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Resolvins, the member of specialized pro-resolving mediators, are produced from

omega-3 polyunsaturated fatty acids as a response to an acute inflammatory process

in that termination and resolution of inflammation. In the acute inflammation, these lipid

mediators limit polymorphonuclear cells infiltration, proinflammatory cytokine production;

promote efferocytosis, and regulate several cell types being important roles in innate

and adaptive immunity. Any dysregulation or defect of the resolution phase result in

prolonged, persistent inflammation and eventually fibrosis. Resolvins are implicated in

the development of various chronic autoimmune diseases. Systemic sclerosis (SSc)

is a very complicated, chronic autoimmune disorder proceeding with vasculopathy,

inflammation, and fibrosis. Dysregulation of innate and adaptive immunity is another

important contributing factor in the pathogenesis of SSc. In this review, we will focus

on the different roles of this new family of lipid mediators, characterized by the ability to

prevent the spread of inflammation and its chronicity in various ways and how they can

control the development of fibrotic diseases like SSc.
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Systemic sclerosis (SSc) is a complex immune-mediated connective tissue disorder characterized
by microvascular damage, inflammatory cell infiltration, and excessive deposition of extracellular
matrix proteins (ECMs) in the skin and various internal organs (1–3). Over the course of the
disease, these pathologic alterations cause severe organ dysfunctions such as pulmonary fibrosis,
pulmonary arterial hypertension, cardiac arrhythmias and heart failure, which are the major causes
of mortality in SSc (4). Identification of the immune, vasculopathic, and fibrotic mechanisms
involved in the pathogenesis of SSc is critical for the understanding of disease progression
and developing new disease-modifying therapies (5). Despite the fact that innate and adaptive
immunity components, including T cells, B cells, macrophages, dendritic cells (DCs), and multiple
cytokines (e.g., interleukin (IL)-4, IL-6, transforming growth factor (TGF)-β) play roles in both the
onset and the progression of SSc, the exact etiopathogenesis of the disease still remains elusive (1, 2).
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It is well-known that acute inflammatory responses, triggered
by a variety of noxious stimuli, including endogenous and
exogenous signals, are protective, self-limited reactions that
are essential for restoring homeostasis in the affected tissues.
However, this benign process may not subside, leading to
chronic systemic inflammatory disorders (6, 7). In fact, in a
few autoimmune and chronic inflammatory diseases, including
SSc, perturbation is observed in inflammation resolution (8).
Until recently, termination of acute inflammation was considered
as a passive process. However, the latest investigations have
demonstrated that the resolution of inflammation is an active
process controlled by the local release of various mediators called
specialized pro-resolving mediators (SPMs). The biosynthesis of
SPMs is induced by pro-inflammatory stimuli as a compensatory
mechanism to downregulate the inflammatory response (7). In
general, SPMs bind to G protein-coupled receptors (GPRs) to
exert anti-inflammatory and pro-resolving biological actions;
inhibition of polymorphonuclear leukocyte (PMNs) infiltration
and pro-inflammatory cytokine/mediator secretion; promote
bacterial removal; and evoke the efferocytosis of apoptotic PMNs
through macrophages (9, 10). Thus, far, more than 20 different
SPMs have been explored using lipid mediator metabolon
lipidomics and proteomics, and these SPMs have been subdivided
into four main classes based on distinct biosynthetic pathways
and target receptors: lipoxins, resolvins (Rvs), protectins, and
maresins (11, 12). The discovery of Rvs attracted significant
interest because these lipid mediators play prominent roles
in different pathological conditions by sustaining homeostasis
owing to their anti-inflammatory properties (13). It is widely
accepted that Rvs play significant roles in several chronic
inflammatory diseases, such as rheumatoid arthritis, Sjogren’s
syndrome, and inflammatory bowel disease (14–17). Although
many experimental studies have been conducted to define the
preventive role of Rvs in pulmonary fibrosis and ischemia-
reperfusion injury in animal models, their contribution to the
pathogenesis of SSc is yet to be clarified (18, 19). In this review, we
will focus on this new family of lipid mediators that can control
the propagation and prolongation of inflammation, as well as
their possible roles in the pathogenesis of fibrotic diseases such
as SSc.

