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Immune cells [e. g., dendritic cells (DC) and natural killer (NK) cells] are critical players

during the pre-placentation stage for successful mammalian pregnancy. Proper placental

and fetal development relies on balanced DC-NK cell interactions regulating immune cell

homing, maternal vascular expansion, and trophoblast functions. Previously, we showed

that in vivo disruption of the uterine NK cell-DC balance interferes with the decidualization

process, with subsequent impact on placental and fetal development leading to fetal

growth restriction. Glycans are essential determinants of reproductive health and the

glycocode expressed in a particular compartment (e.g., placenta) is highly dependent on

the cell type and its developmental and pathological state. Here, we aimed to investigate

the maternal and placental glycovariation during the pre- and post-placentation period

associated with disruption of the NK cell-DC dynamics during early pregnancy. We

observed that depletion of NK cells was associated with significant increases of O- and N-

linked glycosylation and sialylation in the decidual vascular zone during the pre-placental

period, followed by downregulation of core 1 and poly-LacNAc extended O-glycans and

increased expression of branched N-glycans affecting mainly the placental giant cells and

spongiotrophoblasts of the junctional zone. On the other hand, expansion of DC induced

a milder increase of Tn antigen (truncated form of mucin-type O-glycans) and branched

N-glycan expression in the vascular zone, with only modest changes in the glycosylation

pattern during the post-placentation period. In both groups, this spatiotemporal variation

in the glycosylation pattern of the implantation site was accompanied by corresponding

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01316
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01316&domain=pdf&date_stamp=2020-07-14
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.blois@uke.de
https://doi.org/10.3389/fimmu.2020.01316
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01316/full
http://loop.frontiersin.org/people/966905/overview
http://loop.frontiersin.org/people/950623/overview
http://loop.frontiersin.org/people/740490/overview
http://loop.frontiersin.org/people/947301/overview
http://loop.frontiersin.org/people/689720/overview
http://loop.frontiersin.org/people/688936/overview


Borowski et al. Placental Glycovariation Upon Immune Imbalance

changes in galectin-1 expression. Our results show that pre- and post- placentation

implantation sites have a differential glycopattern upon disruption of the NK cell-DC

dynamics, suggesting that immune imbalance early in gestation impacts placentation

and fetal development by directly influencing the placental glycocode.

Keywords: dendritic cells, natural killer cells, implantation, glycoimmunology, placentation

INTRODUCTION

In hemochorial placentation, the placental trophoblasts have
direct contact to maternal immune cells. Thus, trophoblast cells
are exposed to allogenic immune responses by the mother.
Uterine immune responses must be regulated in a way that
allows access of the placenta to the maternal blood supply
but also prevents excess invasion of fetal cells and infections
(1). For successful pregnancy, maternal tolerance to the fetus
needs to be established, otherwise failure of the maternal
immune response to adapt correctly can lead to aberrant
immune activation, which is associated with preeclampsia and
miscarriage (2).

Highly specialized subpopulations of maternal leukocytes,
such as uterine NK (uNK) cells, infiltrate the murine decidua in
large numbers during the first half of pregnancy (3, 4). Through
expression of different factors (e.g., VEGF and IFN-γ), uNK
cells guide the remodeling of decidual spiral arteries increasing
the availability of maternal blood at the implantation site

and promoting trophoblast invasion (5–7). Another important
subpopulation of maternal leukocytes key for modulation of
local immunity and tolerance are uterine DC (uDC), which
increase in number during the pre-placentation period, reaching

a plateau in the post-placentation phase (8). These cells also
support vascular adaptations during pregnancy including vessel

