantigens,

enrichment

INTRODUCTION

In the new age of personalized immune-oncology, tumor-infiltrating lymphocytes (TILs) generated
from surgical resections, expanded in vitro and adoptively transferred, provide a unique
opportunity to harness the specificity and diversity of the patient’s endogenous T-cell repertoire.
Building on the promising clinical outcomes achieved by TIL therapy in melanoma and cervical
cancer (1, 2), efforts are now made to generate even more tailored T-cell products with predefined
antigen specificities and, potentially, with enhanced in vivo tumor reactivity. The success of
personalized adoptive cell therapies (ACTs) is therefore tightly linked to the identification of
tumor-associated antigens, which are essential for tumor control.

Against this background, cancer neoantigens deriving from private mutations represent an ideal
class of cancer antigens to target in that they are highly tumor-specific by nature, therefore reducing
the potential induction of central and peripheral tolerance (3, 4). Most studies predominantly
focus on single-nucleotide variants (SNVs) when referring to immunogenic tumor-specific mutant
peptides; however, small insertions and deletions (indels), gene fusions, and posttranslational
modifications (such as phosphorylation or glycosylation, which often alter the protein structure
and function) have also been recognized as important neoantigen sources, therefore expanding
the plethora of potential targets for cancer immunotherapy (5–9). Furthermore, non-canonical
major histocompatibility complex (MHC) peptides derived from annotated noncoding regions are

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01215
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01215&domain=pdf&date_stamp=2020-06-26
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:valentina.bianchi@chuv.ch
https://doi.org/10.3389/fimmu.2020.01215
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01215/full
http://loop.frontiersin.org/people/686932/overview
http://loop.frontiersin.org/people/543658/overview


Bianchi et al. Making T-Cell Products More Personal

emerging as critical immune regulators across cancer types and
able to elicit tumor-specific T-cell responses (10, 11).

Neoantigen discovery is a multistep process performed on
a patient-specific basis by cutting-edge preclinical pipelines
integrating variant calling, in silico filtering, and immunogenicity
evaluation, leading to private (and shared) neoantigen candidates
(12–14). Briefly, mutations are called by whole-exome or
whole-genome sequencing of tumor vs. germline DNA,
are further filtered by in silico prediction algorithms and
potentially tumor RNA sequencing immunopeptidomics,
primarily taking into account peptide-MHC binding affinity
and RNA expression as well as direct identification (15).
Additional peptide features, such as stability, clonality,
cleavage scores, variant allele frequency, dissimilarity to
self, or mutation coverage, are now also taken into account
as potential determinants of immunogenicity (16–18). The
downstream number of short-listed neoepitopes varies among
patients and tumor types and is further greatly reduced
following cellular immunogenicity evaluation. Depending
on the chosen experimental strategy, prioritized neoepitope
candidates are synthesized in the form of short or long
peptides, or mRNA encoding mutations, and screened for
T-cell reactivities from patients’ blood or tumor samples. In
this context, functional assays [such as interferon (IFN)-γ
ELISpot and CD137 assay] as well as peptide MHC (pMHC)-
multimer direct stainings are typically used as sensitive
readouts. Of note, cellular interrogation requires a significant
number of patients’ samples and often includes, prior to
screening, a round of antigen-specific T-cell expansion with
candidate neoepitope pools, which may alter the original
clonotypes’ composition.

Despite the variable mutational load across different
human malignancies (19) and the technical challenges,
tumor-infiltrating, as well as circulating, neoantigen-specific
CD8+ and CD4+ T-cells have now been identified and
characterized in several tumor types (20–25). Early clinical
data also suggest that neoantigen load has a predictive role
in patient response to checkpoint blockade and TIL ACT
immunotherapy (26–29).