BIOSYNTHESIS OF RESOLVINS AND
THEIR RECEPTORS

For the first time, Rvs were identified in inflammatory exudates
triggered by tumor necrosis alpha (TNF-α) in mice exposed to
omega (�)-3 polyunsaturated fatty acids (PUFAs) and aspirin.
Usually, different immune cells, such as macrophages and PMNs
generate Rvs from �-3 PUFAs, namely docosahexaenoic acid
(DHA) and eicosapentaenoic acid (EPA), originating from the
dietary sources and cell membranes through phospholipase
enzyme pathways (20). Two classes of Rvs have been identified:
D-series resolvins (RvD1-6) derived from DHA through
lipoxygenase (LO)-initiated pathways during the inflammation-
resolution phase and the E-series family of Rvs (RvE1-4)
produced from EPA via 5-LO and cytochrome P450 (12,

21–23). It has been shown that Rvs signal through specific
GPRs (23–26).

RvD1 exerts anti-inflammatory and inflammation-resolution
effects via A lipoxin and formyl peptide receptor 2 (ALX/FPR2),
as well as via GPR32 (24, 25). RvD2 interacts with GPR18
expressed on PMNs, monocytes, and macrophages (26). In
addition to RvD1, RvD3, and RvD5 activate GPR32 and enhance
the phagocytosis and inhibition of neutrophil transmigration
(27, 28). Furthermore, RvEs exert their function through GPCRs.
Chemerin receptor 23 (ChemR23), which is selectively expressed
on antigen-presenting cells (APCs), is a binding site for RvE1
(29). Additionally, RvE1 also interacts with leukotriene B4
receptor 1 (BLT1), as a partial agonist, which mediates the potent
inflammatory effects of leukotriene B4 (LTB4) (30).

ROLE OF RESOLVINS IN THE INNATE
IMMUNITY

In SSc, endothelial cell activation is one of the earliest
events, along with immune cell activation and inflammation
(31). Unresolved or prolonged inflammation and immune
cell activation could result in chronic inflammation and,
subsequently, in fibrosis (7). The inflammatory process is
characterized by the production of various mediators (e.g.,
cytokines, chemokines, vasoactive amines, and eicosanoids)
by the innate immune cells, including PMNs, macrophages,
dendritic cells, lymphocytes, endothelial cells, and fibroblasts,
in the damaged tissue. This occurs concomitantly with
the upregulation of cell-adhesion molecules on leukocytes
and endothelial cells, and continue with the infiltration of
neutrophils, monocytes, and phagocytes. It is now recognized
that Rvs, which are produced by immune cells such as
macrophages and PMNs, are pivotal in the resolution of
acute inflammatory reactions. They significantly limit acute
inflammation response and promote tissue repair (32) (Figure 1).
Each type of Rvs is considered to have a unique role in the
resolution phase of inflammation (Table 1). Therefore, the role
of Rvs and their possible failure to resolve local inflammatory
responses should be investigated in the pathogenesis of SSc.

Effect of Resolvin E-series on Inflammation
RvE1 inhibits human neutrophil transendothelial migration and
infiltration in vivo (20). RvE1 is characterized by the modulation
of leukocytes adhesion molecules through the enhancement of L-
selectin shedding, which inhibits the aggregation of leukocytes
and reduces CD18 (LFA-1) expression, which is required for
neutrophils adhesion and transmigration (30, 33). Animal
studies have elucidated that RvE1 enhances efferocytosis through
macrophages and reduces pro-inflammatory cytokines, including
IL-1β, IL-6, and TNF-α, in zymosan-induced peritonitis (40, 41).
Similarly, the result of a mice animal model study indicated
that the exogenous RvE1 induces the phagocytosis of neutrophil
apoptosis via macrophages in pulmonary inflammation (45).
Similar to RvE1, RvE2 actively participates in the resolution
of inflammation by blocking neutrophil infiltration through
chemotaxis modulation, reinforcement of phagocytosis, and
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FIGURE 1 | The acute inflammatory response and potential fates for the acute inflammatory process. Tissue damage induced by endogenous or exogenous stimuli

leads to the generation of acute inflammatory responses, including various types of proinflammatory cell infiltrations and the production of plenty of proinflammatory

mediators. Polymorphonuclear leukocytes infiltration especially neutrophils induce the influx of monocyte-derived macrophages to remove apoptotic cells and debris.

