
MINI REVIEW

published: 14 July 2020
doi: 10.3389/fimmu.2020.01266

Frontiers in Immunology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 1266

Edited by:

Deborah A. Witherden,

The Scripps Research Institute,

United States

Reviewed by:

Carrie R. Willcox,

University of Birmingham,

United Kingdom

Tomasz Zal,

University of Texas MD Anderson

Cancer Center, United States

*Correspondence:

Hongyi Zhang

hongyizhang@jnu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

T Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 21 February 2020

Accepted: 19 May 2020

Published: 14 July 2020

Citation:

Xiang J, Qiu M and Zhang H (2020)

Role of Dendritic Epidermal T Cells in

Cutaneous Carcinoma.

Front. Immunol. 11:1266.

doi: 10.3389/fimmu.2020.01266

Role of Dendritic Epidermal T Cells in
Cutaneous Carcinoma

Jian Xiang †, Minghui Qiu † and Hongyi Zhang*

Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China

Dendritic epidermal T cells (DETCs) are γδ T cells expressing invariant Vγ5Vδ1T cell

receptor (TCR) in murine epidermis. Initially, the development and the maturation of

DETC progenitors are mediated by skint-1, TCR, and cytokines in the fetal thymus. Then,

the DETC progenitors migrate to the epidermis with the guidance of selectins, CCR10,

CCR4, etc. Eventually, mature DETCs proliferate and maintain a homeostatic population

in the epidermis through IL-15 and aryl hydro-carbon receptor signaling. In “stressed”

skin, DETCs are activated, exhibiting features such as a round morphology, cytotoxicity,

and production of cytokines. In cutaneous carcinoma, DETCs generally inhibit tumor

development directly in non-major histocompatibility complex-restricted manner, with

the assistance of cytokines. DETCs also recognize and inhibit tumor via TCR, non-TCR

receptors (such as 2B4 and NKG2D), or both. This study summarizes the biogenesis and

the function of DETCs in cutaneous carcinoma and clarifies the essential surveillance role

in the epidermis that DETCs play. As there are no DETCs in human epidermis but only

human epidermis γδ T cells, we need to understand the anti-tumor pathways used by

DETCs to find analogous immune pathways in human skin, which could be exploited for

novel therapeutics.

Keywords: dendritic epidermal T cells, γδ T cells, epidermis, squamous cell carcinoma, melanoma

INTRODUCTION

The γδ T cells are abundant in epithelial surfaces of the skin, intestine, lung, etc. (1). The skin
is comprised of the epidermis, the basement membrane, and the dermis. The epidermis consists
of 95% keratinocytes and 5% immune cells, including Langerhans cells and T cells that are
predominantly epidermal γδ T cells (2, 3). The dermis contains dermal γδ T cells and variant
immune cells, including αβ T cells, macrophages, dendritic cells, etc. The epidermal γδ T cells are
different from the dermal γδ T cells in the T cell receptor (TCR) chains and shapes. In mouse,
compared with the round dermal γδ T cells expressing Vγ4, Vγ2 but not Vγ5 TCR (4), the
epidermal γδ T cells are dendritic and exclusively express Vγ5 TCR, therefore termed as dendritic
epidermal γδ T cells (DETCs). This dendritic morphology of DETCs may be localization specific
as the skin-resident memory CD8+ T cells are also dendritic in the epidermis (3, 5). The dendritic
morphology of DETCs may be shaped by CD103 and E-cadherin (6, 7).

DETCs are unique in rodents, and similar γδ T cells reside in the epidermis of some species (8),
andDETCs are reported to play an important role in wound healing and surveillance on tumors (8).
In rat epidermis, themajority of T cells are dendritic γδT cells, with Vγ andVδ chains highly similar
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to DETCs (9). In cattle epidermis, the skin-resident γδ T cells
are still dendritic but with different Vγ chain and Vδ chain
compared with DETCs (10). In humans, the γδ T cells equivalent
to DETCs are to be discovered; only a small subset of γδ T
cells expressing the Vδ1 TCR reside in the epidermis, termed
as human epidermal γδ T cells. The human epidermal γδ

T cells also promote wound healing by secreting insulin-like
growth factor 1 and are also cytotoxic to cutaneous carcinoma
as DETCs (11–13). However, the human epidermal γδ T cells
are still different from DETCs in terms of the molecular
mechanisms of homing to the epidermis, activation, and antigen
recognition (14, 15), and human epidermal γδ T cells are
round in morphology instead of dendritic. In this study, we
summarize the biogenesis of DETCs and their function roles
in cutaneous carcinoma and hope that these mechanisms can
provide cues to the study of human epidermal γδ T cells
in parallel.

