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Lipid cell membranes not only represent the physical boundaries of cells. They also

actively participate in many cellular processes. This contribution is facilitated by highly

complex mixtures of different lipids and incorporation of various membrane proteins. One

group of membrane-associated receptors are Fc receptors (FcRs). These cell-surface

receptors are crucial for the activity of most immune cells as they bind immunoglobulins

such as immunoglobulin G (IgG). Based on distinct mechanisms of IgG binding, two

classes of Fc receptors are now recognized: the canonical type I FcγRs and select

C-type lectin receptors newly referred to as type II FcRs. Upon IgG immune complex

induced cross-linking, these receptors are known to induce a multitude of cellular

effector responses in a cell-type dependent manner, including internalization, antigen

processing, and presentation as well as production of cytokines. The response is

also determined by specific intracellular signaling domains, allowing FcRs to either

positively or negatively modulate immune cell activity. Expression of cell-type specific

combinations and numbers of receptors therefore ultimately sets a threshold for induction

of effector responses. Mechanistically, receptor cross-linking and localization to lipid

rafts, i.e., organized membrane microdomains enriched in intracellular signaling proteins,

were proposed as major determinants of initial FcR activation. Given that immune cell

membranes might also vary in their lipid compositions, it is reasonable to speculate, that

the cell membrane and especially lipid rafts serve as an additional regulator of FcR activity.

In this article, we aim to summarize the current knowledge on the interplay of lipid rafts

and IgG binding FcRs with a focus on the plasma membrane composition and receptor

localization in immune cells, the proposed mechanisms underlying this localization and

consequences for FcR function with respect to their immunoregulatory capacity.
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INTRODUCTION

Fc receptors (FcR) for immunoglobulin G (IgG) are cell surface
receptors widely expressed on cells of both, the innate and
the adaptive immune system. Based on distinct mechanisms of
IgG binding, these IgG FcRs are currently classified as either

type I Fc receptors (classical FcγR) or type II FcRs, which
belong to the sugar-binding C-type lectin receptors [reviewed
in (1)]. Upon ligand binding, receptors of both families have

been shown to induce immune cell activation and cell-type
specific effector responses via initiation of distinct intracellular
signaling pathways. Ligand-induced cross-linking of multiple
receptors facilitating the recruitment of intracellular signaling

components was consequently proposed to be a crucial part of

receptor function especially for type I Fc receptors [reviewed
in (2)]. Since organized membrane microdomains, i.e., lipid

rafts, are known to be enriched for signaling components
[summarized in (3)], the question arises to what extent
IgG FcR function in immune cells is affected by specified

FIGURE 1 | Chemical structure of main lipid classes and composition of cell membranes. The mammalian plasma membrane consists of three lipid classes, namely

glycerophospholipids (depicted in blue), sphingolipids (purple), and sterols (yellow) (A). Functionally, the cellular membrane is a lipid bilayer forming both, lipid raft and

non-raft domains. Lipid rafts are enriched in sphingolipids, cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins and some transmembrane proteins,

whereas non-raft domains are composed predominantly of glycerophospholipids and non-raft transmembrane proteins (B).

membrane domains or the composition of the plasma membrane
in general.

THE CELL MEMBRANE IS A HIGHLY
COMPLEX LIPID BILAYER

Biomembranes are a prerequisite for cell formation and cell
survival as the cellular envelope establishes a biological barrier
between intracellular and extracellular space. In more detail, they
maintain energy storage, protect the cell from pathogens, are the
site for cell-to-cell recognition, and are involved in almost all
signaling and membrane trafficking processes by allowing both,
active as well as passive transport of molecules into and out of
the cell [summarized in (4–7)]. The plasma membrane is likely
the most intensely studied biomembrane. In general, it consists
of a lipid bilayer composed of a huge variety of different lipids
that can be of either amphiphilic or hydrophobic nature, and
a multitude of embedded membrane proteins (Figure 1) [for
specialized review articles see (4, 8, 9)].
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Structure and Function of Lipid Classes
The lipid composition of the plasma membrane of eukaryotic
cells is based on three lipid classes, namely glycerophospholipids,
sphingolipids, and sterols.

Glycerophospholipids (e.g., phosphatidylcholine or
phosphatidylglycerol) are the predominant lipid component
of mammalian plasma membranes and provide their basic
framework. Distinct members of this lipid class also operate as
second messengers or serve as precursors for the generation
of second messengers. A glycerol backbone linked to two
hydrophobic fatty acid chains and a phosphate group connected
to a hydrophilic alcohol head group are the structural features
of glycerophospholipids. Additional structural variations of this
lipid species are based on modifications of the head group and
the fatty acid chain length, degree of saturation, and linkage to
glycerol (4, 10–13).

In comparison to glycerophospholipids, sphingolipids are
much less frequent components of lipid cell membranes.
However, together with cholesterol, they greatly contribute
to the heterogeneity of plasma membrane organization. The
common structural feature of sphingolipids is a ceramide core
with an amphiphilic sphingosine backbone in turn providing
the framework to form more complex sphingolipids such as
sphingomyelin or gangliosides (4, 9, 14). Sphingolipids play a
critical role both as structural components within membranes
as well as bioactive signaling molecules. In this respect, they
regulate numerous cellular processes that range from cell
growth, differentiation and apoptosis (15, 16) to cytoskeletal
reorganization (17, 18).

In recent years, many studies focused on the role of cholesterol
in the plasma membrane as a modulator of structural integrity,
membrane organization, and fluidity (3, 19, 20). With an amount
of up to 40% of all membrane lipids, cholesterol is a major
component of mammalian cell membranes (21, 22). It consists
of a hydrophilic head group linked to a hydrophobic rigid steroid
ring system which serves as a spacer between bulky sphingolipids
and promotes the formation of distinct dynamic clusters with
higher ordering, i.e., lipid rafts (3).