Throughout the resolution phase of inflammation, resolvins (Rvs) promote the efferocytosis of macrophages and differentiation of proinflammatory macrophages (MΦ)

into anti-inflammatory macrophages. At the post-resolution phase of inflammation, adaptive immunity response (B and T cells) establishes which contributes the

wound healing. Any dysregulation of these processes may lead to chronic inflammation and fibrosis. Rvs limit the acute inflammatory process, thus, they prevent the

development of chronic inflammation and fibrosis.

macrophages-dependent production of IL-10 (34). Eosinophils
mainly release RvE3, which limits the infiltration of PMNs
in zymosan triggered peritonitis (55). In an allergic lung
inflammation model, RvE3 significantly reduced the number
of inflammatory cells and the secretion of pro-inflammatory
cytokines in bronchoalveolar lavage (35). Recently, it has been
demonstrated that the production of new RvE4 is accelerated
by hypoxia, which induces the efferocytosis of neutrophils and
erythrocytes through macrophages and inhibits the infiltration of
neutrophil in hemorrhagic exudates in vivo (23).

Effect of Resolvin D-series on
Inflammation
RvD1 modulates the regulatory action of PMNs by inhibiting
rolling and adhesion to endothelium via GPR32, in addition
to limiting the infiltration of leukocytes and neutrophils via
FPR2/ALX and the production of pro-inflammatory mediators
in zymosan-induced peritonitis (36). Through this binding
with FPR2/ALX, RvD1 inhibits lipopolysaccharide (LPS)-
induced acute lung inflammation. This is realized because
of reduced neutrophil infiltration due to the suppression
of macrophage inflammatory protein (MIP)2-α (CXCL2)

expression on alveolar macrophages (56). Similarly, RvD2
plays an effective role in the resolution phase of inflammation
by reducing neutrophil recruitment, increasing mononuclear
and macrophage phagocytosis by binding with GPR18, and
suppressing the pro-inflammatory mediators (26). Additionally,
RvD2 suppresses pro-inflammatory mediators by decreasing
the plasma levels of IL-1β, IL-6, IL-17, IL-23, and TNF-α,
as well as the levels of prostaglandin (PG)E2 and LTB4 in
peritoneal exudates, as demonstrated using an animal sepsis
model Interestingly, RvD2 decreases the plasma levels of the
potent anti-inflammatory cytokine IL-10, which is of interest
because of its detrimental impact on survival in sepsis (42).
By contrast, RvD2 increases the level of IL-10 mRNA in the
porphyromonas gingivalis-induced periodontitis (43). RvD3,
which appears later than RvD1 and RvD2 in the resolution
phase of inflammation, has potent local and systemic anti-
inflammatory activities, such as decreasing the recruitment of
PMNs and reducing the levels of IL-6 and LTB4 and matrix-
degrading enzymes (MMP-2 and MMP-9). This enhances the
level of IL-10 and stimulates macrophage efferocytosis (28, 37).
Moreover, RvD4 decreases PMNs infiltration and promotes
macrophage efferocytosis in zymosan-induced peritonitis and
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TABLE 1 | Resolvins and their functions on immune cells.

Immune cells Resolvin D-series Resolvin E-series

RvD1 RvD2 RvD3 RvD4 RvD5 RvE1 RvE2 RvE3 RvE4 References

PMNs migration

infiltration

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (23, 26, 28,

30, 33–39)

Mediators ↑IL-10

↓LTB4

↓IL-1β

↓IL-6

↓IL-17

↓IL-23

↓TNFα

↓LTB4

↓↑IL10

↓IL-6

↓LTB4

↑IL-10

↓IL-1β

↓IL-6

↓TNFα

↑IL-10 ↓IL-4

↓IL-5

↓IL-13

↓IL-23

(24, 26, 28, 34,

35, 37, 40–44)

Mϕ efferocytosis ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ (23, 28, 34,

37, 38, 41, 45)

Mϕ polarization ↑M2 ↑M2 (46–49)

DCs ↓Migration

↓IL-12

↓IL-23

↓IL-23 ↓IL-23 (29, 35)

T cells ↓CD4+T

↓Th1

↓Th17

↓IFN-È

↓IL-17

↓CD8+T

↑Treg

↓CD4+T

↓Th1

↓Th17

↓IFN-È

↓IL-17

↓CD8+T

↑Treg

↓CD4+T

↓ IL-4

↓IFN-È

↓CD8+T

(44, 50, 51)

B cells ↑IgM

↑IgG

↓IgE

(52–54)

DCs, dendritic cells; IL, interleukin; Ig, immunoglobulin; IFN-È, interferon-gamma; LTB4, leukotriene B4; Mϕ, macrophages; PMNs, polymorphonuclear leukocytes; RvD, resolvin D; RvE,

resolvin E; Th, T helper; TNF-α tumor necrosis factor alpha; Treg, T regulatory cell.