permeability and blood flow to the implantation site through
the CXCL12/CXCR4 pathway (9–11). Recruitment of NK cells,
which is facilitated by DC, represents a mechanism to confine
the immunogenic potential of uDC. Thus, healthy dynamics
in the proportion of uNK cells and uDC during pregnancy
play a critical role not only in the regulation of angiogenesis
and decidualization (11, 12) but also in the placentation
process. Immune cell imbalance during early pregnancy, such
as expansion of DC or depletion of NK cells, has an effect on
the pre-placentation period and also on the placental phenotype
(13). For instance, implantation sites from NK cell depleted
dams showed decidual growth defects during early pregnancy,
indicated by a disrupted dynamics of decidua maturation (12).
Additionally, these mice exhibited vascular defects (i.e., narrow
lumens and cuffed appearance) in the central, proximal region of
the decidua basalis during the post-placentation period together
with increased accumulation of vascular- and tissue-associated
NK cells in the mesometrial lymphoid aggregate of pregnancy
(13). As a result from placental insufficiency, fetuses derived from
NK cell depleted dams suffer from intrauterine growth restriction
(IUGR) accompanied by an overall reduction of global DNA
methylation levels and epigenetic changes in the methylation
of specific hepatic gene promoters. Likewise, the expansion

of DC during early pregnancy also provoked decidual growth
defects on E5.5 (12) and changes in immune cell recruitment,
with increased numbers of perivascular DC at the mesometrial
decidua (MD) (11) and upregulation of IL-10 expressing NK cells
on E7.5 (14). Expansion of DC also led to significant changes
in placental morphology, with impaired vascular development of
the labyrinth and an increased accumulation of glycogen cells in
the junctional zone (13), but the effect on pregnancy outcomewas
milder as offspring derived from these pregnancies did not suffer
from IUGR and exhibited slight gene-specific epigenetic changes.

Glycans are sequences of carbohydrates that are added to
proteins and lipids to modulate their structure and function
(15). Two major types of glycosylation are observed: N-linked
glycosylation is the attachment of oligosaccharides to asparagine
or arginine side-chains, whereas O-linked glycosylation occurs
mainly at serine and threonine (Figure 1A). Glycans modify
proteins required for trophoblast function, and alterations
have been associated with pathological conditions. Thus,
aberrant N-glycosylation of integrin β1 in villous tissues, which
influences trophoblast invasion, was linked to early spontaneous
miscarriage in humans (16). Lectin histochemistry analyses
performed in human placentas revealed significant alterations of
carbohydrate metabolism (i.e., dysregulation of α-D-mannose,
GlcNAc, β-GalNAc, and α-Fucose) after the onset of different
types of hypertensive disorders and fetal growth restriction (17,
18); showing for instance alterations in the trophoblast and/or
endothelial cell glycophenotype of the pathological groups (17)
and an altered distribution of α2,3 and α2,6-linked sialic acid
in placentas from hypertensive disorders (18). More recently,
Tannetta et al. showed that preeclampsia is associated with
changes in the surface glycosylation of syncytiotrophoblast
derived extracellular vesicles (STBEVs), which are released
in increased numbers and exhibit a proinflammatory, anti-
angiogenic, and procoagulant activity. Indeed, STBEVs derived
from preeclamptic patients exhibited increased binding of
Sambucus nigra lectin and Ricinus communis agglutinin I,
which bind to α2,6-linked sialic acid and galactose or N-
acetylgalactosamine residues (19), whichmay be a link to changes
in vesicle-cell interactions affecting functions like cell targeting,
clearance, and immune activity. However, further investigation
is needed to determine whether and how different alterations in
glycosylation contribute to inappropriate maternal-fetal immune
responses and poor pregnancy outcomes. In this work, we
analyzed the effect of temporary changes within the DC or
NK cell pool during early pregnancy on the glycophenotype
during the pre- and post-placentation process, before the onset
of the IUGR disease phenotype. We show that pre- and post-
placentation implantations have a differential glycopattern where

Frontiers in Immunology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 1316

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Borowski et al. Placental Glycovariation Upon Immune Imbalance

either NK cells were temporally ablated or DC were expanded.
Our data confirm that immune dysregulations early in gestation
have an impact on the placental glycocode, influencing the
placentation process itself and subsequently fetal development.

