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Chemokines are recognized as the most critical mediators for selective neutrophil

recruitment during inflammatory conditions. Furthermore, they are considered

fundamental regulators of neutrophil mobilization from the bone marrow (BM) to

the bloodstream and for their homing back at the end of their life for apoptosis and

clearance. However, chemokines are also important mediators of neutrophil effector

functions including oxidative burst, degranulation, neutrophil extracellular trap (NET)osis,

and production of inflammatory mediators. Neutrophils have been historically considered

as a homogeneous population. In recent years, several maturation stages and subsets

with different phenotypic profiles and effector functions were described both in

physiological and pathological conditions such as infections, autoimmunity, and cancer.

The aim of this review is to give an overview of the current evidence regarding the role of

chemokines and chemokine receptors in neutrophil biology, including their possible role

in neutrophil maturation, differentiation, and in defining emerging neutrophil subsets.

Keywords: atypical chemokine receptors, chemokine receptors, chemokines, neutrophils, neutrophil

subpopulations

INTRODUCTION

Neutrophils are essential players of the innate immune response and their function is strictly
dependent on their trafficking. Indeed, under homeostatic conditions they have a short half-life
and a constant circulating neutrophil number has to be maintained to ensure their timely
recruitment during inflammation. Neutrophils produced in the bone marrow (BM) are released in
the bloodstream and, after the aging process they return to the BM, spleen, lungs, or liver for their
clearance. During inflammation neutrophils extravasate quickly in the tissues and consequently
there is an increased neutrophil release from the BM (1, 2).

Many studies have demonstrated that neutrophils can sense different classes of chemoattractants
such as leukotrienes, anaphylatoxins, and formylated peptides that are primary activators during
inflammation. Moreover, they express several chemokine receptors that finely tune their directional
migration in homeostatic conditions and mediate their effector functions such as oxidative burst
and neutrophil extracellular trap (NET) activation and release, once extravasated in tissues (3).
The ability to respond to multiple chemokines represents a mechanism to finely control neutrophil
recruitment and activation providing a first line defense (4).

It is now clear that several BM and circulating neutrophil subpopulations exist with different
expression patterns of chemokine receptors (4, 5). In this review, the role of chemokines in
neutrophil biology will be discussed, trying to dissect their role in neutrophil differentiation,
heterogeneity, and activation.
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CHEMOKINES ACTING ON NEUTROPHILS

Neutrophils respond to a multitude of chemokines via binding
to their cell-surface receptors, called chemokine receptors
belonging to a family of seven-transmembrane domain G
protein–coupled receptors. Chemokines are divided into four
structural groups (C, CC, CXC, and CX3C) based on the spacing
of two conserved cysteine residues at their N terminal (6).

Neutrophils are generally thought to be limited in expression
of chemokine receptors, consisting predominantly of the CXC
group. Indeed, neutrophils express high levels of the CXC
chemokine receptors CXCR1 and CXCR2 that bind ELR+-
CXC chemokines (containing a glutamate–leucine–arginine
motif before the amino-terminal CXC motif). hCXCR2 is
a promiscuous receptor binding seven different chemokines
CXCL1, 2, 3, 5, 6, 7, and 8 (7). hCXCR1 is very similar to
CXCR2 (78% of sequence homology) but only binds CXCL6 and
CXCL8 (8).

CXCR1, CXCR2, and their ligands were also identified in the
murine system but there are many differences with their human
counterpart (9, 10). First, in mice there are fewer ELR+-CXC
chemokines and the homolog of CXCL8 is missing. Its analogs in
mice are CXCL1 (KC), CXCL2, and CXCL5 (LIX).Mouse CXCR1
was only recently cloned and shown to be a functional receptor
for the mouse chemokines CXCL5/LIX and CXCL6/GCP-2 (11).

CXCR2 activatesmanyG-protein–induced signaling cascades:
PI3K/Akt inducing cell migration, PLC/PKC that affects cell
function, and mitogen-activated protein kinase (MAPK)/p38
that promotes cell proliferation and survival (12). CXCR1
and CXCR2 signaling activates the NF-κB pathway, inducing
the transcription of many cytokines among which are CXC
chemokines that amplify neutrophil recruitment (13). Very
interestingly, only CXCR1 activates phospholipase D (PLD),
involved in radical oxygen species (ROS) generation. This
difference is due to a slower rate of internalization of CXCR1
compared to CXCR2 (14, 15).

