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Within the tumor microenvironment, there is an intricate communication happening

between tumor and stromal cells. This information exchange, in the form of cytokines,

growth factors, extracellular vesicles, danger molecules, cell debris, and other factors, is

capable of modulating the function of immune cells. The triggering of specific responses,

including phenotypic alterations, can ultimately result in either immune surveillance

or tumor cell survival. Macrophages are a well-studied cell lineage illustrating the

different cellular phenotypes possible, depending on the tumor microenvironmental

context. While our understanding of macrophage responses is well documented in

vitro, surprisingly, little work has been done to confirm these observations in the cancer

microenvironment. In fact, there are examples of opposing reactions of macrophages

to cytokines in cell culture and in vivo tumor settings. Additionally, it seems that different

macrophage lineages, for example tissue-resident and monocyte-derived macrophages,

respond differently to cytokines and other cancer-derived signals. In this review article,

we will describe and discuss the diverging reports on how cancer cells influence

monocyte-derived and tissue-resident macrophage traits in vivo.

Keywords: tumor microenvironment, tissue-resident macrophage, monocyte-derived macrophage, small

extracellular vesicles, tumor-derived cytokines

INTRODUCTION

Macrophages are key immune cells involved in the phagocytosis of foreign factors and debris, and
the production of cytokines (1–3). Classic macrophages can respond to cancer cells upon exposure
to tumor-associated antigens (4). However, macrophages that are associated with established
tumors are usually known to produce anti-inflammatory cytokines and support tumor progression
(5). These cancer-associated types of macrophages have also been associated with metastasis,
including early metastatic steps such as pre-metastatic niche formation (6).

Macrophages were first described by Elie Metchnikoff in 1882, as mononuclear phagocytic cells
important for animals’ defense against bacterial infection (1). In the context of cancer, initial
studies focused on their phagocytic function, and how their secretory products could act as
proinflammatory and anti-tumor agents (1, 7, 8). For example, breast cancer patients presenting
with tumor masses highly infiltrated by macrophages had a reduced risk of metastasis (9).
In contrast, during 1990s, proangiogenic and protumoral roles for macrophages started to be
suggested in diverse cancer types, including breast (10), lung (11), and ovarian cancer (12).

Studies on the biology of monocyte differentiation to macrophage helped understand the
opposing inflammatory and anti-inflammatory roles of macrophages (13, 14). These studies
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demonstrated how cytokines are involved in monocyte
differentiation. For example, Interferon-gamma (IFN-γ) assists
in the initiation of immune responses (15). Macrophage
activation by lipopolysaccharide (LPS) results in an increase
in IL-12 production, a cytokine commonly found in the
inflammatory environment (16). When macrophages are treated
with LPS in combination with IFN-γ, for example, IL-12
secretion is up-regulated, with subsequent promotion of Th1
inflammatory responses (17). On the other hand, macrophages
exposed to IL-4 or IL-10 are known to promote Th2 anti-
inflammatory responses (18). Charles Milles introduced that
macrophages activated by LPS and IFN-γ are commonly termed
M1 macrophages; while IL-4 or IL-10 treated macrophages
are termed M2 macrophages (19). Nevertheless, this simple
M1/M2 macrophage polarization, induced by only several
cytokines, is not sufficient to describe the broad macrophage
variability observed in different disease models (20), particularly
in cancer (21).

So far, most work has been done on investigating macrophage
responses to recombinant cytokines in in vitro cell culture
settings. Mostly, murine and human macrophage cell lines,
including RAW and THP-1 cells, respectively, have been used
for those studies. Based on this data, we have generated a
thorough understanding of signaling pathways in macrophages,
in response to cytokines and other stimuli. Intriguingly, there
is a paucity of studies on how macrophages in in vivo
cancer microenvironments respond to cytokines. In fact, some
reports highlight stark discrepancies between the responses of
cell-cultured macrophages to a cue when compared to the
macrophages in a tissue context (22). For example, comparison
of bone marrow-derived macrophage (BMDM) and Raw 264.7
cells by RNA sequencing and proteomics uncovered dissimilarity
in response to inflammation (23, 24). Additionally, there are
at least two distinct macrophage populations, with different
origins and functions, present in a tumor. Our knowledge of
the different roles these populations have to play in different
phases of tumor progression and metastasis are even more
limited. We will now discuss the state of knowledge for these
macrophage populations in in situ, in vivo or ex vivo cancer
microenvironmental settings.