From Fluid Mosaic Model to Highly
Complex Plasma Membranes
In 1972, Singer and Nicolson postulated the fluid mosaic
model of the cell membrane, describing the structure of the
plasma membrane as a mosaic of phospholipids, cholesterol,
proteins, and carbohydrates. According to this model, the lipid
membrane is a neutral two-dimensional solvent, crowded with
randomly distributed membrane proteins (23). The fluid mosaic
model was based on the observation that most physiological
phospholipids have low melting temperatures, suggesting them
to preferentially remain in liquid disordered phases. Many
studies in the last decades have further refined this model and
suggested that mammalian membranes contain very small and
dynamic lipid domains with much higher melting temperatures
that exist in a liquid ordered phase (24–26) The distribution
of liquid ordered and disordered phases subsequently leads
to transient formation of membrane nano- or microdomains,

so-called lipid rafts that further shape the physical properties of
the plasma membrane. Such compartmentalization subsequently
facilitates segregation or aggregation of membrane proteins
and signaling molecules within these distinct domains thus
affecting their biological function (4, 9, 12, 27, 28). It is
important to emphasize that both, the lipids in the plasma
membrane as well as anchored membrane proteins exhibit a
bilateral asymmetric architecture. This asymmetry seems to
be required to compensate for membrane perturbations and
facilitates membrane reorganization, trafficking and signaling (4,
29, 30). Asymmetry is a consequence of differential distribution
of saturated and unsaturated lipids in the plasma membrane
bilayer, in which saturated lipids seem to be located exclusively
in the exoplasmic leaflet (30, 31). In contrast, heterogeneous
cholesterol distribution between the inner and outer leaflet is still
debated (21, 22, 32, 33). Membrane bilayer assymetry is further
proposed to be modulated by long chain sphingolipids (34).

Lipid Rafts: Multifunctional
Communication Platforms in Health and
Disease
Lipid rafts are small, tightly packed and highly organized
but dynamic membrane domains enriched in cholesterol and
sphingolipids. The lipid raft hypothesis proposes that organized
domains are fluid at physiological temperatures, facilitating
lateral diffusion of proteins and lipids within the domain
as well as of the raft itself. Furthermore, select interactions
between cholesterol, saturated, and glycosylated lipids are
involved in the recruitment of other lipids and proteins, e.g.,
glycosylphosphatidylinositol (GPI)-anchored and acylated or
palmitoylated transmembrane proteins (9, 35–39).

From a functional perspective, lipid rafts are debated to be
involved in sorting of membrane proteins, protein trafficking,
membrane partitioning, and signaling (28, 40–43). In this respect,
immunological synapses formed as interfaces between activated
lymphocytes and their cognate antigen presenting cells have been
hypothesized to be an example of organized raft domains within
the immune system (44–46). Furthermore, lipid rafts are also
discussed to play a crucial role in hematopoietic stem cell homing
(47–49), mobilization (47, 50, 51), and differentiation (52–54).
Moreover, many studies indicate lipid rafts to be involved in
various diseases, e.g., HIV-1 infection including a role in virus
budding (55, 56), cancer (57), or neurodegenerative disorders
such as prion diseases (58), and Alzheimer’s (59, 60).

Lipid Composition of Immune Cells
In the last years, evolutionary details have been gathered
about the lipidome of mammalian tissues, e.g., cortex, brain,
heart, kidney, muscle, or liver (61, 62) and mammary breast
cancer cells (63, 64). But despite the fact that the lipid
membrane plays a crucial role in many processes involved
in immune cell function, information on the composition of
immune cell membranes is surprisingly scarce. Recently, novel
approaches allow for the detailed analysis of plasma membrane
lipids by lipidomics, a method based on sensitive high-
throughput mass spectrometry (65–67). Lipidomics analysis
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revealed, for example, that the membrane lipid composition of
leukocytes is characterized by sizable amounts of cholesterol and
phosphatidylcholine. However, the observed amounts were lower
than in neurons or epithelial cells (38). A study by Leidl et al.
provided more detailed information on the lipidome of primary
human peripheral blood leukocytes including neutrophils,
monocytes, and lymphocytes. Accordingly, elevated amounts of
ceramide and cholesterol but diminished phosphatidylcholine
and sphingomyelin levels were identified in human neutrophils
in comparison to monocytes. Lymphocytes exhibited an even
lower content of phosphatidylcholine and sphingomyelin in
contrast to monocytes and reduced levels of ceramide and
cholesterol as compared to neutrophils. Thus, the authors
propose monocytes and to a lesser degree lymphocytes to possess
more fluid and neutrophils more rigid membrane features (65).
In addition, the lipidome of human monocyte-derived DCs
(moDCs) has been analyzed in both resting cells and in cells
stimulated with the pro-inflammatory cytokine interleukin 17A
(IL-17A). IL-17A appears to remodel the lipid metabolism by
increasing the phospholipid and cholesterol content in moDCs
and facilitates the formation of foamy rather than resting cells.
Consequently, Salvatore et al. suggest that IL-17A activated lipid-
rich moDCs might be involved in atherosclerosis (68).

Differences in the lipid membrane composition of immune
cells have also been observed with respect to the sialic acid
containing gangliosides [summarized in (69)]. For example,
GM3 is the sole ganglioside found in the membrane of
hematopoietic stem cells (70), dendritic cells [summarized in
(71)], macrophages (72, 73), and monocytes (72, 74). In contrast,
mast cells (75, 76), B cells (77, 78), and T cells (78–80) possess
GM1, GM3 as well as GD3 in their cell membranes. Furthermore,
neutrophils contain GM1 and GM3, but no GD3 (81–83),
whereas NK cells display GM1 and GD3, but lack GM3 (79, 80).

