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Respiratory, circulatory, and renal failure are among the gravest features of COVID-19

and are associated with a very high mortality rate. A common denominator of all

affected organs is the expression of angiotensin-converting enzyme 2 (ACE2), a protease

responsible for the conversion of Angiotensin 1-8 (Ang II) to Angiotensin 1-7 (Ang

1-7). Ang 1-7 acts on these tissues and in other target organs via Mas receptor

(MasR), where it exerts beneficial effects, including vasodilation and suppression of

inflammation and fibrosis, along an attenuation of cardiac and vascular remodeling.

Unfortunately, ACE2 also serves as the binding receptor of SARS viral spike glycoprotein,

enabling its attachment to host cells, with subsequent viral internalization and replication.

Although numerous reports have linked the devastating organ injuries to viral homing and

attachment to organ-specific cells widely expressing ACE2, little attention has been given

to ACE-2 expressed by the immune system. Herein we outline potential adverse effects

of SARS-CoV2 on macrophages and dendritic cells, key cells of the immune system

expressing ACE2. Specifically, we propose a new hypothesis that, while macrophages

play an important role in antiviral defense mechanisms, in the case of SARS-CoV,

they may also serve as a Trojan horse, enabling viral anchoring specifically within the

pulmonary parenchyma. It is tempting to assume that diverse expression of ACE2 in

macrophages among individuals might govern the severity of SARS-CoV-2 infection.

Moreover, reallocation of viral-containing macrophages migrating out of the lung to other

tissues is theoretically plausible in the context of viral spread with the involvement of

other organs.
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The reported clinical manifestations of Covid-19 keep growing steadily. Respiratory, circulatory,
and renal failure are among its gravest features, and the mortality rate is very high (1–3). Other
organ involvement includes the gastrointestinal tract (manifested as diarrhea and vomiting)
(4, 5), gonads [impaired male fertility (6)], and nervous system (7). A common denominator of
all affected organs is the expression of angiotensin-converting enzyme 2 (ACE2) (8, 9). ACE2
is a transmembranal protease responsible for the conversion of Angiotensin 1-8 (Ang II) to
Angiotensin 1-7 (Ang 1-7) (10). The latter acts on these tissues and in other target organs via
Mas receptor (MasR), where it exerts beneficial effects, including vasodilation and suppression of
inflammation and fibrosis (8, 9). Ang 1-7 also induces diuresis/natriuresis, preserves renal function,
and attenuates cardiac and vascular remodeling (11).
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Unfortunately, ACE2 also serves as the binding receptor of
SARS viral spike glycoprotein, enabling its attachment to host
cells, with subsequent viral internalization and replication (12–
14). So far, numerous reports have linked the devastating organ
injuries to viral homing and attachment to organ-specific cells
widely expressing ACE2; however, little attention has been given
to the immune system. The following short commentary outlines
potential adverse effects of SARS-CoV2 on macrophages and
dendritic cells, key cells of the immune system, which also express
ACE2 (15, 16).

Macrophages and dendritic cells are ubiquitous in human
organs with a substantial abundance in the lungs. There are
two distinct populations of pulmonary macrophages: alveolar
macrophages, which reside in proximity to type I and type II
epithelial alveolar cells, and interstitial macrophages, which are
preferentially abundant between the microvascular endothelium
and alveolar epithelium zone (17) (Figure 1). Various pathogens
and noxious materials reaching the lungs provoke an innate
immune response of the pulmonary parenchyma that is
characterized by the differentiation of bone-marrow-derived

FIGURE 1 | Schematic structure of pulmonary alveoli with diverse cell types, including cuboid ciliated epithelial cells along bronchioles, alveolar type I (ATI) and type II

epithelial cells (ATII), and macrophages. The latter are ubiquitous in the lungs and consist of two distinct populations: alveolar macrophages, which reside in proximity

to ATI and ATII, as well as interstitial macrophages, which are abundant between the microvascular endothelium and alveolar epithelium zone. Alveolar macrophages

as well as ATII express ACE2, the binding receptor of SARS-CoV-2. In addition, both cell types express TMPRSS2/Furin, which are also required for viral attachment.