Bulk infiltrating T-cell populations can be very heterogeneous,
and the frequency of private (and shared) tumor-associated
antigen specificities is generally low (20, 21, 30). Dissection of
melanoma and colorectal and lung cancers has highlighted that
a significant fraction of TILs can contain antiviral CD8+ T cells
[such as Epstein-Barr virus (EBV)- and cytomegalovirus (CMV)-
specific], extending observations that many tumor infiltrates
may be in fact not tumor-specific (30–32). A study by Scheper
et al. (33) has assessed the intrinsic tumor reactivity of TILs
in melanoma and ovarian and colorectal cancer, demonstrating
how indeed only a small fraction of the intratumoral CD8+ T-
cell receptor (TCR) repertoire is able to recognize autologous
cancer cells. Yet, the frequency of CD8+ in TILs correlates
with favorable prognosis, and increasing evidence has shown
how a relatively limited set of neoantigen-specific T-cells from
melanoma TILs can mediate tumor recognition, despite the
tumor cells harboring hundreds of somatic mutations (34–37).

Collectively, these data suggest that enriching TIL infusion
products for a few T-cell clonotypes specific for key immunogenic
neoantigens could guide more effective antitumor responses
in vivo.

One might argue that the need for available resected tumor
specimens, from which infiltrating T-cells are isolated ex vivo,
limits a broader application of standard TIL therapies to other
tumor types. In this regard, Cohen et al. (22) first provided a
simplified and noninvasive blood-based strategy as an alternative
to current TIL production by demonstrating that neoantigen
and self-antigen reactive T-cells can be reliably isolated from the
peripheral blood of melanoma patients. Detection of neoantigen-
specific CD8+ and CD4+ lymphocytes from peripheral blood
has been subsequently described in patients with relatively low
tumor mutation burden, such as ovarian and gastrointesinal
cancers (20, 38–40). However, circulating neoantigen-specific T-
cells share with their infiltrating counterpart very low detection
frequencies (ranging from 0.5 to 0.002%) (20, 22, 37, 41,
42), hence the need for specific enrichment strategies. Of
note, novel evidence has shown that the patient neoantigen-
reactive CD8+ TCR repertoire can be largely discordant (in
terms of specificity and functional avidity) between circulating
and infiltrating T-cells in ovarian cancer patients (20). In
particular, neoantigen-specific TILs exhibited on average higher
functional avidity than their peripheral blood lymphocyte (PBL)
counterpart. Further studies are therefore required to assess
whether PBL and TIL cultures can be an equally suitable source
for successful personalized T-cell therapies. Of note, it has
also been shown that non-tolerized CD8+ T-cell repertoires of
healthy donors were able to specifically recognize neoantigens
which were ignored by tumor-infiltrating T cells in melanoma
patients (43, 44).

Taken together, the selective enrichment of bulk TIL or PBL
cultures for private (and shared) tumor-antigen specificities may
improve the response rates achieved to date by adoptive T-cell
therapies. One can envision highly personalized and specialized
platforms, which integrate tumor-antigen identification and
the generation of T-cell infusion products with a predefined
reactivity composition (Figure 1). Here, we provide an overview
of the current toolbox of technologies for the tailored enrichment
of T-cell products in tumor-specific reactivities, addressing
main advantages and disadvantages of individual approaches.
A first general distinction can be made between techniques
which require T-cells to be reactivated with cognate antigen
(or autologous tumor) prior to downstream readout and
separation (i.e., cytokine production or surface activation marker
expression), and methods (such as pMHC multimer-based
labeling) in which unstimulated antigen-specific T-cells can be
directly selected. Different ways to restimulate antigen-specific
T-cells are beyond the scope of this review and have been
extensively discussed elsewhere (4, 45). A second distinction
can be made between antigen-specific purification pipelines
based on predefined specificities of interest and requiring a
thorough antigen discovery phase and tumor reactivity-based
pipelines which aim for a more “agnostic” enrichment in that
they do not require a priori target prediction and identification
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FIGURE 1 | General workflow for personalized enrichment of antigen-specific T-cells from bulk tumor-infiltrating lymphocyte (TIL) [or peripheral blood lymphocyte

(PBL)] cultures. T-cells can be isolated from the patient’s infiltrating or circulating lymphocyte populations. Following neoantigen discovery and validation,

antigen-specific T-cells are enriched by bulk cultures and expanded in vitro to meet the numbers required for reinfusion. FACS, fluorescence-activated cell sorting;

MACS, magnetic bead-activated cell sorting; WES, whole-exome sequencing; MS, mass spectrometry.