MONOCYTE-DERIVED MACROPHAGES
AND TISSUE-RESIDENT MACROPHAGES:
ORIGINS AND PHENOTYPES

Based on their origin, macrophages are classified into
monocyte-derived macrophages or tissue-resident macrophages
(25). Monocyte-derived macrophages originate from adult
hematopoietic stem cells in the bone marrow (26). These
macrophages are firstly distributed to tissues as monocytes,
which can then differentiate to macrophages depending on
organ-specific cues and circumstance (27). On the other hand,
tissue-resident macrophages are suggested to originate from
progenitor cells during embryonic or fetal development, and
are not dependent on adult hematopoiesis (28, 29). These
macrophages have self-renewal properties, as well as distinct

features and names that depend on the organ in which they
reside (30). The tissue-resident macrophages’ nomenclature
includes historical names, such as bone marrow, microglia
(brain) (31), alveolar (lung) (32), Kupffer (liver) (30), and kidney
macrophage (33).

Tissue-resident macrophages are highly heterogeneous,
showing more variable levels of transcription factors
and surface markers compared to monocyte-derived
macrophages (Figure 1). Regarding the expression of
surface markers, monocyte-derived macrophages are generally
F4/80intermediate/CD11bhigh/MHC class IIhigh/CCR2high, while
tissue-resident macrophages are usually identified by the
F4/80high/CD11blow/Cx3CR1high/MHC class IIhigh/low/CCR2low

immunophenotype (30). In addition, it has been suggested that
the responses triggered within the cancer microenvironment
are different between monocyte-derived macrophage and
tissue-derived macrophages. In pancreatic tumor, for example,
tissue-resident macrophages proliferate, and promote tumor
progression and pro-fibrotic activity, while monocyte-derived
macrophages do not affect tumor progression, but have potent
roles in antigen presentation (34). Conversely, monocyte-
derived macrophages accumulate in high numbers during lung
injury, whereas tissue-resident macrophages persist in their
numbers (35). Moreover, in vivo injections of either LPS or
IL-4 trigger different responses in monocyte-derived and tissue-
derived macrophages, both functionally and phenotypically
(35, 36). These studies show that monocyte-derived and tissue-
resident macrophages can display distinct characteristics in
different conditions (Figure 1). Therefore, it is important
to clearly identify these two populations of macrophages
when assessing their roles in the tumor microenvironment,
particularly how both cell subsets are differentially affected by
tumor-derived factors.

MACROPHAGES IN THE CANCER
MICROENVIRONMENT

The surrounding environment of macrophages has been
reported to determine their polarization (37). For example,
macrophages in either hypoxic or acidic conditions promote
tumor progression more efficiently than cells derived from
normoxic condition (38–40). This observation indicates that
macrophage differentiation can be altered by extrinsic factors,
hence impacting the cancer microenvironment. There is
a vast difference between the cytokine profiles secreted
from normal and cancer cells. It is known that many
types of cancer cells secret a large range of extracellular
mediators, including cytokines, chemokines and growth factors,
such as the chemokine (C-C motif) ligand 2 (CCL2), IL-6,
transforming growth factor beta (TGF-β), tumor necrosis
factor alpha (TNF-α), matrix metalloproteinases (MMPs), and
granulocyte-macrophage colony-stimulating factor (GM-CSF)
(41, 42). These proteins play important roles in altering the
phenotype of macrophages, but might affect monocyte-derived
macrophages and tissue-resident macrophages differentially. The
composition and amounts of cytokines secreted within the
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FIGURE 1 | Difference between Monocyte-derived macrophages and tissue-resident macrophages. Monocyte-derived macrophages commonly express high levels