Although these kinds of analysis provide detailed information
about the individual lipid species contributing to membrane
formation, it is difficult to predict physical properties of
membranes from the lipid composition alone. Nevertheless, it
became increasingly clear that specific properties of immune cells
such as cell rolling and adhesion to endothelial cells are indeed
affected by the lipid cell membrane composition (84–87).

Membrane composition and lipid rafts have also been shown
to impact many different families of immune receptors including
toll-like receptors (TLR) (88, 89), B cell receptors (90–92) and T
cell receptors (93, 94), while negatively regulating elements such
as transmembrane phosphatases by exclusion from lipid rafts (9).
It is however much less clear to what extent lipid cell membranes
influence the immunoregulatory function of the diverse family of
IgG binding FcRs, both with respect to ligand binding as well as
intracellular signal transduction.

CHARACTERISTICS, EXPRESSION AND
SIGNALING OF TYPE I FC RECEPTORS

Classical FcγRs, or type I Fc receptors, interact with the fragment
crystallizable (Fc) of IgG and thereby provide the crucial link
between the soluble effector molecules of an adaptive immune

response and innate immune effector cells. In a cell-type
dependent manner, FcγR can trigger a multitude of different IgG
effector functions including the uptake of IgG-coated pathogens
by phagocytic cells, enhancement of antigen-presentation by
dendritic cells (DCs), innate immune cell activation, and
production of inflammatory mediators or killing of IgG coated
target cells by antibody-dependent cytotoxicity (ADCC). In turn,
FcγR expression on B cells is involved in modulation of adaptive
immune responses and induction of apoptosis [summarized in
(2)]. In humans, these various functions are maintained by
a family of different FcγRs (FcγRIa/CD64A, FcγRIIa/CD32A,
FcγRIIb/CD32B, FcγRIIIa/CD16A, and FcγRIIIb/CD16B) whose
members are characterized by distinct expression profiles, IgG
binding capacity and intracellular signaling potentials.

Expression Patterns of Type I Fc Receptors
One major layer of complexity in FcγR biology is cell-type
specific expression of different FcγRs. As summarized in Table 1,
typical examples of the latter include neutrophils expressing
FcγRIIa and FcγRIIIb (and FcγRI upon activation), classical
monocytes expressing FcγRIa, FcγRIIa, and FcγRIIb, and non-
classical monocytes expressing FcγRIIa, FcγRIIb, and FcγRIIIa.
FcγRIIa is also found on eosinophils that may express FcγRI
upon stimulation, basophils that strongly co-express FcγRIIb and
mast cells co-expressing FcγRIIb and FcγRIIIa (95, 96). Human
DCs have been shown to express predominantly FcγRIIa/b and
FcγRIa (97, 98) in a presumably DC subtype specific manner
while expression of FcγRIIIa is still under discussion (99, 100).
In contrast, NK cells exclusively express FcγRIIIa while FcγRIIb
is the only FcγR found on B cells (95). While T cells largely
lack FcγR expression there is accumulating data suggesting that
select T helper cell subsets may express the inhibitory FcγRIIb
[reviewed in (95, 101)].

Structure of FcγRs
The human FcγR family is predominantly composed of type I
transmembrane proteins (Figure 2). The only known exception
is FcγRIIIb that is anchored to the cell membrane via a
glycosylphosphatidyl-inositol (GPI) tail (102). Otherwise, the
FcγR α-chain is composed of an aminoterminal extracellular
domain involved in binding IgG, a transmembrane-spanning
domain and a carboxyterminal intracellular domain. With the
exception of FcγRIIa, activating FcγRs require the association
with the FcεRγ chain (short FcRγ) for cell surface expression
(103–105), a signaling competent accessory chain originally
discovered for its role in expression and function of the IgE FcR
(FcεR) (106). The FcγR-FcεRγ chain complex assembles by non-
covalent interactions of the respective transmembrane domains
and is indispensable for cell surface expression as well as the
immunomodulatory FcγR functions (107).

Classification of FcγRs According to
Affinity for IgG or Intracellular Signaling
Based on their affinity for IgG, the high-affinity FcγRIa can
be distinguished from the low-to-medium affinity FcγRII and
FcγRIII family members. Consequently, FcγRIa is able to interact
with monomeric IgG (108), whereas FcγRIIa/b and FcγRIIIa/b
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require multiple IgG molecules in complex, i.e., IgG immune
complexes (IgG-IC) typically obtained by IgG recognizing their
cognate antigens. The resulting multivalency of the interaction
is able to compensate for a reduced affinity of an individual
interaction (109, 110).

Alternatively, human FcγRs can be grouped by their
intracellular signaling potential, i.e., what type of intracellular
signaling pathway they are able to initiate. Due to the presence
of an intracellular immunoreceptor tyrosine activation motif
(ITAM), three activating FcγRs are recognized (FcγRIa, FcγRIIa,
and FcγRIIIa). Within these receptors, the ITAM is either
encoded by the cytoplasmic domain of the ligand-binding FcγR
α-chain (as is the case for FcγRIIa) or is part of the accessory
FcεRγ chain (FcγRIa and FcγRIIIa). In contrast, the FcγRIIb
α-chain contains an immunoreceptor tyrosine based inhibitory
motif (ITIM) rendering it an inhibitory receptor [reviewed
in (2)]. The GPI-linked FcγRIIIb, which is only found in
humans, is a signaling-deficient FcγR since it neither contains an
intracellular domain nor interacts with FcεRγ. However, it plays a
major role for capture of IgG immune complexes and co-operates
with FcγRIIa for induction of signaling (111–113).