(Figure 2). The two main technologies for cell isolation are
fluorescence-activated and magnetic bead-activated cell sorting
(FACS and MACS, respectively), both of which are extensively
employed in preclinical research environments. Finally, we
will address some of the challenges and limitations that such
individualized T-cell manufacturing platforms necessarily entail
for clinical application from both a technical and regulatory point
of view.

CURRENT TOOLSET FOR THE
ENRICHMENT OF PREDEFINED
NEOANTIGEN SPECIFICITIES

Peptide Major Histocompatibility
Complex-Based Strategies
Labeling of a specific TCR by means of fluorochrome-conjugated
pMHC multimers allows to directly identify CD8+ T-cell
reactivities without restriction to functional parameters. MHC-
based reagents have rapidly evolved from single fluorescent-
labeled pMHC tetramers to increasingly advanced and optimized
staining protocols with higher detection sensitivity (46, 47).
For example, the screening of multiple T-cell reactivities
can be achieved by combinatorial multimer staining either
assigning a unique binary color code to each antigen specificity
(48, 49) or using a high number of possible fluorochrome
combinations (50). Several groups have speculated a possible
clinical implementation of MHC multimer-based approaches
in order to screen samples and generate neoantigen-enriched
therapeutic cellular products (22, 51–53).

Alternative pMHC multimeric reagents, such as Streptamers
and NTAmers, are built on reversible complexes and can
therefore rapidly dissociate in the presence of biotin or
imidazole, respectively (54–56). Antigen-specific T-cell staining
with reversible multimers not only improves conventional
pMHC reagents by reducing activation-induced T-cell death but

also allows pMHC monomer dissociation kinetic measurements
which have been shown to correlate with T-cell functionality
(55, 57, 58). These technologies could therefore further aid in the
precise selection of the “fittest” T-cell clonotypes within a single
antigen specificity.

A more recent addition to the pMHC multimer portfolio is
represented by a different labeling whereby DNA bar code tags
are attached to the multimer scaffold. T-cells are collectively
sorted based on one fluorescence, and distinct pMHCs are
retrospectively revealed by means of large-scale sequencing
of cognate bar codes (59). As a result, up to thousands of
unique specificities can be potentially identified simultaneously,
paving the way for high-throughput platforms and downstream
applications such as TCR redirected T-cell therapy (60, 61).
Of note, state-of-the-art microfluidic devices can help with
potential sample size limitation by allowing on-chip detection and
manipulation of multimer-sorted neoantigen-specific T cells for
downstream analysis and applications (38).

If on one hand, pMHC-based strategies have facilitated the
characterization of complex T-cell repertoires, on the other, they
present some limitations for clinical application. First of all,
the MHC restriction of the antigenic peptide has to be well-
characterized; they do not provide information on T-cell function
and are limited for CD4+ T-cell isolation (discussed below).
Most importantly, given that pMHC multimer production is
quite time-consuming and has to be manufactured under Good
Manufacturing Practice (GMP) conditions, generation of a
library of pMHC multimers on a patient-specific basis may
be cost prohibitive for clinical implementation. In this regard,
UV-based peptide exchange technologies (62) could aid the
rapid engineering and manufacturing of multiple distinct pMHC
reagents for individual patients.

Cytokine Capture
Cytokines secreted by previously activated T-cells can be retained
on the cell surface via a capture matrix, allowing the molecules
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FIGURE 2 | Toolset for personalized enrichment of T-cell infusion products. Current technologies can be grouped into neoantigen-specific purification strategies,

which rely on predictions and predefined epitope selection, and agnostic enrichment strategies based on coculture with autologous tumor or a priori identification of

tumor-reactive T-cells. The main advantages and disadvantages of each approach are listed. CD8+ (and CD4+) T-cells of interest can be isolated starting from tumor

infiltrating lymphocyte (TIL) or peripheral blood lymphocyte (PBL) cultures by fluorescence-activated (FACS) or magnetic bead-activated (MACS) cell sorting.