Recent results outline differential roles among ELR+-CXC
chemokines in neutrophil extravasation and migration. CXCL2
is almost exclusively produced by neutrophils and, in addition
to CXCR1 and CXCR2, it binds the atypical chemokine receptor
ACKR1. ACKR1, expressed by endothelial cell (EC) junctions
on post capillary venules, works as a CXCL2 presenter guiding
neutrophils to extravasation sites. Otherwise, CXCL1 mediates
neutrophil adhesion and intraluminal crawling on inflamed ECs
and sub-EC crawling on pericytes (16).

Neutrophils express also the CXC receptor CXCR4, essential
for their life cycle. BM neutrophils express high levels of CXCR4,
which is mainly intracellular because of high CXCL12 production
by mesenchymal cells inducing its internalization (17). The
interaction between CXCR4 and CXCL12 retains a large pool
of neutrophils into BM and spleen (18). This is demonstrated
by CXCR4 genetic deletion in murine myeloid cells that results
in depletion of the BM pool and in concomitant increase of
circulating neutrophils (19). On the contrary, WHIM (warts,
hypogammaglobulinemia, infections, myelokathexis) patients,
who bear a gain of function mutation in CXCR4, have a
chronic neutropenia for increased neutrophil BM retention

(20). Circulating neutrophils express low levels of CXCR4
that is upregulated in senescent neutrophils before apoptosis,
promoting their homing back to the BM and other organs for
clearance (21). Studies in vitro demonstrated that CXCR4 is
downregulated by type I cytokines such as interferon-γ (IFN-γ),
IFN-α, granulocyte-macrophage colony stimulating factor (GM-
CSF), and granulocyte-colony stimulating factor (G-CSF) (22).

CC chemokine receptors are barely expressed by BM and
circulating neutrophils. When neutrophils are activated by IFN-γ
or GM-CSF, they upregulate the expression of CCR1 and CCR3
(23, 24). CCR1 was found necessary for neutrophil recruitment
in a murine model of renal immunopathology (25) together with
other CC receptors (CCR2, CCR3, CCR5) (26, 27).

CCR2, expression of which was previously supposed to
be restricted to monocytes, is important also for neutrophils.
It induces neutrophil BM mobilization (28), accumulation in
joints of rheumatoid arthritis patients (29), and recruitment to
metastatic sites (30, 31). A subpopulation of neutrophils with
antigen presenting function expressing CCR6 and CCR7 was also
described (32–34).

Finally, neutrophils express one atypical receptor named
CCRL2 that, despite being very similar in structure to chemokine
receptors, does not bind chemokines. CCRL2 forms dimers with
CXCR2 regulating its membrane expression and function (35).

ROLE OF CHEMOKINES IN
GRANULOPOIESIS

Neutrophil maturation follows a multistep process called
granulopoiesis. The most immature progenitor, the
hematopoietic stem cell (HSC), gives rise to multipotent
progenitors, the common myeloid progenitors (CMPs) that
stimulated with G-CSF give rise to granulocyte-macrophage
progenitors (GMPs). In the classical granulopoiesis model,
downstream of GMPs there are neutrophil committed
progenitors called promyelocytes and myelocytes (36–39).
These immature proliferating progenitors are now referred
as neutrophil progenitors (NePs) and neutrophil precursors
(preNeu) (40); they have been transcriptionally defined and
can be identified by fluorescence-activated cell sorting (FACS)
analysis (Table 1). These unipotent progenitors differentiate
into non-proliferating immature neutrophils (previously
called metamyelocytes and banded neutrophils) and mature
neutrophils (41) (Figure 1).

The chemokine system is involved in several aspects of
myelopoiesis and granulopoiesis. CXCL12 is constitutively
produced by BM stromal cells and provides a retention signal
for CXCR4-positive neutrophil committed progenitors and
immature neutrophils. G-CSF mobilizes neutrophils through the
cleavage of CXCL12 and CXCR4 (42). Beyond BM retention, it
is not known if CXCR4 modulate proliferation of NePs as in the
case of HSC (43).

CXCR2 signaling, interacting antagonistically with CXCR4,
represents a second chemokine axis to regulate neutrophil release
from the BM (44). The mobilization of neutrophils from the BM
to the blood is determined by the downregulation of CXCR4 and
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TABLE 1 | Expression signature of neutrophil progenitors and subpopulations.