Intracellular Signaling of FcγRs
Albeit FcγR pose a quite diverse receptor family with respect
to expression and structural composition, their intracellular
signaling pathways are surprisingly similar. Upon IgG
recognition, the intracellular ITAMs of activating FcγRs
are phosphorylated by kinases of the SRC family enabling
recruitment of SYK kinases. Downstream signaling includes
activation of phosphoinositide 3-kinase (PI3K), which causes the
release of intracellular calcium via activation of phospholipase
Cγ (PLCγ). In addition, FcγRs trigger the mitogen-activated
protein kinase (MAPK) pathway via ras and raf. Since most
immune cells co-express both, activating and inhibitory
FcγRs, IgG-IC binding will also initiate intracellular inhibitory
signaling via FcγRIIB. Upon phosphorylation of ITIMs,
phosphatases, e.g., SRC-homology-2-domain-containing
inositol-5-phosphatase (SHIP) are recruited that interfere with
the activating pathways by reducing the activation of ras and by
hydrolysis of phosphoinositide intermediates [summarized in
(114)]. Accordingly, activating and inhibitory FcγRs cooperate
in setting a threshold for immune cell activation.

PROPERTIES AND EXPRESSION OF TYPE
II FC RECEPTORS

Type I and type II Fc receptors share the ability to bind to IgG Fc
but their mode of interaction differs. Based on the composition of
the coupled bi-antennary Fc glycan, type I Fc receptors recognize
IgG Fc in an open protein conformation at equimolar rate. In
contrast, closed conformation recognition via type II receptors
enables the binding of two Fc fragments at the same time (1, 115).
So far, the identified type II Fc receptors belong to the super
family of C-type lectins receptors (CLRs).
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FIGURE 2 | The family of IgG binding type I and type II Fc receptors. The Fc receptors for IgG can be distinguished by their distinct binding mechanisms into either

type I FcRs (classical FcγR) or type II FcRs (C-type lectin receptors). With respect to signal transduction, FcγRIa, FcγRIIa, FcγRIIIa, and Dectin-1 signal via ITAM

domains in their cytoplasmic tail or on the associated FcεRγ chain. In contrast, the only inhibitory receptor FcγRIIb carries an ITIM domain in its cytoplasmic region. In

addition, the GPI-linked FcγRIIIb lacks an intracellular signaling domain, but has a crucial role in binding of IgG immune complexes and enhances signaling upon

cross-linking with other FcγRs. Besides, FcεRII has a short cytoplasmic region, whereas DC-SIGN exhibits a cytoplasmic domain including tyrosine, di-leucine and

tri-acidic motifs. In addition to recognizing IgG, Dectin-1 and DC-SIGN are known to bind other ligands including defined sugar moieties.

Classification of C-Type Lectin Receptors
The classification of CLRs was first established to separate
Ca2+-dependent (C-type) from independent lectins [reviewed
in (116)] where all Ca2+-dependent lectins share an intrinsic
carbohydrate recognition domain (CRD) allowing for binding

of foreign and endogenous carbohydrate ligands (117). Owing
to conserved residue motifs and the unique folding of the
CRD, it was termed C-type lectin domain, which is the defining
hallmark feature of all CLR family members (116). However,

sequence analysis identified new CLRs able to recognize other

ligands then carbohydrates including exogenous and endogenous
protein side chains, glycosphingolipids and inorganic ligands
in an Ca2+-dependent or -independent manner [for specialized
review articles see (118–120)]. Therefore, not all CLRs are
classical pattern recognition receptors. Today, the CLR super
family comprises more than one thousand soluble or membrane
bound members (119).

Besides the C-type lectin domain, membrane bound CLRs are
further dissected into type I and type II CLRs (not to be confused
with type I and type II FcRs) depending on the localization of
the N-terminus. They further differ in their intracellular motifs
responsible for receptor internalization, cycling and signaling
[summarized in (121)]. Because of this complexity, here we will
focus only on the three so far described type II FcRs, DC-SIGN
(CD209), Dectin-1 (CLEC7A) and Fcε receptor II (FcεRII; CD23)
characterized by the ability to bind immunoglobulins (Figure 2)
although this is a current matter of debate (119, 122–125).

Dendritic-Cell-Specific ICAM-3 Grabbing
Non-integrin (DC-SIGN)
DC-SIGN is a type II CLR carrying an extracellular, C-terminal
CRD, followed by seven complete and one incomplete tandem
repeats and a hydrophobic, intracellular N-terminus. The latter
is including tyrosine-, di-leucine and tri-acidic motifs, which are
involved in internalization and shuttling (120, 121, 126, 127).
DC-SIGN is specifically expressed on moDCs and macrophage
subpopulations including alveolar macrophages (128, 129)
(Table 1). In addition, expression of DC-SIGN on conventional
DCs is also proposed (130). Following ligand recognition, it
was demonstrated that DC-SIGN is rapidly internalized to late
endosomes and lysosomes (127). The highly conserved Glu-
Pro-Asn CRD motif facilitates the recognition of structures
containing several mannose- and fucose-residue bearing ligands
from pathogens, allergens, or endogenous molecules (120). One
of the most prone antigens recognized by DC-SIGN is the HIV
glycoprotein gp120 (126, 131, 132).