detection and the isolation of viable antigen-specific T-cells
via MACS (63, 64). In particular, IFN-γ secretion by activated
CD8+ (and CD4+) T-cells has long been associated with effective
tumor recognition and used as a functional readout to detect
tumor-reactive T-cells (65, 66). However, there are only a couple
of examples of preclinical isolation of tumor-specific T-cells
by means of IFN-γ capture (65). Jedema et al. (67) describe
a strategy to isolate leukemia-reactive CD8+ (and CD4+) T-
cells upon specific IFN-γ secretion to be used for adoptive
transfer. Another group has reported a GMP-grade isolation
of protocol of polyclonal and polyfunctional antigen-specific T-
cells from healthy donor PBLs, by IFN-γ labeling followed by
FACS, using NY-ESO-1 as a model system (68). Taken together,
fully automated IFN-γ-based T-cell enrichment procedures are
commercially available and could be more easily implemented
in a clinical pipeline. However, cytokine production is known to
be restricted to certain T-cell subsets; therefore, the enrichment
of antigen-specific T-cell frequencies uniquely based on cytokine
secretion profile might be incomplete.

Activation Markers
An alternative approach to direct labeling and cytokine detection
is the use of activation-induced surface markers, which are
upregulated upon antigen-specific TCR engagement. Expression
of some of these markers is independent of cytokine production
or T-cell phenotype, therefore potentially allowing the capture
of the total pool of functional and reactive T-cells. Several
surface markers have been suggested over time; however, only a
limited number has been selected and extensively characterized

because of reduced bystander activation, high specificity, and
upregulation kinetics (69, 70).

The tumor necrosis factor receptor (TNFR) family member
CD137 (or 4-1BB) has been initially characterized as a specific
marker of TCR-induced activation of viral-specific CD8+ T-
cells (70–72). Following antigen-specific stimulation, CD137
is upregulated on CD8+ T-cells, allowing the detection of
viable antigen-specific T-cells. CD137 surface expression is
now being extensively used as a marker to detect shared
as well as neoantigen-reactive circulating and infiltrating T-
cells, in combination with standard IFN-gamma ELISPOT
screening (34, 42, 73–75). For example, Parkhurst et al. (73)
isolated CD137+ TILs by FACS following restimulation with
dendritic cells (DCs) transfected with mutation-encoding RNA
and showed that the expanded CD137+ fraction had indeed
been enriched in neoantigen-specific T-cells. At this point in
time, anti-CD137 and anti-IFN-γ are among the few clinical-
grade commercially available antibodies for the selection of
antigen-specific T-cells; several companies though now provide
custom monoclonal antibody development and conjugation
under GMP guidelines.

On a different note, structural changes of activated integrins
upon early TCR engagement can be exploited as the inside-out
signal to detect functional T-cells (76). Dimitrov et al. (76)
have successfully applied this strategy in order to monitor
viral-specific T-cell responses within minutes, thereby stressing
the advantageous very short incubation time compared to
other activation markers. A parallel assessment of pMHC
multimer and activation-based sorting would be highly
informative in highlighting whether distinct markers are
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able to isolate overlapping populations of heterogeneous
antigen-specific T-cells.

CD4+ NEOANTIGEN T-CELL RESPONSES

Screening of naturally occurring or induced neoantigen T-cell
responses in patients with solid tumors has provided evidence
that both CD8+ and CD4+ T-cells recognize private mutated
epitopes (24, 77–80). Furthermore, a number of single-patient
case reports seem to indicate that neoantigen-specific CD4+

T-cells can mediate therapeutic immune responses to tumors
(36, 81–83). A breakthrough paper by Tran et al. (36) provided
the first demonstration of clinical activity of neoantigen-specific
CD4+ T-cell infusion in a metastatic cancer patient.

Screening for MHC class-II-restricted T-cell has been long
under-appreciated because of the limited accuracy of neoantigen
prediction algorithms (84, 85). However, rapidly improving
prediction tools for MHC class-II ligands (86–90) and the
notion that TIL cultures can include a substantial fraction of
functional CD4+ T-cells calls for flexible strategies to enable the
enrichment of both CD4+ and CD8+ reactive compartments
from bulk populations and downstream therapeutic infusion.
In the framework of technologies validated for the CD8+

counterpart, MHC class-II multimers have so far progressed at
a lower rate because of technical issues with recombinant pMHC
class-II heterodimer production, and the assumption that CD4+