MATERIALS AND METHODS

Animals
All animals tissues used in this work were collected for previous
experiments assessing the role of NK cell—DC interactions
in the modulation of early pregnancy maternal adaptations,
placentation and fetal growth (11–13) in accordance with
guidelines for the care and use of laboratory research animals
promulgated by the Charité—Universitätsmedizin Berlin and
Regional Office for Health and Social Affairs. Animals were
purchased from Jaxmice R© and maintained on a 12L/12D cycle.
Five- to six-weeks old CD11c.DTR females were mated with
Balb/c males. The presence of a vaginal plug after cohabitation
was denoted as embryonic day (E) 0.5. Females were kept
in groups of 4–5 animals and injected (i.p.) on E4.5 with
anti asialo GM1 (WAKO, Cat.no. 986-10001, 2 mg/g BW) for
transient ablation of NK cells (aNK group, Figure 1B). For the
expansion of uterine DC (eDC group, Figure 1B), Balb/c-mated
CD11c.DTR females were treated with one daily injection of
human recombinant Fms-related tyrosine kinase 3 ligand (FL;
BioX cell, Cat.no. BE0098, 10 mg/mouse/day) from E0.5 to
E7.5. Control CD11c.DTR females received PBS supplemented
with rabbit normal serum (2 mg/g body weight i.p.). On E7.5
and 13.5, mice from the respective groups were sacrificed and
uterine tissue from the implantation sites (n = 5) was processed
for histological sectioning according to standard procedures.
Pregnancy outcomes for the different groups have been described
in our previous studies (11–13).

Immunofluorescence
We used a panel of lectins that recognize specific O-
glycan structures (Helix pomatia agglutinin (HPA; Tn-antigen),
Arachis hypogaea lectin (PNA; core 1), and Lycopersicon
esculentum lectin [LEA; core 2)]. In addition, we employed
Phaseolus vulgaris lectin (PHA-L), which specifically recognizes
β1,6GlcNAc-branched complex N-glycans. Finally, sialyation
was determined using the Maackia amurensis lectin (MAA)
and Sambucus nigra agglutinin (SNA-I) which bind to α2,3-
and α2,6-linked sialic acid, respectively (Figure 1A). Serial
cryosections of implantation sites were prepared at 8µm.
Briefly, slides were washed in TBS and blocked with Biotin
Blocking system (X0590, DAKO Corporation) for 20min in a
humid chamber at RT. Afterwards, slides were blocked with
Carbo-Free Blocking Solution (SP-5040, Vector Laboratories)
for 30min in a humid chamber at RT. Subsequently, slides
were incubated with biotinylated lectin (EY Laboratories)
diluted in Carbo-Free Blocking Solution for 16 h at 4◦C
in a humid chamber HPA (20 ng/ml; BA-3601-1), PHA-L
(20 ng/ml; BA-1801-2), or SNA-I (10 ng/ml; BA-6802-1). Lectin-
stained sections were then incubated with 2µg/ml Streptavidin-
Tetramethylrhodamine (S-870; Invitrogen) for 1 h in a humid
chamber at RT. Subsequently, slides were incubated with

FITC-labeled lectin (EY Laboratories) diluted in Carbo-Free
Blocking Solution for 2 h at RT PNA (20 ng/ml; F-2301-1),
LEA (20 ng/ml; F-7001-1), or MAA (20 ng/ml; F-7801-2). Nuclei

were counterstained with 4
′
,6-diamidino-2-phenylindole (DAPI)

for 5min at RT and mounted in Prolong Gold (P36930,
Invitrogen). Stainings of whole implantation sites were digitally
scanned by a high-resolution bright field and fluorescence slide
scanner (Pannoramic MIDI BF/FL, 3DHISTECH Ltd.), and
staining was evaluated on virtual slides using Pannoramic Viewer
1.15.4 (3DHISTECH Ltd.) by two examiners blinded to the
experimental group.

Galectin-1 Staining
Staining of 8µm cryo sections was performed by washing in
TBS, followed by blocking with Duale Endogenous Enzyme
Block (S2003, Dako) for 30min in a humid chamber at
RT. Afterwards, slides were blocked with Proteinblock (PHA-
70873, Dianova) for 20min. The primary antibody against
galectin-1 (1:400; GTX 101566, GeneTex) was incubated over
night at 4◦C. The slides were than washed and incubated
with HRP-conjugated secondary antibody (111-035-003; Jackson
ImmunoResearch) for 1 h at RT. The signal was detected
by incubation at RT with a 0.05% diaminobenzidine in
0.015% H2O2 substrate solution. After washing, nuclei were
counterstained with 0.1% Mayer’s hematoxylin followed by
a standard dehydration procedure and mounting in Entellan
(Merck Millipore).