Staphylococcus aureus-triggered skin infection, in addition to
inducing the phagocytosis of dermal fibroblasts (38). Several
studies have elucidated the dysregulation of neutrophils in
SSc and the relationship between neutrophil infiltration in
lung tissue and lung fibrosis or disease severity (57–61).
Considering all of these results, it seems that blocking of
neutrophil migration and infiltration from most of Rvs might
be beneficial for SSc or dysregulation of these mediators
might contribute to the pathogenesis of SSc. As mentioned
above, most of Rvs stimulate macrophage efferocytosis, which
has been found to be dysfunctional in autoimmune diseases
(systemic lupus erythematosus, Sjogren’s syndrome, and
SSc) (62–64).

Polarization of Macrophages
From the onset of inflammation to its resolution, macrophages,
as a part of innate immunity, play a significant role in
inflammatory responses because they have possessed a diversity
of phenotypes and polarization abilities. Based on responses
to various signals from the environment, macrophages convert
into classically activated M1 or alternatively activated M2
phenotypes that are mainly stimulated by interferon (IFN)-
È/LPS and IL-4/IL-13, respectively (65, 66). M1 macrophages
contribute to the initiation and progression of inflammation
by secreting pro-inflammatory mediators (IL-12, IL-1β, IL-6,
and TNF-α). M2 macrophages, by contrast, are implicated in

the tissue repair, wound healing, and resolution phase of the
inflammation through the production of cytokines (IL-4, IL-
10, IL-13) and growth factors (TGF-β, vascular endothelial
growth factor (VEGF), and endothelial growth factor (EGF)
(67). Alternatively activated M2 macrophages may have four
subtypes: M2a stimulated by IL-4 or IL-13, M2b stimulated by
immune complex and LPS, M2c stimulated by IL-10 and TGF-
β1, and M2d stimulated by IL-6 and adenosine (68). Activated
macrophages may change their polarization in accordance with
new environmental stimuli (69). In autoimmune diseases, an
M1/M2 imbalance has been detected. In SSc, M2 macrophages
produce profibrotic cytokines that promote ECM synthesis (31).
The M2 polarization observed in SSc seems to be induced by
increased IL-6 and IL-4 levels (2). Although previous results
are mainly consistent with M2 activation, recent evidence has
suggested that macrophages express mixed surfacemarkers of the
M1 and M2 phenotypes in SSc (70–72).

During the resolution phase of inflammation, M1
macrophages change into the M2 phenotype owing to the
action of specific mediators, especially SPMs. It has been
shown that RvD1 significantly reduces the expression of M1
phenotype markers (TNF-α, IL-6, monocyte chemoattractant
protein (MCP)-1 expression) and increases the expression of
M2 markers in peritoneal macrophages obtained from obese
mice (46). In the mouse carotid ligation model, systemic RvD2
markedly enhanced the proportion of M2 macrophages among
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the monocytes/macrophages present in the injured arterial wall
(47). Recently, an assessment of inflammation in an abdominal
aortic aneurysm model animal study demonstrated that RvD2
improved M2 polarization and ameliorated pro-inflammatory
markers (IL-1β, IL-6, MCP-1, and MIP-1α) (73). Moreover,
RvD1 reinforced the activation of M2 macrophages in acute
smoke-induced lung inflammation (48). The animal study has
indicated that long-term treatment with aspirin-triggered (AT)
RvD1 does not influence macrophage polarization in long-
term smoke-induced lung inflammation. Additionally, tissue
fibrosis is not observed with long-term AT-RvD1 treatment
(49). These effects could suggest that the effects of RvD1 on
macrophage polarization may be associated with the type of
inflammation (acute or chronic) or the duration of Rvs exposure.
At the moment, we don’t have enough data to disclosure if
M2 differentiation may be a negative event in the pathogenic
cascade of SSc linked to the activity of Rvs. Therefore, it is still
very difficult to regard M2 differentiation as in those by Rvs as
beneficial or pathogenic.