TCR binding affinity to cognate pMHC is significantly lower
(91–93). On the other hand, activation marker upregulation
following antigen restimulation offers the advantage of capturing
cytokine-independent and heterogeneous CD4+ T-cell responses
(71, 94). Indeed, CD137may allow the capture of both CD4+ and
CD8+ functional T-cells with high specificity (69, 95). However,
a few publications have described the use of alternative TCR-
dependent surface markers such as CD154 and CD134 (or OX-
40) to detect neoantigen-specific CD4+ T-cells (34, 74, 75). A
comprehensive comparison of activation-induced marker assays
has yet not been investigated. In addition, care should be taken
in discriminating regulatory T-cell from effector antigen-specific
CD4+ T-cells when exploiting activation markers. For instance,
the inverse expression of CD137 and CD154 has been described
to discriminate between activated regulatory and effector CD4+

T-cells ex vivo (96).

Agnostic Enrichment of Tumor-Reactive
Tumor-Infiltrating Lymphocytes
The identification and validation of patient-specific
immunogenic neoantigen specificities require advanced
technologies (such as high-throughput sequencing, mass
spectrometry, and synthetic peptide production) and adds
complexity and time (several weeks to months) to an already
labor-intensive TIL production pipeline. Less time-consuming
and unbiased methods are therefore being evaluated to generate
patient-specific T-cell products, which are clinically feasible for
adoptive transfer.

Coculture With Autologous Tumor
Using autologous tumor cells as targets circumvents the need
for screening of immunogenic private or shared tumor antigens,
while presenting to T-cells the complete range of naturally
presented tumor antigens. In TIL production history, IFN-
γ secretion has been exploited to prescreen which tumor
fragments to expand: only TILs showing tumor reactivity above a
predefined cutoff value were selected for downstream expansion
and infused (97).

The role of activation marker CD137 was initially investigated
by Ye et al. (98) for the quick and sensitive enrichment of
tumor-reactive TILs from ovarian cancer andmelanoma patients.
The authors showed that CD137+-sorted TILs demonstrated
increased reactivity against shared antigens following overnight
incubation in the presence of MHC-matched tumor cell lines.
Importantly, the CD137-enriched fraction resulted in enhanced
in vitro and in vivo antitumor reactivity (98). Seliktar-Ofir
et al. (99) presented proof of concept of a GMP-compatible
CD137-based separation method for personalized adoptive cell
therapy. Melanoma TILs were sorted by MACS based on
CD137 surface upregulation following overnight coincubation
with autologous tumor cultures (99). CD137+ TIL populations
showed increased in vitro antitumor reactivity and contained
a higher fraction of neoantigen and shared tumor antigen-
specific T-cells when compared to the starting unseparated
cultures. This approach might be limited by the establishment
of autologous primary tumor cell lines, for which the success
rate can be very low in tumors other than melanoma. In
this regard, Dijkstra et al. (100) have presented a proof-
of-concept study in which tumor-reactive T-cells from non-
small-cell lung cancer and colon rectal cancer patients can
be obtained by coculturing autologous PBLs with matched
tumor epithelial organoids. Organoids are 3D cultures of
primary solid tumors and can be established with a higher
success rate from very limited amounts of tumor biopsies or
surgical resections.

Considering the importance of costimulation in the context
of successful tumor-specific T-cell activation, antigen presenting
cells (APCs) should also be taken into account when establishing
ex vivo cocultures of T cells and autologous tumor. The
combination of natural or artificial APC with tumor lysate
preparations can provide a wide array of tumor antigens in
a more physiological costimulation context, therefore boosting
the downstream antitumor activity of adoptively transferred
T cells. Initial protocols used ex vivo-derived autologous
DCs, stimulated with a defined maturation cocktail and
pulsed with whole tumor lysate, to preferentially expand
TILs to treat patients with melanoma (101–103). However,
such strategies introduced additional time and numerous
cytokines required for DC cell generation and maturation
and prompted the quest for easily tailored and artificial APC
(aAPC) platforms. Clinical-grade aAPCs have now limitless
application potential: they can be coated with any number of
costimulatory molecules (such as CD80, CD86, and CD137L)
andmembrane-bound cytokines to elicit rapid and improved TIL
activation (104–106).
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A Priori Enrichment of Tumor-Reactive
Tumor-Infiltrating Lymphocytes
Efforts from several groups are focusing on improving the a priori
identification of tumor-reactive TILs solely based on phenotypic
profiling. The rationale behind this strategy lies in the fact that
naturally occurring tumor-reactive TILs are chronically exposed
to their cognate antigen in the tumor site, therefore expressing
a defined set of surface activation- and/or exhaustion-associated
markers, providing the opportunity for their direct isolation.