of CD11b MHC class II and CCR2, while tissue-resident macrophages have high levels of F4/80 and CX3CR1 (30). Monocyte-derived macrophages begin from adult

hematopoietic stem cells through monocyte differentiation. However, progenitors of tissue-resident macrophages are of embryonic origin and fetal hematopoietic cells,

and maintain their number by self-renewal signaling in tissue (30). Functions of these two types of macrophages are different as well. Monocyte-derived macrophages

act in infection conditions to phagocytosis pathogens and secretes cytokines related to proinflammatory conditions (35). In contrast, tissue-resident macrophages

subsist in tissue for maintaining tissue homeostasis by phagocytosis apoptotic cells and secreting cytokines related to tissue remodeling (3).

tumor microenvironment by both cancer and stromal cells
partially determine the reaction of macrophages to a cancer,
which could result in either promotion or suppression of
immune responses, and consequent inhibited or sustained cancer
growth, respectively.

EFFECTS OF TUMOR-DERIVED
CYTOKINES ON MONOCYTE-DERIVED
MACROPHAGES

CCL2 is known to be highly abundant in the cancer
microenvironment (43). It is shown to recruit CCR2+ highly
inflammatory monocytes, which are then differentiated to
F4/80+/CD11b+/Gr1− macrophages, promoting metastasis
through VEGF-dependent mechanisms in breast cancer (44).
Furthermore, F4/80+/CD11b+ macrophages express higher
levels of CCR2 than tissue resident macrophages, being recruited
by CCL2 secreting tissues. CCL2, in turn, regulates CCR2+

macrophage signaling and induces, for example, secretion
of CCL3 and consequent extravasation of cancer cells (45).
Deletion of CCL3 in bone marrow-derived macrophages
suppresses lung metastasis and reduces the recruitment
of monocyte-derived macrophages to tumor site (45). In

another study, CCL2 has been reported to play an important
role in differentiating monocytes. CCL2 was incubated with
human CD11b+ monocytes, causing them to differentiate to a
CD14+/CD206+/CD11b+ population (46). These macrophages
produce protumoral cytokines and are associated with a tumor
promoting phenotype (46).

Several publications have demonstrated that IL-6 is also
associated with macrophage polarization. For example, in the
glioblastoma microenvironment, IL-6 and CSF-1, which are
produced by glioblastoma-associated endothelial cells, increase
arginase-1 expression, which is mediated by HIF-2α activation
in monocyte-derived macrophages (47). Therefore, when IL-
6 is knocked out in glioblastoma-associated endothelial cells,
glioblastoma-bearing mice display an increased survival rate
(47). Moreover, macrophages generated from peripheral blood
monocytes and incubated with macrophage colony-stimulating
factor (M-CSF) induce high levels of DC-SIGN, which could
also be achieved by incubation of monocytes with conditioned
media from cancer cell lines containing high levels of IL-6
and IL-10 (48). The DC-SIGN protein expression is commonly
observed in macrophages found in patient tumor stroma, and
has been reported to be associated with high levels of VEGF,
as well as a proangiogenic phenotype (48, 49). TGF-β is
also known to be secreted by various cancer cells, including
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breast (50), lung (51), and liver cancer cells (52). Among
the cytokines secreted from hepatocellular carcinoma, TGF-β
induced Tim3 signal, activated NF-kB and STAT6, increased
IL-6 and IL-10, and decreased IL-1 in macrophages (53).
The IL-6 released from these macrophages, but not IL-10
and GM-CSF, suggests that cancer cells are promoting their
proliferation in a paracrine manner (53). When TGF-β is
blocked by antibodies, human monocyte-derived macrophages
differentiated by M-CSF have increased secretion of IL-10
and decreased levels of IL-12 (54). High levels of TNF-α are
found in cancer and non-cancer proinflammatory environments
(55). TNF-α produced by the cancer affects macrophage
SINGLEC1 expression, which is found in high levels on tumor-
associated macrophages (56). SINGLEC1 and CCL8 expression
on macrophages are independent prognostic markers for poor
survival (56). Taken together, these observations show that
monocyte-derived macrophages secrete cytokines associated
with tumor promotion or contribute to the cancer progression
in response to cancer-derived cytokines.