BIOGENESIS OF DETC

DETCs are derived from DETC progenitors that are the first
T cells generated in the thymus at embryonic day 13 (8).
A few mechanisms are reported about the development and
the maturation of the DETC progenitors. Skint-1, a member
of the butyrophilin-like (Btnl) family proteins derived from
mature thymic epithelial cells with activated rank signaling
(16), is identified as the key molecule in promoting the
selective development of Vγ5+ DETC progenitors (17). Skint-
1 determines the differentiation direction of fetal thymocytes
through a CDR3-like loop-dependent manner (17). After
receiving the Skint-1 signal, the DETC progenitors provoke
differentiation and produce IFN-γ by activating the Egr3-
mediated pathway while suppressing Sox13 and RORγt that
are essential for other γδ T cells that produce IL-17 (18).
Although Skint-1 is not a γδTCR ligand, the Skint-1-mediated
selection might be through a TCR-related manner because
Egr3, Sox13, and Rorc are downstream molecules of TCR
signaling (18). TCR–ligands interaction is also essential for the
maturation of DETC progenitors. TCRs induce the expression
of sphingosine-1-phosphate receptor 1 in DETC progenitors
(19). The downstream of TCR signaling in mice only have
a delayed DETC accumulation but not any effect on the
DETC compartment in the epidermis (20). Therefore, the TCR–
ligands signaling might only regulate the development of DETC
progenitors in the thymus. Besides the cell–cell communication,
the cytokines derived from fetal thymocytes promote the
development of DETC precursors. IL-7 and IL-7R signaling is
essential for TCR gene transcription in a JAK/STAT pathway-
dependent manner (21). IL-2 and IL-15 promote the survival of
DETC precursors (21).

DETCs are located in the basal layer of the epidermis.
Therefore, DETC precursors need to migrate from the thymus
to the epidermis via the following steps: (1) adhering to the
endothelial capillary in the dermis and (2) extravasation and
locating to the epidermis (22). For the first step, DETC precursors
express ligands to bind to the selectins expressed on the

vascular endothelium. Although the exact ligands have not been
identified, evidences show that DETCs are dramatically reduced
in mice lacking E-selectins and P-selectins (23). For the second
step, the DETC precursors express high levels of CC-chemokine
receptor 10 (CCR10), which is the receptor of CC-chemokine
ligand 27 expressed by keratinocytes (24). DETCs are markedly
reduced inmice lacking CCR10 because the DETC precursors are
halted in the dermis (25). A small subset of DETC precursors is
homing to the epidermis in a CCR4-dependent manner (23). The
Vγ5 TCRsmight be important for the DETC precursormigration
and epidermal localization (20); however, TCR is also reported to
be not specific for DETCmigration and homing to the epidermis.
Further investigations are needed (26–28).

Once the DETCs home in the epidermis, they proliferate
exponentially along with the growth of the skin after birth
in an IL-15-dependent manner as DETCs are decreased in
IL-15- or IL-15R-deficient mice, while IL-15 is secreted by
keratinocytes (29). In adults, DETCs are not supplied by
circulating γδ T cells from hematopoietic stem cell but keep a
homeostatic number by self-renewal in an aryl hydro-carbon
receptor (AHR)-dependent manner. The AHRs are activated
by ligands from the DETC cytoplasm. When lacking the
AHR signaling, the DETCs cannot proliferate after homing in
the epidermis (30). DETCs also produce insulin-like growth
factors (IGFs) to prevent themselves from apoptosis (13). The
Vγ5 TCR is important for the homeostatic maintenance of
mature DETCs in adults (31). Therefore, after homing to
the epidermis, the mature DETCs proliferate and maintain a
homeostatic population.