Signaling mediated via DC-SIGN is independent of
immunoreceptor tyrosine-based motifs and does not lead
to major modulations of immune cell activation by itself.
DC-SIGN rather co-operates and fine-tunes the signaling of
other receptors, e.g., TLRs (120). In this respect, high mannose
ligands were found to foster the assembly of LSP1, KSR1, and
CNK ultimately boosting the transcription of CXCL8, IL-12,
IL-6, and IL-10 promoters via ras, raf-1 (133) and the NF-κB p65
subunit (133, 134). In contrast, fucose-rich ligands only allowed
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for DC-SIGN association with LSP1 leading to production of
IL-10 in a raf-1 independent manner and negatively influenced
transcription of IL-6 and IL-12 (133). Finally, the DC-SIGN
agonist Salp15 was found to negatively regulate the production
of TNFα, IL-6 and IL-12 via ras and raf-1 dependent activation
of MEK (135).

Besides the carbohydrate binding capacity, DC-SIGN has
been originally described to be important for the emigration
of moDCs from vascular endothelium (128). Moreover, DC-
SIGN is a key player in establishing contacts between
DCs and resting T cells (136). Besides this multitude of
functions, DC-SIGN was identified as the first receptor
being able to bind sialylated IgG. Sialylated IgG Fc, which
is a component of intravenous immunoglobulin G (IVIg)
preparations (137), was demonstrated to bind to DC-SIGN on
macrophages and thereby mediate anti-inflammatory responses
in vivo (138, 139). Thus, sialylated IgG Fc may comprise
the therapeutically active component in IVIg preparations
even though the exact mechanisms are still subject of debate
(124, 137, 140, 141).

Dendritic-Cell-Associated C-Type Lectin 1
(Dectin-1)
Dectin-1 serves as a prototypic model for CLR pattern
recognition receptors as its functions range from pathogen
recognition to the initiation of signaling and uptake of bound
material. Thus, Dectin-1 facilitates the recognition of β-1,3- and
β-1,6-glucans in the defense against fungi in a Ca2+-independent
manner (142–144). It was recently also shown to recognize
annexins on apoptotic cells in mice, thereby contributing to self-
tolerance (145) albeit it remains to be determined if this finding
can be translated to the human system. Karsten et al. showed that
IgG1 immune complexes counteract C5a receptor signaling via
FcγRIIb and Dectin-1 (146). Even though this study does not
demonstrate direct IgG binding to Dectin-1, it has subsequently
been suggested that Dectin-1 may recognize the core-fucose
residue of the IgG sugar moiety (123).

As summarized in Table 1, Dectin-1 is widely expressed
on human innate cells including both monocyte populations,
conventional and plasmacytoid DCs, macrophages, neutrophils,
eosinophils and mast cells. In addition, B cells and a
subpopulation of T cells have also been suggested to express
Dectin-1 (142, 143, 147, 148).

Full length Dectin-1 is composed of an extracellular C-
terminus carrying a single CRD followed by a stalk region,
the transmembrane domain and an intracellular N-terminus
carrying an ITAM motif (149, 150). Smaller spliced isoforms of
Dectin-1 lacking, e.g., the stalk region are expressed in a cell-type
specific manner (142, 149, 151, 152).

Following ligand recognition, Dectin-1 has been shown to
recruit syk via its hemITAM (single tyrosine based ITAM)
motif initiating the production of reactive oxygen species, act in
the activation of the NLRP3 inflammasome and the canonical
p65 NF-κB pathway (120, 153–155). Comparable to DC-SIGN,
Dectin-1 was also found to foster the syk-independent Raf-1
pathway (133). Finally, Dectin-1 signaling can synergize with

MyD88 dependent TLR signaling in the induction of NF-
κB (150).

The Low Affinity IgE Receptor FcεRII
(CD23)
FcεRII (or CD23) is a type II CLR carrying an extracellular
C-terminal CRD, a stalk region important for CD23
oligomerization, another extracellular region of yet unknown
function, one single hydrophobic membrane domain and
a short cytoplasmic N-terminus (156, 157). Thus, FcεRII is
the only Fc receptor not belonging to the immunoglobulin
superfamily (156). Described ligands for FcεRII are IgE, CD21,
CD11b, CD11c, but also IgG (1, 158, 159). FcεRII is thought to
be expressed on B cells, T cells, polymorphonuclear leukocytes
including eosinophils and neutrophils, monocytes, follicular DCs
as well as epithelial and stromal cells (156, 160–165) (Table 1).

Structure and function of FcεRII strongly differ from the
high affinity IgE receptor FcεRI as it consists of a single
amino acid chain, is not associated with the FcεRγ chain
and is found in trimers on the cell surface (164, 166, 167).
Ligation of FcεRII on B cells downregulates IgE production
in the latter (156). FcεRII can also be released from the cell
surface by metalloproteinases to exert cytokine-like activities
while maintaining its IgE binding activity (168). These soluble
FcεRII:IgE complexes can then interact with surface bound
IgE receptors, thereby positively acting on survival and
differentiation of B cells (169–171). Furthermore, soluble FcεRII
was found to ligate CD11b and CD11c thereby promoting NF-
κB dependent inflammatory responses by human monocytes
including nitric oxide production, cAMP synthesis and cytokine
production (172).

Depending on external environmental stimuli, FcεRII exists
in two isoforms differing in their amino-terminal sequence and
transcriptional start sites (156). While FcεRIIa is constitutively
expressed on B cells, FcεRIIb expression may be induced and
foster antigen retention following binding instead of processing
and endocytosis (156). Membrane-bound FcεRII was further
described to be involved in B cell selection and affinity
maturation (173). This is mediated by autocrine upregulation of
FcγRIIb following binding of sialylated Fc domains to FcεRII,
thereby increasing the threshold for BCR signaling (173).