Dendritic Cells
Dendritic cells (DCs) are an important component of innate
immunity. They recognize and present damage-associated
molecular patterns and pathogens, as well as induce the adaptive
immune response. Usually, DCs are composed of two main
cell types: conventional (cDC) and plasmacytoid (pDC), which,
especially, secretes interferon-alpha (IFN-α). Recent studies have
revealed that pDCs infiltrate the skin and the lungs of SSc
patients, and contribute to fibrosis and that the number of
pDCs in the lungs of SSc patients correlates with the severity
of the lung disease (74, 75). ChemR23, a receptor of RvEs,
is highly expressed in pDCs, and it mediates the migration
of pDCs to inflammatory sites (76, 77). In an animal study,
ChemR23 deficiency in knockout mice reduced the migration
of pDCs to atherosclerotic lesions (78). Only RvE1 restrained
the migration of DCs and inhibited their production of IL-12
via ChemR23 (29, 79). The serum level of IL-12 is increased
in patients with SSc (79). Although the role of cDCs in SSc
is not as known as pDCs, the increase in the production
of proinflammatory cytokines from cDCs is demonstrated in
SSc (80).

ROLE OF RESOLVINS IN ADAPTIVE
IMMUNITY

T Cells
Several reports have suggested that T cells, particularly CD4+ T
helper 2 (Th2), play a significant role in both the inflammatory
and fibrotic processes of SSc (81). Activated CD4+ Th2 cells
produce the predominantly potent profibrotic cytokines IL-4 and
IL-13, which induce fibroblast proliferation, their differentiation
into myofibroblasts, and polarization of M2 macrophages. All
of these features are implicated in the pathogenesis of SSc (2,
82, 83). Furthermore, IL-13 producing CD8+ T cells have been
detected in the skin in the early phases of SSc (84). Studies
have highlighted the importance of Rvs in T cell regulation.
Exogenous RvD1 diminishes the infiltration of CD4+ and CD8+

T lymphocytes in endotoxin-induced uveitis (50). Similarly, in
an animal study, it was found that exogenous RvE1 suppressed
the infiltration of CD4+ and CD8+ T cells in atopic dermatitis in
a dose-dependent manner. In addition, RvE1 treatment reduced
the IL-4 and IFN-È production of activated CD4+ T cells (51).
Abnormal Th17 cell responses are encountered in many chronic
inflammatory and autoimmune diseases (85). Th17 and IL-17
may play an important role in SSc due to proinflammatory
and profibrotic effects. Some evidence has demonstrated that
the level of Th17 and IL-17 increased in SSc (86–88). However,
the results of several studies have not found an increase in
the level of IL-17 in SSc. Therefore, the role of Th17 and IL-
17 have not completely understood in the pathogenesis of SSc
yet (89–91). RvD1 and RvD2 abate the inflammatory responses
of activated CD8+ T, Th1, and Th17 cells by decreasing the
production of TNF-α, IFN-È, IL-2, and IL-17. RvD1 and RvD2
inhibit the differentiation of naïve CD4+ T cells into Th1 and
Th17 cells while they improve the differentiation of CD4+ T
cells into regulatory T (Treg) cells. However, they do not exert
any effect on the apoptosis of both CD8+ and CD4+ cells
(44). In contrast to RvD1-2, RvE1 amplifies the T cell apoptotic
activity of DCs through indolamine 2,3 dioxygenase induction
(92). Although the effect of RvE1 on Th17 is undefined, RvE1
diminishes the production of IL-23 and IL-6, which are crucial
for the survival of Th17 cell, in allergic lung inflammation (93).
Recently, it has been demonstrated that RvE1, RvE2, and RvE3
decrease the production of IL-23 from bone marrow DCs in
vitro. In particular, the treatment of house dust-mite-sensitized
mice with RvE3 promoted the reduction of inflammatory cells,
including eosinophils, and decreased IL-23 and IL-17 levels in
lavage fluid, thus supporting the role of RvE3 in the resolution
of allergic airway inflammation (35). These effects of Rvs on T
cell regulation might create a protective mechanism against the
dysregulation of T cells in SSc.