Statistics
Data analysis was performed with GraphPad Prism 7 (GraphPad
Software, Inc.). Data are presented as mean ± SEM and
were analyzed with D’Agostino-Pearson omnibus normality test
followed by unpaired t-test or Mann-Whitney test. A p < 0.05
was considered as significant.

RESULTS

Dysregulation of the NK Cell or DC Pool
Changed the Distribution of O-Glycans,
Complex N-Glycans, and Sialylation in the
Mesometrial Decidua and Vascular Zone
During the Pre-placentation Period
In order to determine whether temporary ablation of NK cell
or expansion of DC during early pregnancy could influence
the glycophenotype of the implantation sites, we analyzed
implantation sites during the pre-placentation period (on E7.5)
focusing on the quantification within the mesometrial decidua
(MD) and vascular zone (VZ) (Figure 1B).

We first examined the O-glycans during the pre-placentation
period (Figure 1C). During normal gestation abundant
expression of core 1 O-glycans (PNA) compared to Tn antigen
(HPA) and core 2 O-glycans (LEA) in the MD was observed
(Figure 1C, left panel). Depletion of NK cells during early
pregnancy caused a decrease in core 1 O-glycans (PNA) and an
increase of Tn antigens (HPA) in this region. In contrast, the
expansion of DC during the pre-placentation period caused a
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FIGURE 1 | Influence of NK cell depletion and DC expansion on the glycophenotype of implantation sites during the pre-placentation period. (A) For analysis of the

glycophenotype, lectins were used to detect different types of glycosylation. O-glycan structures were recognized by Helix pomatia agglutinin (HPA; Tn-antigen),

Arachis hypogaea lectin (PNA; core 1), and Lycopersicon esculentum lectin (LEA; core 2). In addition, we employed Phaseolus vulgaris lectin (PHA-L), which

specifically recognizes β1-6GlcNAc-branched complex N-glycans. Finally, sialyation was determined using the Maackia amurensis lectin (MAA) and Sambucus nigra

agglutinin (SNA-I) which bind to α2,3- and α2,6-linked sialic acid, respectively. (B) Experimental design: pregnant CD11c.DTR females were injected (i.p.) on E4.5 with

anti asialo GM1 for transient ablation of NK cells. For the expansion of uterine DC, pregnant CD11c.DTR females were treated with one daily injection of FL (10

mg/mouse/day) from E0.5 to E7.5 as described in material and methods. Pre- (E7.5) and post-placentation (E13.5) period implantation sites were included in the

glycodynamics analysis. (C–E) Quantification of O-glycan (C), complex N-glycan (D), and sialylated glycan (E) mean fluorescence intensity (MFI) in the mesometrial

decidual (MD), and vascular zone (VZ) of implantation sites following NK cell ablation or DC expansion during the pre-placentation stage. In all figures, data shown are

mean ± S.E.M. and differences are denoted as *P < 0.05, **P < 0.01, and ***P < 0.001, as analyzed by Mann-Whitney U-test. AMD, antimesometrial decidua; Dec,

decidua; MD, mesometrial decidua; VZ, vascular zone; GC, giant cells; Jz, junctional zone; Lab, labyrinth.