In summary, DC-SIGN, Dectin-1, and FcεRII are considered
to be type II Fc receptors due to their capacity to interact
with immunoglobulins. All of them belong to the superfamily
of CLRs unified by the structural feature of the C-type lectin
domain. Nevertheless, it has at least to be noted that the IgG
binding capability of DC-SIGN and FcεRII has recently been
challenged (125).

TYPE I FC RECEPTORS DIFFERENTIALLY
LOCALIZE WITHIN THE CELL MEMBRANE

Circulating human immune cells exhibit different FcγR
expression patterns, enabling the cells to implement cell-type
specific regulatory functions [reviewed in (2)]. In recent years,
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many studies focused on the role of lipid rafts in modulation of
FcγR activity.

FcγRIa
Several studies indicate that FcγRIa is predominantly located
within lipid rafts (174–176). In myeloid cell lines, high
amounts of FcγRIa are detected in detergent-resistant
membrane fractions. Moreover, imaging studies of primary
human monocytes show co-localization of FcγRIa with GM1
(monosialotetrahexosylganglioside) ganglioside, a marker (177)
that predominantly partitions to lipid rafts. According to a
study by Beekman et al., this localization is proposed to be
independent of FcγRIa cross-linking (174). In accordance, a
more detailed imaging study focusing on the mechanism of
FcγRIa membrane localization, identifies patching of FcγRIa
and the membrane-associated protein 4.1G (178, 179) in absence
of ligand binding (175). Cross-linking of FcγRIa induces
cytoplasmic serine phosphorylation and dissociation from
4.1G enabling FcγRIa to remain in lipid rafts. The authors
propose that 4.1G plays a crucial role in targeting FcγRIa to
lipid rafts in a serine phosphorylation dependent manner (175).
Association of FcγRIa with lipid rafts is indeed important for
FcγRIa function, e.g., in contributing to antimicrobial activity
(176) or involvement in the secretion of TNF family cytokines
(175). Cholesterol depletion is a common experimental method
to disrupt lipid raft organization [reviewed in (40, 180)] and has
been shown to alter FcγRIa arrangement in the cell membrane
(174). With respect to IgG binding, cholesterol depletion results
in a diminished capability of FcγRIa to recognize monomeric
IgG, while interaction with IgG immune complexes is unaltered.
Cross-linking induced signal transduction seems therefore not
to be affected by FcγRIa relocalization to lipid rafts (174).

FcγRIIa
Activating FcγRIIa is the most studied FcγR with respect
to membrane localization and its underlying mechanisms.
However, consistency of the data is complicated by the use
of different experimental model systems. FcγRIIa is widely
expressed on innate immune cells (including neutrophils and
both monocyte subsets). These cell types may also express
the closely related inhibitory FcγRIIb (95, 96). This further
complicates interpretation of data because of high homology
of the extracellular domains. Consequently, many available
monoclonal antibodies are not able to discriminate between
FcγRIIa and FcγRIIb (181). Regardless of these open questions
it was suggested, that FcγRIIa is dispersed in the cell membrane
and is localized to lipid raft domains upon IgG-mediated cross-
linking (182–184) (Figure 3). Of note, lipid raft localization
is apparently not simply a consequence of FcγRIIa cross-
linking. In fact, interaction with IgG correlates with FcγRIIa
localization as both, lipid raft disruption as well as receptor
mutants with abolished lipid raft re-localization show decreased
IgG binding (185–187) and IgG immune complex phagocytosis
(186). However, data regarding phagocytosis is controversial,
since García-García et al. show a more pronounced uptake in
absence of lipid raft localization (188).

FIGURE 3 | Model of FcγR localization and receptor clustering in the cell

membrane. Classical monocytes express the activating FcγRIa and FcγRIIa

and the inhibitory FcγRIIb with distinct membrane localizations. FcγRIa is

predominantly confined to cholesterol-rich lipid raft domains, while FcγRIIa and

FcγRIIb are found in non-raft regions in absence of IgG immune complexes

(A). Upon IgG immune complex binding FcγRIIa/b are recruited to lipid rafts.

Close proximity to each other and to signaling components concentrated at

lipid raft domains, enables ITAM/ITIM phosphorylation and induction of

intracellular signaling cascades (B). Exclusion of FcγRIIb from lipid rafts due to

a mutation in the transmembrane domain causes enhanced activatory

signaling (C).

Upon receptor cross-linking, intracellular signaling is
triggered by phosphorylation of ITAMs and recruitment of
intracellular signaling molecules. Lipid raft localization indeed
seems to enhance FcγRIIa phosphorylation (184, 189, 190) and
increasing sphingolipid-cholesterol-rich membrane rafts causes
FcγRIIa clustering and phosphorylation even in absence of IgG
(191). Furthermore, cholesterol depletion is consistent with
abolished association of cross-linked FcγRIIa with low density
detergent resistant membranes and abrogates FcγRIIa tyrosine
phosphorylation (189). In contrast, Barabe et al. observed
prominent FcγRIIa localization in non-raft domains in human
primary neutrophils even upon cross-linking-induced clustering
of FcγIIa. According to this study, only a small portion of
FcγRIIa rearranges in rafts, where it is degraded in a short
period of time. Interestingly, this can be prevented by cholesterol
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depletion. Nevertheless, this neither results in diminished
tyrosine phosphorylation nor calcium release, indicating that
the integrity of cholesterol-rich raft domains and therefore
translocation of FcγRIIa in lipid rafts seems not to be critical
for FcγRIIa-mediated signal transduction (192) or cellular
effector functions such as superoxide generation (183). This
conclusion is in part supported by García-García et al. showing
FcγRIIa-induced syk activation independent of lipid rafts. Of
note, the same authors also propose NF-κB activation to be
dependent on lipid rafts (188).