B Cells
In recent studies on SSc, the role of the B cells in the generation
of fibrosis has been highlighted, especially in the lungs and the
gastrointestinal tract (94, 95). In fact, an increase in the naive
B cell count and a decrease in memory and regulatory B cell
counts has been found in SSc. These impairments of B cell
homeostasis result in the decline in the production of potent
anti-inflammatory and anti-fibrotic cytokines (i.e., IL-10) and
the enhancement of production of proinflammatory cytokines
(i.e., IL-6) (96). However, information on the effects of Rvs on
B cells is scarce. In the mouse spleen, 17-hydroxydosahexaenoic
acid (17-HDHA) (a biomarker of Rvs), RvD1, and RvE1,
but not RvD2 and RvD5, have been detected (52, 53). In
activated B cells, RvD1 elevates antibody production, notably
immunoglobulin (Ig)M, while 17-HDHA increases both IgM
and IgG in proportion to the increasing differentiation of
B cells into the antibody-secreting B cell phenotype (52).
Interestingly, it has been found that RvD1 and 17-HDHA
suppress the differentiation of naïve B cells into IgE-secreting
cells, which induce a specific block of the epsilon germline
transcription (54).
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EFFECT OF RESOLVINS ON
ISCHEMIA-REPERFUSION-INDUCED
INFLAMMATION

Raynaud’s phenomenon (RP) is frequently encountered in SSc,
and it influences the acral blood flow (97). In primary RP,
impaired arterial inflow induced by sympathetic vasoconstriction
causes mild reversible microvascular sufferance. In SSc, the
impairment of arteriolar inflow is not compensated for by
endothelial-dependent vasodilation. In fact, the disease affects
the endothelial cells that are injured or dysfunctional (98,
99). Therefore, prolonged vasoconstriction leads to a loss of

endothelial junctions, enhanced inflammatory immune cell
migration and infiltration, and microvessel permeability (100).
Moreover, repeated and sustained vasoconstriction attacks
result in ischemia-reperfusion (IR) injury, which promotes
the production of various proinflammatory mediators and
reactive oxygen species, activation and migration of PMNs,
and interaction with endothelial cells. This causes further
microvascular damage (101, 102).

In this context, based on the data available about Rvs
role in IR-induced injury models, they can be considered
operative in a condition such as RP in SSc as well. In the IR-
induced model, the levels of endogenous DHA and all types

FIGURE 2 | The anti-inflammatory, pro-resolution, and anti-fibrotic effects of Resolvins. In an acute inflammatory response, resolvins (Rvs) inhibit the adhesion,

migration, and infiltration of polymorphonuclear leukocytes (PMNs) and enhance the efferocytosis capacity of macrophages. D-series Rvs (RvD1 and RvD2) induce the

polarization of macrophages toward to phenotype M2. One of the E-series Rvs, RvE1 blocks the migration and production of interleukin (IL)-12 in dendritic cells (DCs)

and the infiltration of CD8+ and CD4+ cells. RvD1 and RvD2 suppress the inflammatory responses of CD8+ T, T helper (Th)1, and Th17 cells, in addition to limiting the

differentiation of CD4+ T cells into T helper (Th)1 and Th17 cells and promoting the conversion of T regulatory (Treg) cells. 17-hydroxydosahexaenoic acid (17-HDHA)

and RvD1 enhance the antibody secretion of B cells. After an inflammatory response, most of Rvs block the development of fibrosis by decreasing collagen deposition

and myofibroblast infiltration, as well as by inhibiting epithelial-mesenchymal cell transition (EMT).
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of RvDs, apart from RvD1 and RvD3, are known to increase
in the plasma, while only DHA, RvD1, and RvD3 are detected
in the affected kidney tissue. Exogenous Rvs (composed of
RvD1-3) limit the infiltration of PMNs, and the deposition
of interstitial collagen. RvD1 has a protective capacity for the
kidney when administered after the development of IR (39). It
has been shown that RvD1 treatment protects the lung tissue
from IR-induced inflammation, thus limiting the homing of
inflammatory cells, production of proinflammatory mediators,
and apoptosis (19). IR injury elicits mitochondrial dysfunction
and augments excessive ROS production (103). RvD1 limits IR-
triggered liver damage by reducingmitochondrial oxidative stress
and regulating mitochondrial homeostasis (104). Furthermore,
RvD2 diminishes the infiltration of PMNs through GPR18 in
IR-induced lung injury (26).

ROLE OF RESOLVINS IN FIBROSIS

Fibrosis is the main eventual hallmark of SSc. Vasculopathy;
immune dysregulation, including innate and adaptive immunity;
and several cytokines contribute to the process leading to
fibrosis. However, the exact mechanisms of fibrosis in SSc still
remain undefined.