slight increase in Tn antigens (HPA) and decreased expression
of core 1 (PNA) and core 2 O-glycans (LEA). Under normal
conditions, HPA reactive O-glycans were observed in the VZ
on E7.5. Of note, HPA-reactivity was significantly increased
in the VZ of the aNK and the eDC group compared to the
control group, with the aNK group showing the highest MFI.
No changes were observed in PNA reactive glycans. LEA
staining was increased in the VZ of the aNK group but not
in the eDC group compared to the control group (Figure 1C,

right panel). Next, we examined the distribution of complex
branched N-glycans (specifically MGAT5-modified) during the
pre-placentation period (Figure 1D). Glycans bound by PHA-L
were observed in the MD of all groups (Figure 1D, left panel),
with comparable mean fluorescence intensities (MFIs) of the
control and the aNK group. Notably, a significantly lower MFI
in the MD of the eDC group was observed compared to the
aNK group. Regarding the distribution of complex branched
N-glycans within the VZ, binding of PHA-L showed that
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staining intensity was significantly increased in the aNK and
the eDC group compared to the control group (Figure 1D,
right panel). As for the distribution pattern of sialylated
glycans in the MD, the control group and the aNK group
showed comparable MFIs but the eDC group displayed a
lower MAA MFI (Figure 1E, left panel). For SNA-I reactive
glycans, similar MFIs in the aNK and the eDC group were
observed at the MD during the pre-placentation period.
Staining intensity for α2,3-linked sialic acid (MAA) was
significantly increased in the VZ of the aNK group compared
to the control group, whereas SNA-I reactive glycans showed
a significant increase in the aNK and eDC dams (Figure 1E,
right panel).

Imbalance on NK or DC Cell Subsets
During Early Gestation Provokes Altered
O- and N-Glycosylation Patterns in the
Post-placentation Period
Taking into account that alterations of NK cell and DC relative
abundance were shown to influence the placentation process and
epigenetic programming in the offspring (13), we next examined
changes in the glycophenotype during the post-placentation
period (E13.5). Figure 2A (upper panel) shows the distribution
of O-glycans within the decidua and placenta. During normal
gestation Tn antigen (HPA) was only observable in the decidua
and on giant cells (GC). In contrast, core 1 (PNA, middle panels),
and core 2 O-glycans (LEA, bottom panels) were observed
in all layers of the implantation site (including decidua, GC,
junctional zone (Jz), and labyrinth). More Tn antigen (HPA)
was observed on GC trophoblast than in the decidua. Core 1
O-glycans (PNA) were abundantly expressed in all layers but
core 2 O-glycans (LEA) were more abundant on GC than in
the decidua. Depletion of NK cells during early pregnancy was
associated with decreased levels of core 1O-glycans (PNA) onGC
and Jz and reduced expression of core 2 O-glycans (LEA) on GC
(Figure 2A, middle and bottom panels). In contrast, expansion
of DC provoked an increase of Tn antigen (HPA) in the decidua
(Figure 2A, upper panel), accompanied by increased expression
of core 1 O-glycans (PNA) on GC but reduced expression in
the Jz (middle panels). When analyzing the complex branched
N-glycans (PHA-L, Figure 2B), we observed that during the
post-placentation period reactivity in the decidua is stronger
than in the placenta in undisturbed pregnancy. Expression of
branched, complex N-glycans (PHA-L) was increased in the
decidua and the Jz of the aNK group, but only in the labyrinth of
eDC placentas. Finally, analysis of sialyation showed that MAA-
reactive α2,3-linked sialic acid was detected on giant cells and
in the labyrinth under normal placentation (Figure 2C, upper
panel), accompanied with a strong expression of α2,6-linked
sialic acid (SNA-I, bottom panel) in the decidua. Compared to
controls, depletion of NK cells during early pregnancy provoked
a decrease of α2,3-sialylation in the decidua and the Jz and an
increase of α2,6-sialylation in the Jz, whereas placentas derived
from DC expanded dams showed a decrease of α2,6-sialylation
in the Jz.

Alteration of the Glycosylation Signature
During the Pre- and Post-placentation
Period is Accompanied by Changes on
Gal-1 Expression
Given its well-established role in the modulation of pregnancy
associated processes (20, 21), our next aim was to characterize
galectin-1 (gal-1) expression during the pre- (E7.5) and post-
(E13.5) placentation period. During the pre-placental period, we
observed reduced gal-1 expression on the mesometrial decidua
upon NK cell depletion compared to untreated dams (Figure 2D,
left panel), whereas MD expression of this lectin was not sensitive
to DC expansion. In contrast, both treated groups (aNK and
eDC) exhibited decreased levels of gal-1 expression in the VZ,
especially on endothelial cells during the pre-placentation period.
As pregnancy progressed to the post-placentation period, aNK
dams showed increased gal-1 expression within the decidua
and placental layers (including GC, Jz, and labyrinth) compared
to controls (Figure 2D, right panel). However, eDC placentas
showed decreased gal-1 levels on the GC and the labyrinth
on E13.5, suggesting that changes of gal-1 expression together
with an altered glycosylation signature could interfere with the
pregnancy protective functions of this lectin.