Mouse Human

HSC Lin−, CD117+, Sca-1+, CD34+, CXCR4+ Lin−, CD34+, CD38−, CD45RA−, CXCR4+

CMP Lin−, CD117+, Sca-1−, CD34+, CXCR4+, CCR1+, CCR2+ Lin−, CD34+, CD38+, CD45RA−, CXCR4+, CCR1+, CCR2+

GMP Lin−, CD117+, Sca-1−, CD34+, CD16/32+, CXCR4+, CCR1+ Lin−, CD34+, CD38+, CD45RA+, CXCR4+, CCR1+

NeP Lin−, CD117+, Ly6A/E−, Siglec F−, FcεRIα−, CD16/32+, Ly6B+,

CD11a+, CD162lo, CD48lo, Ly6Clo, CD115−, Ly6G−, CXCR4+
Lin−, CD117+, CD66b+, CD38hi, CXCR4+

preNeu Lin−, CD117+, CD115−, Siglec-F−, Gr1+, CD11b+, Ly6Glo,

CXCR2−, CXCR4+
Lin−, CD117−, Siglec8−, CD15+, CD34−, CD66bhi, CD49d+,

CD101−, CXCR2−, CXCR4+

Immature neutrophil Lin− CD117− CD115−, Siglec-F−, Gr1+, CD11b+, Ly6Glo/+,

CXCR2−, CXCR4mid

Lin−, CD66b+, CD15+, CD33mid CD101+, CD10−, CD16lo/+,

CXCR2−, CXCR4−

Mature neutrophil Lin−, CD115−, CD11b+, Ly6G+, CXCR2+, CXCR4− Lin-, CD66b+, CD15+, CD33mid, CD101+, CD10+, CD16hi,

CXCR2+, CXCR4−

Aged neutrophil CD11b+, CD16/32+,CD62Llo, CXCR2lo, CXCR4hi CD11b+, CD16hi, CD62Llo, CD10+, CXCR2lo, CXCR4hi

subsequent upregulation of CXCR2 receptor both in humans and
in mice (17, 45).

Other chemokines and chemokine receptors have a role in the
process of granulopoiesis and neutrophil release from BM. CCL3
induces the proliferation of CCR1-positive myeloid progenitors
even if the in vivo relevance of this effect is not evident
because CCR1 KO mice do not show significant differences in
CMP and GMP proliferation compared to WT (46). CCR2 is
expressed by CMPs and exerts a negative control on myelopoiesis
(47). In addition, CCR2 mediates mobilization from BM to
peripheral blood of myeloid populations such as monocytes and
neutrophils (48).

Granulopoiesis is also affected by atypical chemokine
receptors. ACKR1, expressed by BM nucleated erythroid cells
(49, 50), and ACKR2, expressed by hematopoietic progenitors,
control neutrophil differentiation (31). However, it is not known
the mechanism by which their control of the chemokine system
affects neutrophil differentiation.

Thus, in homeostasis the chemokine receptors CXCR4
and CXCR2 play an essential role in controlling neutrophil
retention and release from the BM. CXCR4 and CC chemokine
receptors are expressed by neutrophil progenitors, but
further research is needed to better understand their role
in granulopoiesis.

ROLE OF CHEMOKINES IN NEUTROPHIL
HETEROGENEITY

Despite the previous belief that differentiated neutrophils were
a homogeneous population, the existence of different circulating
subsets was demonstrated in varied health and disease contexts,
both in mice and humans (51) (Figure 1). A consensus on the
phenotype of these subpopulations is still missing and under
steady-state conditions heterogeneity may arise mainly from the
aging process of circulating neutrophils (52). Indeed, neutrophils
oscillate in a circadian manner in numbers, morphology, and
phenotype (53, 54). This process is regulated by gut microbiota
(55) and is controlled by neutrophils themselves through the
circadian expression of the transcription factor Bmal1 that

controls the production of CXCL2. In turn, CXCL2 acting on
CXCR2 induces neutrophil aging (56).

During inflammatory conditions, increased levels of a
neutrophil circulating population that shared characteristics
with BM immature neutrophils was described both in mice
and humans. These cells express low levels of CD16 and
are CD10− (57–59). The functional properties of this subset
are still controversial, they were described having either
immunosuppressive activity (60) or promoting T-cell survival
and proliferation (57).

Other circulating neutrophils subpopulations were described:
olfactomedin 4 (OLFM4)-positive neutrophils in healthy donors
(61), T-cell receptor (TCR)–based variable immunoreceptor
neutrophils (62), and CD177+ neutrophils during inflammatory
diseases both in mice (63) and humans (64).