DETCs need to be activated to play a functional role in
damaged skin and cancer. In steady-state skin, DETCs extend
their dendrites to the suprabasal layers and closely contact with
keratinocytes (32). In pathological-state skin, activated DETCs
become motile by losing the dendrites (32). DETCs may be
activated by co-culturing with transformed keratinocytes and
protect keratinocytes from apoptosis in an IGF1-dependent
manner (13, 33). The TCRs are essential for DETC activation
by recognizing antigens from keratinocyte or Langerhans cells
(34, 35). Damaged or stressed keratinocytes express TCR ligands
that can activate DETCs in a non-major histocompatibility
complex (MHC)-restricted manner (35–37). Beyond TCR, the
complete activation of DETCs requires co-stimulatory signals
such as junctional adhesion molecule-like (JAML) (38), CD100
(39), 2B4 (40), and natural killer group 2D (NKG2D) (41). JAML
expressed inDETC is similar to CD28/B7 in αβT cell (38). CD100
expressed in DETC is a receptor for plexin B2-mediated signaling
in keratinocyte to initiate DETC activation, with a morphology
change (39). 2B4 expressed in DETC is associated with tumor
target recognition (40). NKG2D expressed in DETC is a receptor
for stress-induced proteins to activate DETC in responding to
tumor or cutaneous wound (42, 43). The cytokines are also
important for DETC activation. DETCs freshly isolated from skin
can be activated by IL-2 (40), and activated DETCs produce IL-
2 (44). IL-7 and IL-15 from keratinocytes and fibroblast activate
DETCs (45–47). In contrast, the activation of DETCs is inhibited
by the E-cadherin of keratinocytes (7). The DETC expression
of JAML (38), CD100 (39), and NKG2D (43) are critical for
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wound healing. The DETC expression of 2B4 (40), NKG2D
(41, 42), and IL-2 (44) may facilitate the cytotoxic potential to
tumor cells.

ROLE OF DETC IN CUTANEOUS

CARCINOMA

A total of 90% of cutaneous carcinomas are comprised of basal
cell carcinoma (BCC), squamous cell carcinoma (SCC), and
melanoma. In general, the inhibition of cutaneous carcinoma
by activated DETCs relies on three consecutive signals: TCR in
MHC—restriction independent (15), non-TCR receptors such as
NKG2D (48), 2B4 (40), or cytokines such as IL-2 (44), and IFNγ

(38, 48, 49).

DETC in Non-melanoma Skin Cancer
BCC and SCC are usually categorized as non-melanoma skin
cancer (50). BCC is the most common skin cancer, which starts
from the base cell layer of the epidermis. SCC is the second
common cutaneous carcinoma from damaged keratinocytes (50,
51). The non-melanoma skin cancer may be caused by solar UV
radiation or chemicals such as arsenic (52, 53).

Majority of BCCs and 50% of SCCs are caused by solar
UV radiation. In chronic UV radiation, the DNA repairing
mechanism caused gene mutation and genome instability, which
are responses for tumor formation. PTCH1 and P53 mutations
drive BCC and SCC initiation, respectively (54, 55). DETC is
the major antitumor player in murine epidermis. DETC can
directly lyse the SCC cell line Pam 212 monolayer effectively
(56) or inhibit the tumor cells by inducing CD8+T cells (57).
DETC can lyse the PDV tumorigenic keratinocyte cell line (42)
but not the normal keratinocyte cells in vitro (56). Therefore,
the DETC’s cytolytic activity may be tumor cell specific. The
DETCs protect the keratinocyte from UV-caused DNA damage
by reducing γH2AX, a cyclobutane pyrimidine dimer. UV-
damaged keratinocytes secrete IL-1β, which triggers DETCs to
produce IL-17A, and in turn, IL-17A upregulates molecules
linked to DNA repair response and limits γH2AX expression
in keratinocyte cells (58). The DETC population is decreased
in UV-irradiated epidermis (57). Therefore, DETCs might have
a potential role in preventing UV-induced skin cancer, and
further studies are needed. However, IL-17A plays a dual role
in promoting both tumor growth and antitumor immunity in
skin cancer. On one hand, IL-17A accelerates the proliferation
of skin epithelial cells to promote tumorigenesis (59, 60). IL-
17A also promotes the tumor microenvironment formation
by attracting an infiltration of immune cells (61). In murine
models of ovarian cancer and pancreatic ductal adenocarcinoma,
the IL-17-producing γδ T cells (not DETCs) are proliferative,
active, and may directly inhibit adaptive antitumor immunity by
producing PD-L1 and Galectin-9 (62, 63). Whether the tumor-
infiltrating immune cells together with DETCs can promote
tumorigenesis and tumor progression needs to be investigated.
On the other hand, the IL-17-producing CD8+ T induces
tumor regression in mice with vascularized B16 melanoma
(64). The IL-17-producing γδ T cells enhance chemotherapy to

mice with fibrosarcoma (65). Th17 cells activate endogenous
cytotoxic CD8+ T cells, leading to tumor regression inmelanoma
(66). The generation of IL-17-producing T cells with different
phenotypes in response to variant tumor contexts would explain
the conflicting observations. Whether IL-17 plays a role in
DETC-mediated antitumor immunity needs to be studied. In
an UV-induced SCC model, DETCs can inhibit the activation
of CD4+T cells, but not CD8+T cells, within 3 days after UV
radiation, resulting in an accelerated tumor growth (67).