DISCUSSION

Changes in local immune cells dynamics (e.g., uNK cells and
DC) during early gestation lead to the development of placental
abnormalities and particularly upon NK cell depletion, fetal
growth restriction (11–13). Our study on gal-1-glycan circuits
in mice shows that changes in immune cell subset frequencies
during the pre-placentation period differentially alter the
placental glycophenotypes: placenta derived from NK depleted
dams displayed reduced expression of O-glycans and α2,3-
sialylation in placental layers accompanied by upregulation of
complex N-glycans (Figure 3). This does not seem to be the case
in placenta derived from expanded DC dams, which by contrast
displayed milder changes in the placental glycophenotype with a
modest reduction of core 1 O-glycosylation and α2,6-sialylation
specially in the junctional zone and only a slight increase of
N-glycans in the labyrinth.

Our study has limitations regarding the challenges of
studying diversity on glycopatterns and the lack of in
vitro experimentation, with specific consideration for
the technical difficulty to preserve glycan structure and
mimic the complex glycovariations in an in vitro setting.
Nevertheless, the results reported herein highlight the notion
that balanced innate immune cell dynamics at the maternal fetal
interface have a strong impact on the glycophenotype, thereby
influencing galectin-glycan interactions driving decidual and
placental functions.

Pre-placentation Impaired NK Cell-DC
Dynamic Alters Glycopatterns Within
the Maternal Vascular Decidua
During early gestation, NK cells and DC shape decidual adaption
to the developing embryo regulating angiogenesis and vascular
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FIGURE 2 | Placental glycocode dynamics upon NK cell depletion and DC expansion during early gestation. (A) Quantification of O-glycan distribution across decidua

and placenta layers on E13.5. Tn antigen was identified using the Helix pomatia agglutinin (HPA), core 1 and core 2 O-glycans were detected by Arachis hypogaea

lectin (PNA) and Lycopersicon esculentum lectin (LEA), respectively. (B) Expression patterns of complex N-glycans were detected by Phaseolus vulgaris lectin (PHA-L)

on E13.5. (C) Sialylation in the post-placentation period was characterized using Maackia amurensis lectin (MAA) and Sambucus nigra agglutinin (SNA-I) which bind

to α2,3- and α2,6-linked sialic acid, respectively. (D) Analysis of galectin-1 (gal-1) expression during the pre- (E7.5) and post-placentation (E13.5) period. In all panels,

bars show the MFI mean values and the corresponding S.E.M. Differences are noted as *P < 0.05, **P < 0.01, and ***P < 0.001 according to Mann-Whitney U-test.

MFI, mean fluorescence intensity; MD, mesometrial decidua; VZ, vascular zone; GC, giant cells; Jz, junctional zone; Lab, labyrinth.

FIGURE 3 | Overview of the placenta glycocode dynamics in poor pregnancy outcome caused by disrupted NK cell recruitment. Fetal growth restriction as a

consequence of NK cell depletion is associated with changes in O-glycan expression (↓ core 1 and core 2) in giant cells (GC). Junctional zone is characterized by

increased expression of branched N-glycans and changes in sialylation (↓ α 2, 3- and ↑ α 2, 6- linked sialic acid). Placentas derived from NK ablated dams are