In addition, a reverse transendothelial migrating neutrophil
subset (rTEM) was described in a murine model of sterile
injury (65). These neutrophils are CD54hi and, in order to
reverse transmigrate into vasculature, downregulate CXCR1.
Concomitantly, they upregulate CXCR4 to go into the lungs,
before being cleared in BM (66). This subset represents a
phenotypically and functionally distinct population different
from circulating neutrophils (CD54lo CXCR1hi) and express
vascular endothelial growth factor receptor (VEGFR) 1,
indicating a possible role in angiogenesis (67, 68). Similar cells,
with increased levels of CD54 and CD18 and downregulation of
CD62L and CXCR1 and 2, were found in patients with chronic
inflammatory diseases, suggesting a role of rTME neutrophils in
the persistence of inflammation (67). Moreover, around 1% of
circulating neutrophils after ischemia-reperfusion were found to
be CD54hi and producing ROS into lungs (65). On the contrary,
neutrophils that migrate away from the inflammation site in
interstitial tissues are called reverse interstitial migration (rIM)
neutrophils and are supposed to contribute to the resolution of
inflammation. The role of chemokine receptors in this process is
still not clear (69).

Finally, in circulation it is possible to identify aged or
senescent neutrophils (54, 70, 71). Ex vivo aging experiments
have shown that neutrophils kept in culture downregulate
the expression of CXCR2 (44) and re-express CXCR4 in a

Frontiers in Immunology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 1259

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Capucetti et al. Chemokines and Neutrophils

FIGURE 1 | Chemokines and chemokine receptors in the neutrophil life cycle. Neutrophil progenitor proliferation is regulated by CC chemokines binding to CCR1 and

CCR2. Neutrophil subpopulations are retained in the BM by the CXCL12–CXCR4 axis. Mature neutrophils are released in the bloodstream upon the upregulation of

CXCR2. In the bloodstream, besides mature neutrophils, there are immature neutrophils derived from immature BM neutrophils and senescent neutrophils that

upregulate CXCR4 expression and follow the CXCL12 gradient to home back to the BM or other tissues for their clearance. CXCR4 can also drive senescent

neutrophils to the lungs, spleen, and liver where they reside as a marginated pool. In the bloodstream there are also rTEM with low levels of CXCR1 and 2. In inflamed

tissues activated neutrophils produce ROS on stimulation of CXCR1 and CCR2 and release NETs after engagement of CXCR2. Neutrophils with APC function migrate

to draining LNs by the CCR7–CCL19/21 or the CXCL12–CXCR4 axis and proangiogenic neutrophils express high levels of CXCR4 that allows their migration to

hypoxic areas. Mature and immature neutrophils migrate in the tumor, where they are referred to as N1 and N2 tumor associated neutrophils (TAN).

time-dependent way (22), suggesting a preferentially homing of
senescent cells to the BM in response to CXCL12 (21). In mice
aged neutrophils display circadian oscillations and, in addition
to high levels of CXCR4, are characterized by an increased

surface expression of CCR5 and decreased expression of CD62L
(53, 72). CXCR4 upregulation seems involved not only in guiding
neutrophils back to the BM but also in their migration within
the marrow tissue in order to be engulfed with greater efficacy
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by macrophages (17, 19, 53, 54, 72). CCR5 was reported to
work as a chemokine scavenger promoting the resolution of the
inflammatory response (73). Aged neutrophils were found in
lungs, where pulmonary vasculature expresses CXCL12, and this
could either supply the pool of circulating neutrophils or respond
to injury (45, 68).

New data from single cell sequencing of murine circulating
neutrophils confirm the presence of three transcriptionally
different neutrophil subpopulations. The first expresses high
levels of inflammatory genes and the highest levels of CXCR2
arising mainly from BM mature neutrophils. The second
expresses interferon-stimulated genes and derives from BM
immature neutrophils. Both populations mature in an aged
subset CXCR4 positive with high phagocytic activity and still
highly transcriptionally functional (41). The correlation of these
subpopulations of neutrophils with the others described in the
foregoing is still missing. In addition, the role of chemokines in
themobilization and function of these neutrophil subpopulations
is not known. Of relevance, at least in mice, mobilization of
immature neutrophils could be CXCR2 independent because
they are referred to as CXCR2 negative (44).