Initial evidence suggested that preselection of melanoma-
infiltrating or peripheral blood T-cells by PD-1 expression prior
to expansion could directly enrich tumor-reactive T-cells (39,
107). In another study, CD137 was identified as a better marker
than PD-1 for the prospective selection of naturally occurring
tumor-reactive fresh TILs in ovarian cancer (98). Building upon
these previous works, a defined set of tissue residency markers
(such as CD103, or integrin αE), necessary for recruitment and
retention of TILs in the tumor site, has been suggested as a
prospective marker of TIL tumor reactivity (108–110). Duhen
et al. (111) have shown that co-expression of CD103 and CD39
further enriches the TIL population for tumor-reactive CD8+

T-cells. CD103+ CD39+ TILs were sorted from tumor digests
and expanded in vitro, resulting in increased cytotoxicity toward
autologous tumor cells when compared to the respective single
positive populations (111).

CHALLENGES AND LIMITATIONS TO
CONSIDER FOR CLINICAL
IMPLEMENTATION

Compared to traditional biological molecules, personalized
adoptive T-cell platforms are developed on a patient-specific
basis, therefore presenting unique challenges not only for
preclinical developers and manufacturers but also for regulatory
authorities and healthcare providers. Starting from the initial step
of private tumor antigen discovery and validation, throughout
TIL (or PBL) enrichment and in vitro scale-up expansion,
individual processes, facilities, and technologies must be carefully
reviewed and adjusted according to clinical requirements.
Indeed, specific regulations may differ slightly among countries
and regions, but most challenges and limitations linked to clinical
implementation are shared.

Isolation Phase
Starting from the isolation step itself, one has to consider not only
the technical aspects of the sorting strategy but more importantly
its compatibility with regulatory requirements. The choice of a
FACS or MACS-based enrichment depends on several factors,
including the number of cells in the source material (TILs or
PBLs), the relative frequency of antigen-specific cells within,
the level of purity needed for the final product. On one hand,
magnetic beads are of lower technical complexity and clinical-
grade isolation kits are already commercially available, on the
other, FACS separation performs multiparameter analysis of
single cells, achieving resolution and purity levels, which are
not always possible by MACS. In addition, FACS analysis can

characterize in real time the sorted bulk T-cell population (in
terms of identity and purity), as a first in-process quality control.
However, FACS is still not routinely applicable under GMP
conditions, which require single-use and a closed fluidic system
for clinical implementation.

Expansion Phase
As the absolute cell counts of neoantigen-specific T-cells after
isolation are extremely low for direct reinfusion, a rapid
expansion procedure (namely, REP) of sorted cells is typically
performed with allogeneic irradiated feeder cells in the presence
of high-dose interleukin (IL)-2 and anti-CD3 (97). Depending
on the yield, the best scale-up closed-system expansion devices
and culture conditions can be optimized to meet the numbers
required for the adoptive transfer (typically in the order of 109

cells per patient). Several distributors supply culture bags or
gas-permeable flasks, sterile tubing accessories, and welding to
facilitate the conversion of research protocols to GMP closed
manufacturing processes, where the risk of cross contamination
has to be minimized.

Absolute numbers aside, critical parameters for a successful
ACT is ensuring that the final TIL product has maintained
purity, TCR clonal diversity, and tumor reactivity following in
vitro expansion. Indeed, during the REP phase, there can be
interclonal competition resulting in an increased or decreased
frequency of given specificities of interest compared to the
starting culture. In this sense, enriching for tumor-specific T-
cells at appreciable frequencies prior to up-scale would higher
the chances of obtaining a final TIL product with adequate tumor
reactivity upon infusion. The extensive expansion can also drive
progressive T-cell differentiation and phenotype changes which
may affect TIL in vivo persistence, homing, and proliferative
capacity shortly after transfer, as these cells reencounter
cognate antigens within the tumormicroenvironment (112–115).
Increased TIL proliferation and reactivity toward autologous
tumor have been recently reported in a study introducing CTLA-
4 blockade in vitro during the initial TIL pre-REP from ovarian
tumor fragments (26). As mentioned previously, cytokines used
during the in vitro manufacturing of the product can also
significantly affect TIL immune profiles. Alternative cytokines to
standard IL-2 have been tested during TIL REP (114) or during
initial priming period (e.g., IL-21) (116, 117).