characterized by an increased gal-1 expression.
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growth (11–13). We have previously shown that DC found
associated with the decidual vasculature co-express CXCR4
and impaired homing of CXCR4+DC altered decidual vascular
organization with impaired spiral artery remodeling later in
gestation (11). In this study, we further reveal that alterations on
the NK cell and DC pool dynamics during the pre-placentation
period affect the glycopattern of the vasculature at the feto-
maternal interface. In this regard, the VEGF system plays a
paramount role in uterine vascular permeability and angiogenesis
during implantation and decidualization (22, 23) and several
findings have highlighted the importance of glycosylation
for VEGFR2 functionality. For instance, VEGF-dependent
proliferation is influenced by heparan sulfate (24) and complex
branched N-glycans on the VEGFR2 are responsible for gal-
1/VEGF-like signaling to sustain angiogenesis (25). Sialylation
on VEGFR2 can also determine the signaling capacity of this
receptor through gal-1. Thus, α2,6- linked, but not α2,3-terminal
sialic acid inhibits binding of gal-1, which can also bind to
the VEGFR2 to activate alternative pro-angiogenic signaling
(25, 26). Additionally, exposure of endothelial cells to hypoxic
conditions leads to increased branching of β1,6 branched N-
glycan structures, and elongation of poly-LacNAc residues on
core 2 O-glycans (25). These examples highlight the versatility
of the endothelial glycome and its ability to adapt to cellular
physiology. Indeed, several of these changes in the glycosylation
pattern of the vascular zone during the pre-placentation period
were observed in the present study upon DC expansion or
NK cell ablation. Ablation of NK cells provoked an increase
of core 2 O-glycans, branched N-glycans, and α2,3-sialyation
compared to the control group, indicating the possibility of
hypoxic or inflammatory conditions and increased gal-1 binding.
These changes may occur to compensate the low gal-1 levels
due to reduced NK cell abundance in these implantation sites.
Expansion of DC, on the other hand, led to increased expression
of branched N-glycans and α2,6-linked sialic acid compared
to the control group; which despite not affecting the normal
VEGF/VEGFR2 signaling pathway may lead to lower gal-1
sensitivity of cells in the vascular zone of this group. The corollary
to these observations is that the decidual vascular glycocode
appears to be dependent on the concerted actions of NK cells
and DC, by virtue of their effect as modulators of VEGF/ gal-1
signaling pathways.

Thickness of the glycocalyx covering endothelial cells can
influence the access of leukocytes to adhesion receptors on the
endothelial cell surface. Pro-inflammatory cytokines, such as
TNF-α, can lead to disruption of the endothelial glycocalyx
and thus to an increase in leukocyte recruitment (27, 28). In
this context, immune cell imbalance (i.e., DC expansion or
NK cell depletion) during early pregnancy may influence the
cytokine profile at the implantation site, leading to altered
properties of the endothelial glycocalyx by directly influencing
the expression of glycosyltransferases. Indeed, our previous
studies have shown that expansion of DC was associated with a
significant upregulation of the CXCL12/CXCR4 pathway; which
has recently been shown to enhance megakaryocyte expression
of B4GalT1 (29), one of the main galactosyltransferases involved
in the synthesis of the LacNAc moieties present in core 2

O-glycans and complex N-glycans. In turn, since B4GalT1-
dependent galactosylation modulates β1 integrin function (29),
such cytokine-mediated changes in the endothelial glycocalyx
may further contribute to immune disbalance by provoking a
differential recruitment of leukocytes due to altered cell adhesion
properties. Indeed, DC expansion or NK cell depletion induced
several changes in the glycosylation pattern in the vascular
zone during the pre-placentation period, particularly in the
expression of Tn antigen. In addition, endothelial gal-1 has been
shown to reduce lymphocyte recruitment (30), further indicating
that in the aNK group, which showed reduced gal-1 staining
of endothelial cells, lymphocyte trafficking might be enhanced
compared to the control group.