Rvs are mainly known for their anti-inflammatory and pro-
resolutive effects. They prevent fibrosis by limiting inflammation,
supporting efferocytosis, and suppressing proinflammatory and
profibrotic cytokines. Furthermore, Rvs have direct anti-fibrotic
effects: RvE1 prevents hepatic fibrosis induced by Schistosoma
japonicum infection by decreasing the levels of fibrotic markers
such as laminin, hyaluronic acid, procollagen type III, and
type IV collagen (105). In the animal model study, the anti-
fibrotic effects of RvE1 were evaluated by inducing unilateral
ureteric obstruction. The interstitial fibrosis obtained using this
model was driven not by an inflammatory process but by an
irreversible surgical insult, and it was characterized by collagen
deposition and the proliferation of α-smooth muscle actin
(SMA)+ myofibroblasts. RvE1 treatment dramatically attenuated
the accumulation of α-SMA+ myofibroblasts, deposition of
type IV collagen, and production of platelet-derived growth
factor (PDGF)-BB, which is a potent inducer of fibroblast
proliferation through activation of the AKT and ERK pathways.
Moreover, RvD1 markedly reduced myofibroblast accumulation,
and mRNA levels of type I and III collagens in an injured kidney
(106). In bleomycin-induced lung tissue, treatment with 17(R)-
RvD1, an epimer of RvD1, diminished the mRNA-expression of
IL-1β, TGF-β1, and connective tissue growth factor, in addition
to sharply reducing the numbers of macrophages and neutrophils
in the bronchoalveolar fluid. The anti-fibrotic capacity of 17(R)-
RvD1 has been confirmed based on reductions in hydroxyproline
content (marker of collagen deposition), type I collagen mRNA
expression, and score of the fibrotic changes (via Ashcroft
scale) in the lung tissue. Moreover, 17(R)-RvD1 treatment
has anti-inflammatory and anti-fibrotic effects even when it is
administered in the established fibrotic stage in lung tissue (18).
Besides, RvD1 alleviates collagen deposition in heart tissue after
a myocardial infarction (107).

Epithelial-mesenchymal transition (EMT) is thought to be a
crucial mechanism in the development of fibrosis, particular in
the lungs and kidneys (97, 98). In general, EMT is closely related
to embryonic development, tissue repair, wound healing, and
cell migration. During tissue repair or wound healing, epithelial
cells lose their phenotype and gain mesenchymal phenotypes to
produce fibroblasts and myofibroblasts (108). EMT may be a
part of the cellular origins of fibrosis in SSc (109). The potent
pro-resolving activity of RvD1 has been further investigated in a
model of acute respiratory distress syndrome (ARDS) in which it
was demonstrated that RvD1 can prevent EMT of lung epithelial
cells with reversal of the TGF-β-smad2/3 signaling pathway and
lung fibrosis via the FPR2/ALX receptor (110). Endothelial-to-
mesenchymal (EndoMT) transition is also thought to play an
important role in both SSc-related fibrosis and vasculopathy (101,
102). Of note, RvD1 has also been reported to significantly inhibit
TGF-β1-induced EndoMT through increasing the expression of
Smad7 (39).

CONCLUSION

The resolution of inflammation is vital for ensuring tissue
homeostasis. Any defects in the resolution phase could lead to
a prolonged inflammatory response, including increasing PMNs,
exaggerated proinflammatory mediator production, increase in
the number of apoptotic cells, and inappropriate activation of
adaptive immune cells. This unresolved inflammation results in
fibrosis of the affected tissue. After the identification of SPMs,
many investigators have focused on the effects of SPM on the
resolution of inflammation. Rvs are efficacious anti-inflammatory
and pro-resolving mediators that play various roles in innate
immunity cells. A myriad of studies has confirmed that they
influence adaptive immune cells (Figure 2). This exciting anti-
fibrotic effect has been supported by the direct effect of these
mediators on the regulation of fibrotic cells and cytokines.

The pathogenesis of SSc is associated with vasculopathy,
immune dysregulation, and fibrosis (1). It is well-known that
progressive chronic inflammation is a part of the disease, while
the connection between the resolution of inflammation and SSc
still remains unclear. From this viewpoint, any dysfunction of the
well-defined anti-fibrotic, anti-inflammatory, and pro-resolving
abilities of Rvs may contribute to the progression of SSc. In the
future, an accurate understanding of Rvs in SSc may foster the
development of novel treatment strategies (4, 111).
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