It exposes the viral receptor binding protein (RBP) localized to S-glycoprotein (S1 domain of the viral spike) and reveals the effusion site on the S2 domain. Although

SARS-CoV-2 replication in ATII cells is well-documented, a similar process was not confirmed in alveolar macrophages. While some studies suggested such a

replication along triggering aberrant production of proinflammatory cytokines/chemokines, as is the case with MERS-CoV, others reports ruled out SARS-CoV viral

replication in human macrophages. ACE2, Angiotensin converting enzyme 2; ATI, Alveolar epithelial cells type I; ATII, Alveolar epithelial cells type II; TMPRSS2,

Transmembrane protease, serine 2.

monocytes into alveolar macrophages, which serve as a first-line
defense against invading organisms. Both alveolar and interstitial
macrophages can be divided into two functional phenotypes.
The first is made up of classically activated macrophages
(M1 macrophage), which are activated by pathogen-associated
molecular patterns (PAMPs) that are also expressed by viruses.
Their activity is then promoted by Th1 cells. The second
population includes the alternatively activated macrophages
(M2 macrophage), which are activated by Th2 cells by
means of IL-4 and IL-13 (17). M1 macrophages induce
recruitment of immune cells into the lung parenchyma. In
contrast, activation of M2 macrophages triggers the release of
anti-inflammatory cytokines, which restrict inflammation and
promote tissue repair (17). Dendritic cells play a keen role
in the inflammatory process as evident by their responsibility
for presentation of antigens, regulation of T-cell reactions
to antigen, and the intensity of the inflammatory response.
Activation of dendritic cells induces their expression of co-
stimulation molecules such as CD80. Viral infections provoke
monocytal-enhanced proinflammatory signaling molecules and
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antiviral responses, as have been shown with influenza, herpes,
and Zika viruses (18). It has recently been suggested that
enhanced activity of pro-inflammatory macrophages in part
of the COVID-19 patients leads to accelerated production of
inflammatory cytokines and chemokines, and among them is
CXCL10, which leads to cytokine storms. This has mostly been
observed in subjects with poor prognosis (19, 20). In general,
short living monocytes/macrophages are able to remarkably
limit viral replication. However, that does not preclude these
cells from serving as a permissive system and/or as a viral
reservoir (18). Support for this notion is derived from the
fact that these cells serve as the first line of defense upon
encountering viral infection. However, viral infection may
convert these cells into long living macrophages (Mφ) and
promote their migration into tissues where they become infected
resident cells. Finally, since SARS viruses, including SARS-
CoV2, utilize ACE2 as a tight binding site with high affinity
(12–14), pulmonary macrophages that express ACE2 may
permeate pulmonary invasion during SARS infection. Indeed,
we have previously shown that monocytes/macrophages express
ACE2 (15). Furthermore, monocyte-derived macrophages from
patients with CHF exhibit profoundly increased ACE2 expression
after treatment with spironolactone, a mineralocorticoid blocker.
The beneficial impact of upregulated ACE2 in CHF patients is
evident by attenuated oxidative stress, as expressed by reduced
lipid peroxide content, superoxide ion release, and low-density
lipoprotein oxidation. Similarly, mice treated with eplerenone,
another mineralocorticoid blocker, displayed enhanced cardiac
ACE2 activity in parallel to increased ACE2 activity in
macrophages (15). Interestingly, macrophages also express furin
and TMPRSS2, two enzymes involved in the exposure of the
binding and effusion sites of the SARS virus (21, 22), as well
as ADAM 17, which acts as sheddase of ACE2 (23). In the
presence of all components of viral binding and activation,
the virus can theoretically replicate in human macrophages
and dendritic cells, triggering the aberrant production of
proinflammatory cytokines/chemokines, as is the case with
MERS-CoV (24). In contrast, some studies ruled out SARS-CoV
viral replication in human macrophages (25). Despite abortive
infection, characterized by infection without replication, SARS-
CoV infection of human macrophages induced the expression
of proinflammatory chemokines, whereas antiviral cytokine
production was largely absent (26, 27). Studies also demonstrated
that human dendritic cells are susceptible to SARS-CoV but
unable to support viral replication (28).