An additional aspect to consider is that TILs may fail to
perform their expected therapeutic effector functions upon
infusion due to activation-induced cell death (AICD) and
exhaustion; both are peripheral tolerance mechanisms restricting
an escalating, therefore potentially damaging, immune response.
Melanoma TILs undergoing intense polyclonal TCR stimulation
during REP have been shown to be more sensitive to AICD when
cocultured in vitro with autologous tumor, whereas “younger”
and less differentiated TILs are less susceptible and have a better
in vivo tumor control (118–121). In a similar fashion, alternative
costimulatory pathways, such as through CD137 via the addition
of agonist antibodies during or following REP, can increase the
polyclonal expansion of infiltrating or circulating CD8+ TILs
while preserving their responsiveness (122–124).
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Overall, how infused antigen-specific TIL clonotypes persist in
vivo and respond to tumor antigen restimulation upon transfer
and how their gene signature correlates to clinical benefit should
be studied systematically on a larger number of patients receiving
the same infusion regimen.

General Improvements
Further pre-sensitization approaches could help increase
neoantigen-specific T-cell frequency in starting TIL (or PBL)
cultures and facilitate downstream sorting of the population of
interest. Our group has reported that the addition of synthetic
peptide pools of all predicted class-I neoantigens can improve
conventional TIL generation in ovarian cancer (20). Primed
TIL cultures were significantly enriched in neoepitope-specific
CD8+ T-cells as compared with standard TILs generated from
the same patients.

Finally, while it is tempting to focus on private neoantigens
deriving from single point mutations, driver genes (such as
RAS and BRAF) recurrently affected by mutation or fusion
events across individuals and cancer types would be expected
to yield semiprivate (or even “shared”) neoantigens. This
seems to be especially the case for hematological malignancies,
where immunogenic neoantigens have been reported to be
mutated in up to 30% of patients (125, 126), along with
case reports of mutation hot spots in solid tumors (127–130).
In addition, potential semiprivate neoantigens derived from
aberrant phosphorylation, resulting from dysregulated protein
kinase activity during transformation, can be detected with mass
spectrometry using relatively small amounts of patient samples
(9, 131, 132). The targeting of shared or semiprivate neoantigens

in solid tumors is a particularly desirable possibility which has

to be further investigated, considering it would contribute to
greatly reducing costs and production time of highly enriched T-
cell infusion products. Given the multistep and laborious nature
of these enriched T-cell therapies, which require coordination
between highly specialized healthcare centers and manufacturing
cell facilities, one has to ultimately consider if the added time
frame is clinically reasonable. An additional month to the
pipeline can result in significant patient dropout because of rapid
disease progression (133).

CONCLUDING REMARKS

The identification of neoantigens as drivers of successful
antitumor immunity is offering exciting new opportunities
for cancer immunotherapies, including making T-cell infusion
products highly individualized for more effective treatment.
Moving forward, patient-specific T-cell enrichment technologies
will need to be integrated into clinically compliant pipelines.
In this respect, the first Food and Drug Administration (FDA)
approval of the first adoptive cell therapy [i.e., chimeric antigen
receptor (CAR) T-cell therapy] represents a huge achievement in
the immune-oncology field and will hopefully pave the way for
further approvals of personalized immunotherapies.

AUTHOR CONTRIBUTIONS

VB wrote the manuscript and made the figures. VB, AH, and GC
contributed to the concept, discussion of content, and editing
of the manuscript. All authors contributed to the article and
approved the submitted version.

REFERENCES

1. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized

immunotherapy for human cancer. Science. (2015) 348:62–

8. doi: 10.1126/science.aaa4967
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