Mechanistically, some studies propose palmitoylation of a
cytoplasmic cysteine residue to be responsible for FcγRIIa
membrane localization to ordered domains (185, 187, 193).
However, this was not confirmed by García-García et al., who
instead suggest the transmembrane domain to be crucial for
receptor localization (188). In any case, phosphorylation of the
FcγRIIa ITAM seems not to be involved mechanistically in lipid
raft recruitment (183, 194).

FcγRIIb
The inhibitory receptor FcγRIIb is mainly expressed on B cells
and monocytes and plays a crucial role in modulating activating
immune receptors and thereby immune cell activation essentially
preventing autoimmune diseases. There is convincing data that
lipid raft localization of FcγRIIb is initiated by ligand binding
(195) and seems to be critical for receptor function. In fact,
FcγRIIb with a specific mutation in the transmembrane domain
(Ile232Thr) is not able to localize to lipid rafts and is associated
with an increased susceptibility for autoimmune diseases due
to attenuated negative regulation of immune cells (196, 197)
(Figure 3). Mechanistically, cross-linking of the B cell receptor
and FcγRIIb enhances FcγRIIb recruitment to lipid rafts (195),
where B cell receptor signaling induces transphosphorylation
of FcγRIIb (196). The extent of this tyrosine phosphorylation
is a decisive indicator for distribution of the receptor within
organized domains. Accordingly, the magnitude of inhibition
of B cell receptor signaling corresponds to the level of FcγRIIb
recruitment within lipid rafts (196). These findings are further
supported by imaging studies of living cells using confocal as
well as total internal reflection fluorescence (TIRF)microscopy in
combination with fluorescence resonance energy transfer (FRET)
that not only show co-localization of the B cell receptor and
FcγRIIb in lipid rafts, but also destabilization of the complex
and inhibition of immune synapse formation upon receptor
cross-linking (198).

FcγRIIIa
Albeit FcγRIIIa is found to be expressed on NK cells and a small
monocyte subpopulation, so-called non-classical monocytes,
the membrane localization of FcγRIIIa has only been studied
in NK cells. For this cell type, cellular fractionation as well
as confocal microscopy revealed that FcγRIIIa preferentially
resides in non-raft membrane regions in resting cells compared
to enhanced localization in lipid rafts upon cell stimulation
(199, 200). Cross-linking with IgG leads to recruitment of
FcγRIIIa to lipid rafts, induction of intracellular signaling (200)
and actin-dependent internalization of FcγRIIIa (201). Further

supporting the importance of lipid raft association, FcγRIIIa
signaling is inhibited in response to chemical disruption of
organized domains even upon co-stimulation of NK cells (200).
Mechanistically, FcγRIIIa redistribution to organized domains
seems to be dependent on PLC activity (201). Lou et al. even
suggested the presence of a positive feedback loop of receptor
cross-linking, raft aggregation and signal transduction. In turn,
killer cell immunoglobulin-like receptors (KIR) negatively affect
formation and rearrangement of organized domains through
(SHP-1 induced) dephosphorylation of signaling molecules and
diminished cell polarization (202). Therefore, it was suggested
that polarization and consequently FcγRIIIa relocalization to
lipid rafts is indeed required to initialize FcγRIIIa signaling (200).

FcγRIIIb
Lipid-lipid interactions in highly organized raft domains
contribute to the recruitment of GPI-anchored proteins (25).
The only member of the FcγR family that is inserted into
lipid rafts by a GPI linker is FcγRIIIb, which is exclusively
expressed on the cell surface of neutrophils (203). Membrane
fractionation experiments determined that FcγRIIIb indeed
partitions in high density sphingolipid and cholesterol-rich
membrane domains (204). Strikingly, signal transduction can
be initialized by clustering of the GPI-anchored FcγRIIIb
itself in absence of any characteristic signaling motifs (26)
and is even enhanced upon cross-linking of FcγRIIIb with
other receptors, e.g., FcγRIIa (205). The function of membrane
anchored FcγRIIIb in signal transduction is however ambiguous.
Besides activating intracellular signaling, FcγRIIIb is strikingly
able to affect cell death (206). Recently, Yang et al. demonstrated
that SHP-2 phosphorylation induced upon neutrophil activation
by FcγRIIIb cross-linking results in reorganization within lipid
rafts and causes a delay in activation-induced cell death (206).
Thus, lipid raft association is crucial for receptor function
since enhancement of FcγRIIa signaling is abrogated upon
replacement of the FcγRIIIb lipid anchor with a transmembrane
domain (207). On the other hand, it has been shown that
cholesterol depleting reagents attenuate FcγRIIIb function
resulting in upregulated activation of intracellular signaling
molecules (203, 204).

MODULATION OF TYPE II FC RECEPTOR
FUNCTION BY THE LIPID CELL
MEMBRANE

In comparison to type I FcRs, information about the role of
membrane domains on type II FcR localization and function
is scarce.