EFFECT OF TUMOR-DERIVED CYTOKINES
ON TISSUE-RESIDENT MACROPHAGES

There has been less research done on the role and responses of
tissue-resident macrophages in the tumor microenvironment,
leaving us with a sketchier understanding. However, several
studies show distinguishing features of monocyte-derived and
tissue-resident macrophages in tissues (2, 57). Additionally, there
are several reports showing that tissue-resident macrophages
are involved in tissue remodeling rather than inflammatory
conditions (58). Despite these reports, it is still not clear
what the exact role(s) of this tissue-resident macrophage
in the tumor microenvironment are. It has been reported
that the recruitment of macrophages in CCR2−/− mice to
pancreatic ductal adenocarcinoma tumors were reduced (34).
However, it was noted that this reduction did not affect
pancreatic ductal adenocarcinoma tumor growth (2). This
result suggests that pancreatic cancer growth is regulated
by CCR2+ monocyte/macrophage-independent mechanisms
(2). In contrast, this report demonstrated that these tissue-
resident macrophages are able to self-renew in tumors due
to tumor-derived CSF-1 and promote tumor progression
(2). A recent study partially explained this phenotype
by showing that CSF1/2 regulates both proliferation and
angiogenic capacity of cardiac tissue-resident macrophage by
regulating KFL4 levels (59). In ovarian cancer, bioinformatics
analyses showed that tumor-associated macrophages are
similar to tissue-resident macrophages, but not monocyte
macrophages (60). At the same time, the phenotype and
function of tumor-associated macrophages accumulating in
breast cancer tumors is different from that of breast tissue-
resident macrophages (61). As such, macrophage characteristics
in each organ are different, and it differs in distinct tumor
microenvironments. How the different macrophage types
respond in a given situation in a cancer would therefore require
further detailed studies.

TUMOR-DERIVED EXTRACELLULAR
VESICLES

Small extracellular vesicles (sEVs) are derived from cells without
being able to self-replicate (62). Fusion of multi-vesicular bodies
(MVBs) with the plasma membrane allows the release of sEVs
into the extracellular environment (63). These sEVs play an
important role in the intercellular communication within the
tumor microenvironment. Depending on the origin of the cell,
the extracellular vesicles have a different content, and therefore,
the extracellular vesicles released from the cancer cells are
different from the corresponding normal cells (64). sEVs contain
various bioactive compounds such as proteins, lipids, mRNAs
andmicroRNAs (65–67). It has been reported that tumor-derived
sEVs can be distributed to various organs and lymph nodes
through blood and/or lymphatic vessels (68). These vesicles are
not only found to be retained in distal tissues, but have also
shown to be taken up, for example, by cells in the brain and
bone marrow (68, 69). Therefore, it is reasonable to suggest that
tumor-derived EVs are capable of changing the characteristics
and behavior of their target cells. As such, these compounds
have been shown to affect the phenotype and cellular function
of recipient cells in different organs, including immune cells, and
especially macrophages.

EFFECTS TUMOR-DERIVED
EXTRACELLULAR VESICLES IN
MONOCYTE-DERIVED MACROPHAGES

Breast cancer-derived sEVs containing high levels of gp130
activate STAT3 signaling inmonocyte-derivedmacrophages (70).
The proportion of CD163+CD206highHLA-DRlow macrophages,
derived from human blood CD14+ monocytes, was shown
to be increased after incubation with hypoxic lung cancer-
derived extracellular vesicles enriched for microRNA-103a (71).
MicroRNA-103a in turn targets PTEN to activate AKT and
STAT3 pathways (71). Y RNA, hY4 is another small non-coding
RNA found in sEVs from chronic lymphocytic leukemia (72).
These sEVs induced secretion of CCL2, CCL4, and IL-6, as
well as expression of PD-L1, in monocytes and macrophages
(72). Furthermore, these macrophages with activated AKT and
STAT3 signaling pathways, and increased levels of PD-L1 induce
a reduced immune response and therapeutic resistance (73).
Altogether, these studies suggest that sEVs derived from cancer
cells are capable of polarizing monocyte-derived macrophages to
tumor-associated macrophages.