Aside from UV, SCC may also be induced by chemicals.
In a 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-
tetradecanoylphorbol-13-acetate (TPA)-induced SCC model, the
DETCs show an anti-tumor role as γδ T-depleted mice are more
acceptable for tumors than the wild-type mice. DETCs eliminate
DMBA/TPA-induced SCC by expressing IFNγ and NKG2D,
therefore promoting the therapeutic effect of rapamycin on SCC
(68). IFNγ promotes the migration, activation, and cytotoxicity
of DETCs in SCC. NKG2D, a receptor of natural killer cells, is
only expressed in DETC in murine epidermis. The expression
of ligands for NAG2D, such as Rae-1 and H60, is inducible
in SCC by DMBA/TPA treatment (42). Blocking NKG2D can
inhibit DETC activation, but whether these ligands activate
DETCs directly or indirectly needs more investigation. Rae-1 can
activate DETCs directly without TCR signaling (69, 70). H60c
can directly activate DETCs to produce IL-13 (71), but H60c is
also reported to only provide co-stimulatory signals for DETC
activation, failing to activate DETCs directly (69, 72). Thus,
DETCs eliminate tumor mediated by NKG2D, but the NKG2D
signaling of DETCs may response differently in a different
stimulation content.

Cutaneous lymphoma, a rare subtype of non-Hodgkin
lymphoma, starts from the lymphocytes in the skin but is not
classified as cutaneous carcinoma. As for the well-established
non-Hodgkin lymphoma cell line YAC, DETCs directly kill
YAC cells by producing perforin and granzymes (56), and this
cytotoxicity is not MHC-restricted (73, 74). The anti-tumor
potential of DETCs is strengthened in the presence of cytokines.
2B4, initially found in NK cells and T cells, associate with
non-MHC-restricted recognition to tumor targets (75, 76), is
expressed in DETC, and mediates the killing of tumor cells
by DETC (40). IL-2 enhances the cytotoxicity of DETC to
lymphoma cells by stimulating 2B4 expression (40). The DETCs
activated by CoA produce IL-2, which stimulates DETCs to
kill YAC cells (40, 44). IL-7, produced by keratinocytes, is also
critical for DETC activation to acquire a cytotoxic capability to
lymphomas (56). The cytotoxicity of DETC directly to lymphoma
cells can be strengthened by cytokines.

DETC in Melanoma
Melanoma starts from melanocytes and is very aggressive and
metastatic. Melanoma occupies 1% of cutaneous carcinoma cases
but is the most lethal event in a cutaneous carcinoma patient.
DETC cell line AU16 inhibits melanoma progression in vivo and
kills melanoma cells in cytotoxicity in vitro (77). The DETC cell
line AU16, derived from C3H mice, is an IL-2-dependent cell
line and cytotoxic to melanoma cell lines and chemo-induced
fibrosarcoma in vitro (77). The injection of mixed AU16 cells
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and melanoma cells can delay the melanoma growth in vivo
(77). In another study, the inhibition of DETCs to melanoma
may be tumor specific as normal keratinocytes are not affected
(56). The inhibition of DETCs on melanoma is IL-2 dependent
and needs a close contact between DETCs and melanoma
(56). Microscopically, DETCs destruct melanoma monolayers by
adhering to tumor cells first and then gradually forming enlarged
discrete foci to disrupt the melanoma cells. DETCs may inhibit
melanoma in a NKG2D-dependent manner as NKG2D ligands
are largely expressed in melanoma (78). The studies of DETCs
on inhibiting melanoma are limited, and further investigations
are needed.

CONCLUSION AND PERSPECTIVE

DETCs are the resident γδ T cells, with a dendritic morphology,
in murine epidermis. Once the skin is damaged or has tumor,
DETCs are activated by cytokines (such as IL-17, IL-15, and
IL-2) or signaling directly from keratinocytes and Langerhans
cells. The activated DETCs generally inhibit tumor progress
but also promote tumor development in a certain tumor

microenvironment. However, our understanding of the biology
of DETCs is still largely limited, particularly in the area of DETCs
responding to a skin tumor microenvironment. How do the
DETCs maintain hemostasis in a skin tumor microenvironment?
How do the DETCs communicate with the tumor-infiltrated
immune cells and with the neighbor cells in the epidermis? We
need to understand the anti-tumor pathways used by DETCs to
find analogous immune pathways in human skin which could be
exploited for novel therapeutics.
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