COVID-19 morbidity and mortality are markedly increased
in specified populations, namely aged and diabetic individuals,
patients with chronic obstructive lung disease (COPD) or
congestive heart failure (CHF) (3), and perhaps among patients
on inhibitors of the renin angiotensin aldosterone system (RAAS)
(3, 29). These observations might be linked with increased
numbers of alveolar macrophages (AM) in such patients or with
alterations in the AM phenotype. Indeed, increased numbers
of AM in bronchoalveolar lavage (BAL) were detected in
humans with COPD in proportion to their disease severity (30).
Increased numbers of AM in BAL were also noted in mice
following protracted exposure to diesel exhaust particles (31),

and this is a consistent finding related to air pollution (32).
Increased numbers of AM in BAL were noted also in aged vs.
young rodents, and this difference was particularly prominent
following exercise (31, 33). Furthermore, aging was associated
with an altered phenotypic distribution of AM and with
reduced bactericidal capacity in mice (34). AM were also more
abundant in mice subjected to heart failure following augmented
hypertension (35) or in models of dilated cardiomyopathy,
combined with exercise (36). It was also noted in diabetic
mice—associated with intensified indices of oxidative stress—yet
these abnormalities were prevented by long-term treatment with
angiotensin 1-7 (37). Furthermore, as with aging, experimental
diabetes is associated with altered phenotype expression of AM
(38) with decreased bactericidal capabilities (39). Taken together,
increased susceptibility to serious COVID-19 infection occurs in
clinical scenarios associated with increased AM population. It is
tempting to suggest that conditions characterized by increased
numbers of alveolar macrophages in the lower respiratory
tract might facilitate homing of COVID-19 by their abundant
expression of ACE2.

Collectively, in light of these observations, we propose a
new hypothesis that while macrophages play an important
role in antiviral defense mechanisms, in the case of SARS-
CoV. they may also serve as a Trojan horse, enabling viral
anchoring specifically within the pulmonary parenchyma. In
other words, the unique expression of ACE2 in macrophages
may, paradoxically, enable pulmonary invasion by SARS-
CoV, facilitating engraftment, and inducing protracted local
and systemic uncontrolled inflammatory responses (40). It is
tempting to assume that diverse expression among individuals
of ACE2 in macrophages might govern the severity of SARS-
CoV-2 infection. Moreover, besides direct invasion caused by
viremia, reallocation of viral-containing macrophages migrating
out of the lung to other tissues is theoretically plausible in the
context of viral spread with the involvement of other organs. To
some extent, this setup resembles a comparable phenomenon,
termed “the macrophage paradox,” were intracellular bacterial
pathogens preferentially replicate within macrophages (41).
Our hypothesis is further supported by a recent report of
post-mortem findings in patients succumbing to SARS-CoV,
showing ACE2 expression and viral nucleocaspid protein in
CD169+ macrophages in lymph nodes and in the spleen (42).
The attenuation of experimental lethal SARS in rodents by
monocyte/macrophage depletion (43) is also to some extent
in line with our hypothesis. On the other hand, a recent
study demonstrated that proinflammatory monocyte-derived
macrophages were abundant in bronchoalveolar lavage obtained
from patients with severe SARS-CoV-2 pulmonary involvement,
as compared with those with moderate disease (44). In fact, it
has been suggested that monocyte-derived macrophages replace
damaged infected alveolar macrophages in severe cases, and
likely do not indicate the substitution of alveolar cells migrating
to other tissues (44). This possibility is supported by documented
death of infected macrophages in vitro. Furthermore, increasing
evidence suggests that aberrant myeloid responses may underlie
some of the COVID-19 hallmark manifestations, including
acute respiratory distress syndrome (ARDS), cytokine release
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syndrome, and lymphopenia (45). In this context, recent studies
in humanized hACE2 mice demonstrated that these animals
exhibited characteristic alveolar interstitial pneumonia, with
infiltration of lymphocytes and monocytes and accumulation
of macrophages in the alveolar lumen (46), corresponding with
the clinical findings (47). Moreover, primate and clinical data
on SARS-CoV-1 have also shown that virus spike-specific IgG
responses exacerbate ARDS due to repolarization of alveolar
macrophages into pro-inflammatory phenotypes and enhanced
recruitment of inflammatory monocytes via CCL2 and IL-8 (48).
Collectively, it is obvious that the immune system undergoes
profound and complex alterations during symptomatic COVID-
19 disease, including migration of inflammatory monocytes with
CD14+IL-1β+ monocytic expansion, as elegantly summarized
by Vabret et al. (48) in a comprehensive review on the fast
evolving field of COVID-19 immunology.

Finally, it should be emphasized that our hypothesis is not
sufficiently evidence based. We still lack carefully produced
data about the susceptibility of tissue macrophages to SARS-
CoV-2 and their capacity to produce de novo infectious viral
particles. Additional studies are also required to assess reduced

ACE2 expression following macrophage invasion by SARS-CoV-
2 and the plausible causative association that links modified
macrophages to the evolving inflammatory storm.
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