EFFECTS OF TUMOR-DERIVED
EXTRACELLULAR VESICLES ON
TISSUE-RESIDENT MACROPHAGES

Recently, there have been a number of reports suggesting that
tumor-derived EVs induce premetastatic niche formation by
altering myeloid cell phenotypes, including that of monocytes
and macrophages (74, 75). Apart from these publications, there
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FIGURE 2 | Response of monocyte-derived macrophages and tissue-resident macrophages in tumor microenvironment. Both monocyte-derived macrophages and

tissue-resident macrophages are able to be associated to tumor progression. Monocyte-derived macrophages in tumor microenvironment are more induced to

immune modulation and macrophage cells survival signaling. On the other hand, tissue-resident macrophages are more associated to the change in extracellular

matrix and proangiogenic signaling.

has not been much research reported on the impact of tumor-
derived sEVs on tissue-resident macrophages. A few examples
on the role of sEVs come from glioblastoma and microglia
work, possibly due to brain-resident macrophages being mostly
of embryonic origin (30). Glioblastoma stem-like cells secrete
EVs, which induce membrane type 1-MMP (MT1-MMP) in
microglia with strong tumor-supportive functions (76). Similarly,
these vesicles are enriched for miR-451 and miR-21, which
are transferred to microglia. In these cells, the microRNAs
decrease c-myc levels, inducing gene expression alterations in
favor of protumoral phenotypes (77). Additionally, sEVs might
change extracellular matrix composition via MT1-MMP and
c-myc, which induces cancer cells migration and invasion (78,
79). However, more research is required to understand the
interactions and roles cancer-secreted EVs exert on tissue-
resident macrophages.

CONCLUSION

Although much research has been conducted on understanding
the responses of macrophages to cytokines and EVs, most of
these studies were done in cell culture settings. While very
informative, more recent literature suggests that the tissue-
context dimension, which cannot be mimicked in cell culture,
has an enormous impact on macrophage responses. Without a

detailed knowledge of the macrophage-lineage specific response
to certain stimuli in the tumor microenvironment context, it
is very difficult to ascertain the roles and therefore, the best
macrophage-targeting interventions in a cancer setting. This
review described how tumors affect monocyte-derived and
tissue-derived macrophages by dividing the roles of soluble
factors and EVs (Figure 2). This summary and interpretation
highlight some areas of cancer macrophage biology requiring
further research so we can better understand the intricate
relationship between cancer cells and macrophages. Many
studies have evaluated the tumor microenvironment by using
conditioned media, focusing on the role of single or small sets
of cytokines and/or sEVs. However, regional differences within
the microenvironment as well as spatial/regional regulation
mechanisms of macrophages are not understood at any depth
(69). It will be very exciting, using more comprehensive
approaches in animal models and patient samples, to interrogate
on single cell levels in situ how macrophages phenotypes
are differentially regulated with important implications for
our understanding of cancer progression and developing
novel therapeutic approaches. Recently, many studies have
been conducted targeting tumor-associated macrophages.
For example, it has been reported that activation of CD206
by RP-182 on tumor-associated macrophages reprograms
these cells and increases their anti-tumor activity (80). In
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addition, increased legumain, a lysosomal peptidase, in tumor-
associated macrophages increases CD8T cell activity (81).
Understanding the macrophage origin and how these types
of macrophages respond to the tumor microenvironment
will be essential to develop better cancer therapies in
the future.
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