Finally, neutrophil heterogeneity has been described in
tumors where tumor-associated neutrophils (TANs) can exist
in two different functional states: N1 proinflammatory and
antitumoral subset and an antiinflammatory tumor promoting
N2 population, distinguished for the expression of adhesion
molecules, cytokines and inflammatory mediators, chemokines,
and chemokine receptors (4, 74). N1 phenotype has been
associated with IFN-β polarization both in mice and humans.

These cells have an activated phenotype (CD62Llo CD54+);
express the chemokine receptors CCR5, CCR7, CXCR3, and
CXCR4; and produce the proinflammatory chemokines and
cytokines: CCL2, CXCL8, CCL3, and interleukin-6 (IL-6).
Moreover, this subset has been associated with stimulation of T-
cell responses and ROS production (4, 75, 76). In contrast, N2
neutrophils are induced by transforming growth factor- β (TGF-
β) stimulation. Protumoral N2 neutrophils display high levels of
CXCR4, VEGF, and matrix metalloproteinase 9 (MMP-9) (77),
and produce high levels of CCL2, CCL5, neutrophil elastase (NE),
cathepsin G (CG), and arginase 1 (78–80).

Therefore, results obtained in preclinical mousemodels and in
humans suggest that the interplay between CXCR2 and CXCR4
dictates not only BM neutrophil mobilization and retention
but also neutrophil diversity in homeostasis. CXCR2 signaling
promotes neutrophil aging and CXCR4 guides their homing
back to the BM. Furthermore, diversity of tissue infiltrating
neutrophils is also associated with a distinct pattern of chemokine
receptors; in particular N1 neutrophils express inflammatory
CC chemokine receptors important for their effector functions
(see later).

ROLE OF CHEMOKINES IN NEUTROPHIL
EFFECTOR FUNCTIONS

Neutrophils, once recruited to sites of infection, recognize and
phagocytize microbes and then kill pathogens with different
cytotoxic mechanisms. These include the production of ROS,

TABLE 2 | Clinical trials with CXCR1 and CXCR2 inhibitors.

Target Inhibitor Pathology Clinical trials Results

CXCR2 AZD5069 Asthma and bronchiectasis NCT01704495

NCT01255592

Reduced neutrophils in sputum and lung tissue;

no improvement in clinical outcomes

Advanced solid and metastatic tumors

(head and neck carcinoma, prostate

cancer, pancreatic cancer)

NCT02499328

NCT03177187

NCT02583477

Not available

Danirixin (GSK1325756) COPD NCT02130193

NCT03250689

Improvements in respiratory symptoms; reduced

NET formation

Viral disease

(influenza)

NCT02469298 Termination for emergence of severe adverse events

(cardiac failure and respiratory disease)

SB-656933 Ulcerative colitis, NCT00748410 No clinical benefit

Cystic fibrosis NCT00903201 Improved inflammatory markers in patients’ sputum;

no change in lung function

CXCR1 and CXCR2 Reparixin Liver, lung, and kidney transplantation NCT03031470

NCT00224406

NCT00248040

Attenuated inflammatory reaction and reduced

tissue damage

Islet transplantation in diabetes mellitus

type 1

NCT01817959 No improvement in islet inflammation-mediated

damage

Metastatic breast cancer NCT02370238

NCT02001974

Not available

Navarixin

(SCH 527123, MK-7123)

COPD NCT01006616 Improved clinical outcomes

Advanced/metastatic solid tumors (in

combination with pembrolizumab)

NCT03473925 Not available

Psoriasis NCT00684593 No clinical benefit
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the release of antimicrobial peptides, and the expulsion of their
nuclear contents to form NETs. Moreover, neutrophils can also
shape the immune response interacting with adaptive immune
cells (1, 68) (Figure 1).

The chemokine system, fundamental for selective neutrophil
recruitment in the tissues, also has an important role in the
regulation of the effector functions of neutrophils. Engagement
of both CXCR1 and CXCR2 induces neutrophil activation but
the two receptors have distinct and non-redundant roles in
inflammation and infection. Studies with knockout mice proved
the importance of mCXCR2 in inflammatory diseases related to
neutrophil infiltration and activation (30, 81). On the contrary,
mCXCR1 appears dispensable for neutrophil transmigration
while necessary for ROS production in Pseudomonas aeruginosa
and degranulation in Candida albicans infections (82, 83).
The fundamental role of CXCR1 in fighting infections is
further confirmed in humans carrying a genetic variant of
CXCR1 (CXCR1–T276) that have increased bacterial infections.
Neutrophils taken from these individuals have impaired
degranulation and fungal killing ability (83). On the contrary,
ROS production induced by the CXCL8–CXCR2 axis on
circulating neutrophils has a regulatory function. Indeed, it limits
the rolling capability of neutrophils in an autocrine manner by
inducing the shedding of CD62L (83).