Pre-placentation Manipulation of the
Relative NK Cell-DC Abundance Modifies
Gal-1 Binding Placental Glycophenotypes
Trophoblast glycodiversity is part of the trophoblast lineage
identity (31). Several pregnancy complications including
preeclampsia, IUGR, and miscarriages were associated with
specific differential glycosylation patterns after the onset of the
disease (16–19, 32). In a first effort to identify early glycosignals
that influence placental development upon disruption of
the NK cell-DC dynamics, we show here that changes in
trophoblast glycosylation patterns precede poor pregnancy
outcomes (e.g., IUGR). For instance, Tn antigen O-glycans
are exclusively expressed on the giant cell layer of the placenta
and to a lesser extent in the decidua during unchallenged
pregnancy. Both depletion of NK cells or expansion of DC in
absence of dangers signals increased Tn antigen expression in
the decidua. Since Tn antigen expression has been linked to
enhanced growth and invasion ability in cancer cells (33–35),
it is possible that increased decidual Tn antigen expression
would act to facilitate trophoblast invasion. In this regard,
trophoblast giant cells showed intense staining with LEA,
indicating increased expression of LacNAc core 2 O-glycans
during normal pregnancy. Giant cells in particular need to
acquire an invasive character to make contact to the maternal
arteries and replace the endothelial cell lining of the maternal
blood vessels to funnel blood into the placenta. Importantly, our
results further showed a down-regulation of core 2 O-glycans
on giant cells derived from NK ablated dams. As cell surface
mucin 1 (MUC1) carrying core 2 O-glycans is involved in
trophoblast migration and adhesion to uterine endothelial cells
(36–39), data suggests that changes in MUC1 core 2 O-glycans
pattern would interfere with the invasive properties of giant
cells in NK ablated placentas. This is in agreement with our
previous work showing that aNK mice had impaired spiral
artery remodeling and IUGR (13), indicating that a differential
glycosylation pattern in the post-placentation period results
in poor spiral artery remodeling. Moreover, expression of
core 1 O-glycans has also been detected on MUC1 in the
human placenta (40). In our study, staining of core 1 O-glycans
by PNA also revealed reduced expression on trophoblast
giant cells (aNK group) and trophoblasts in the junctional
zone (aNK and eDC group), which could further indicate
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alterations in mucin expression or glycosylation. Considering
that gal-1 is able to bind mucins on trophoblast cells and is
involved in the trophoblast invasion machinery (41, 42), the
increased gal-1 expression in aNK placenta may represent
an attempt to compensate reduced abundance of MUC1
binding partners.

Enhanced expression of N-acetylglucosaminyl transferase
V (GnTV) characterizes first trimester placentas in normal
gestation (43). GnTV generates β1-6-N-acetylglucosamine
branches in complex N-glycans, which are recognized by
gal-1. In this context, LacNAc motives are a glycan signature
of invasive trophoblast cells not only on their surface but
also on their secretion product HLA-G (31, 44, 51). The
significantly higher expression of complex, branched N-
glycans detected in the junctional zone of the aNK group
indicates that the middle connecting layer of the placenta
efficiently glycoadapts to the maternal environment giving
rise to trophoblast giant cells and glycogen cells that invade
and anchor the placenta to the decidua (45). In addition, we
observed a switch on sialylation from α 2,3-linked to α2,6-
linked sialic acid in the labyrinth of the aNK group. This
finding correlates with the reduced fetal vascular density in
the labyrinth upon NK depletion and with the inflammatory
status due to the increased NK cell density in the mesometrial
lymphoid aggregate of pregnancy (13). Interestingly, changes in
the glycosylation status predominantly affecting the placental
labyrinth and junctional zone have been reported in a rat
model of hyperglycemic placental dysfunction (46, 47);
suggesting that glycovariations in these layers induced by
adverse maternal environments may have direct impact on
placental function.

Our results further showed that increased α2,6 sialylation
can reduce gal-1 mediated angiogenesis (48), which is critical
for healthy placentation (49). Moreover, the inhibition of
gal-1 binding by sialylation at the position six of galactose
has been suggested to make T cells resistant to apoptosis (50)
and might contribute to uncontrolled maternal inflammation
during pregnancy complications (20, 49). Indeed, increased
α2,6 sialylation in STBEV surface has been associated
with human PE syndrome (19). Taken together, the results
reported here highlight the relevance of glycodynamics
during the pre- and post-placentation period that could be

helpful to the understanding of the pathogenesis of poor
pregnancy outcomes.
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