In inflammatory conditions and after extravasation,
neutrophils completely change their chemokine receptor
repertoire. They downregulate CXCR2 levels and upregulate
inflammatory CC receptors CCR1, CCR2, and CCR5. These
receptors activate neutrophil phagocytic activity and ROS
production (26, 27, 84). In murine models of breast lung
metastasis, CCR2 expression on neutrophils promotes ROS
production that kills cancer cells (31, 85).

Release of NETs is induced by CXCR2 activation via Src,
extracellular signal-regulated kinase (ERK), and p38/MAPK
signaling (86). The CXCL1–CXCR2 axis has been associated
to NET formation and neutrophil degranulation in a model
of deep vein thrombosis in mice (87) and in circulating and
airway mucosal neutrophils of chronic obstructive pulmonary
disease (COPD) patients. The use of CXCR2 antagonist in these
patients had significantly improved their lung function, even if
a direct effect in NETs inhibition was not proved (88). Clinical
trials are ongoing for the use of CXCR2 inhibitors in COPD
patients (Table 2). NETs role in cancer still remains controversial;
indeed, they have been associated with both pro- and antitumoral
functions (89). In diffuse large B-cell lymphoma, CXCL8-induced
NETs promote tumor progression and blocking the CXCL8–
CXCR2 axis delays cancer progression in preclinical models
(90). CXCR1 and CXCR2 inhibitors show encouraging results
in tumor preclinical models when they are used in combination
with chemotherapy and checkpoint inhibitors and are now in use
in several clinical trials (Table 2) (91).

Chemokines acting on neutrophils can also regulate
angiogenesis in a direct and indirect way. CXCL1 induces
VEGF-A production by neutrophils (92), and neutrophils
with an aged-like profile (VEGFR1+, CD49d+, and CXCR4+),
recruited to hypoxic areas where CXCL12 is produced, promote

angiogenesis by release of MMP9 that cleaves VEGF-A stored in
the matrix (93–95).

Of relevance, neutrophils recruited at an inflammatory site
orchestrate and polarize the immune response, producing many
chemokines. ELR+CXC and inflammatory CC chemokines
amplify innate immune cell recruitment. Neutrophils can also
promote the recruitment of lymphocytes producing the Th1
chemokines CXCL9, 10, and 11 and the B-cell attracting
chemokine CXCL13. On the contrary, TANs exert their
immunosuppressive function by producing the Treg attracting
chemokine CCL17 (96). Moreover, a subset of activated
neutrophils expressing CCR7 and CXCR4 can migrate to lymph
nodes (LNs) and act as antigen presenting cells (APC) (97, 98).

According to these results, CXCR2 expression on neutrophils,
besides being fundamental for extravasation, induces NET
release, while CXCR1 together with CC chemokine receptors
CCR1, CCR2, and CCR5 acquired by infiltrated neutrophils
promote degranulation and ROS production. Chemokines
produced by neutrophils in inflamed tissues amplify and polarize
the immune response, and the expression of CCR7 by activated
neutrophils promotes their migration to LN, where they can
directly act as APC.

CONCLUDING REMARKS

Chemokines and their receptors play multiple and non-
overlapping roles in the life span of a neutrophil. CXCR4 has
a central role for BM retention of immature neutrophils and
BM homing of aged neutrophils. On the contrary, CXCR2
induces neutrophil mobilization from the BM to the bloodstream
and has a critical role in neutrophil extravasation, NET
release, and the aging process. CXCR1 together with CCR1,
CCR2, and CCR5 are important for degranulation and ROS
production after extravasation. The production of inflammatory
chemokines by neutrophils at an inflammatory site amplifies
and polarizes the immune response, and CCR7 and CXCR4
expression guides neutrophil migration to draining LNs for
antigen presentation.

Clinical trials using CXCR1 and CXCR2 inhibitors revealed
that they are successful in treating patients with chronic diseases
(e.g., COPD), whereas their use can be detrimental in patients
with viral infection. Therefore, a better understanding of the
role of chemokines not only in neutrophil migration but also
in diversity, effector functions, and regulation of the immune
response is required to develop successful therapeutic strategies.
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