Dectin-1
When it comes to pathogen recognition, signaling and the
production of anti-microbial mediators such as reactive oxygen
species via pattern recognition receptors, a phagocytic cell has
to distinguish between soluble antigens released by pathogens
in the distance and direct contact. This is particularly important
when the target pattern recognition receptor can function as a
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monomer as is the case for Dectin-1, which does not require
oligomerization for its activity in vitro [reviewed in (150)].
Hence, the question arises how Dectin-1 can distinguish between
single microbial products and direct pathogen contact. This
issue was resolved by Goodridge et al. providing evidence for
the formation of a phagocytic membrane area. In contrast to
soluble Dectin-1 ligands, particulate Dectin-1 target structures
are able to induce Dectin-1 clusters and initiate signaling
(208). Dectin-1 cluster formation in defined membrane areas
can therefore be considered paramount to initiate direct anti-
microbial programs only when needed. Xu et al. provided
additional evidence supporting an impact of lipid membrane
domains on Dectin-1. Sorting of Dectin-1 into lipid raft
domains following stimulation with β-glucans coincides with
the recruitment of syk and PLCγ2, while disruption of lipid
rafts impairs the uptake of zymosan particles, signaling and
cytokine production of murine bone-marrow derived DCs (209).
As Dectin-1 was found to associate with FcγRIIb upon IgG
immune complex binding (146) and FcγRIIb is localized to
lipid rafts upon ligand-induced cross-linking (195) this further
points toward an important role of organized microdomains for
Dectin-1 activity.

DC-SIGN
The priming of naïve T cell responses in secondary lymphoid
organs requires the establishment of contact between DCs and
T cells (210), a process which involves DC-SIGN (136). Once
contact is established, communication takes place in a nanoscale
area termed the immunological synapse (211). Thismicrodomain
concentrates molecules and ligands needed for a productive
interaction and shaping of T cell immunity (211, 212). Following
TCR and CD28 ligation, rafts are recruited to the contact
area thereby enriching molecules responsible for signaling and
contact maintenance (213). While the MHC:TCR interaction
takes place in the inner zone of the formed synapse, outer zone
adhesion molecules such as integrins maintain DC:T cell contact
and sorting of these two molecule classes may be achieved by size
exclusion of integrins to the inner zone (211, 213).

Initial studies on DC-SIGN neither assessed its localization
within the cell membrane, nor the contribution of membrane
domains for receptor function. In 2004, Cambi et al. first
provided evidence for organization of DC-SIGN in membrane
nanodomains likely to represent lipid rafts. Furthermore, these
DC-SIGN assemblies were found to be important for binding
and uptake of virus particles in moDCs (214). In a different
study, DC-SIGN was found to form nanoscale clusters in living
cells. These clusters localize to definedmembrane areas and show
little exchange with the surroundingmembrane and are therefore
assumed to be of stable nature (215). Furthermore, active
movement of DC-SIGN clusters is observed with concentration
at endocytosis sites (215). Therefore, the authors hypothesized
that DC-SIGN is indeed organized in microdomain clusters,
which move from the pathogen recognition site to the location
of endocytosis (215). Finally, lipid raft localization of DC-SIGN
was confirmed by co-precipitation with downstream signaling
molecules upon receptor cross-linking (216).

FcεRII
The assembly of B cell receptor containing lipid rafts is a
crucial component of B cell development and activity (90, 91,
217). Even though data on the localization of FcεRII within
defined membrane domains are so far lacking, the importance of
FcεRII expressed on B cells was recently demonstrated. During
the process of affinity maturation, ligation of FcεRII by IgG
induces the upregulation of FcγRIIb thereby raising the threshold
for BCR signaling (173). However, if this involves coalescence
of FcεRII, the BCR and FcγRIIb within lipid rafts has to
be determined.

CLINICAL IMPLICATIONS OF PLASMA
MEMBRANE MANIPULATION FOR FCR
FUNCTION

Based on the crucial role of the plasma membrane and its
organized domains for many cellular processes, drugs altering the
plasma membrane lipid composition, structure or function have
been developed for, e.g., malignant, metabolic, cardiovascular,
or neurodegenerative disorders (218, 219). One example for
such a drug, the compound azurin, has recently been shown
to decrease the plasma membrane order of cancer cells upon
uptake thereby attenuating cell signaling and subsequently
tumor cell growth (220). In addition, plasma membrane altering
functions have been described for established therapeutics
such as lovastatin, a cholesterol-reducing drug applied in the
treatment of hypercholesterinemia (221, 222), or non-steroidal
anti-inflammatory drugs (NSAIDs) used to treat inflammatory
disorders which were shown to cause membrane softening and
re-organization of membrane associated proteins (223, 224).
Assuming that FcγR function is indeed regulated by the plasma
membrane lipid environment, it is very likely that these drugs
may alter FcγR and thus IgG activity. Of note, this may not
only affect immune cells but also non-immune cells which can
also express FcRs [summarized in (225)]. For instance, human
endothelial cells express both DC-SIGN (226, 227) and FcγRIIb
(228, 229) which is involved in trafficking of maternal IgG (230)
or clearance of small IgG immune complexes in liver sinusoids
(231). Furthermore, FcγRs have been identified on cells of the
human central nervous system including neurons and microglia,
i.e., brain specific phagocytic cells. Microglia express all types
of FcγR (232) which are also found to be upregulated under
inflammatory conditions (233). Neurons express FcγRIa and
FcγRIIb that are involved in IgG uptake and induce the release
of neurotransmitters (234). Taken together, it is reasonable
to speculate that a treatment with drugs affecting the plasma
membrane might also affect FcR dependent effector functions of
IgG on immune and non-immune cells in vivo. More research
identifying these potential systemic drug side-effects will be
required to understand this in more detail in the future.

CONCLUDING REMARKS

Lipid cell membranes are highly complex mixtures of different
lipids and proteins that can interact with and influence each
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other. Moreover, lateral heterogeneity of membranes including
the formation of organized microdomains, i.e., lipid rafts, have
previously been shown to affect a number of receptors expressed
on immune cells. It is therefore reasonable to assume that
distinct membrane localization is also involved in themodulation
of FcR function. However, the respective experimental data
is both, incomplete (e.g., with respect to FcR expression
on different cell types or impact of membrane domains on
FcR-IgG interactions and subsequent effector functions) and
partially inconsistent. One possible explanation for the observed
inconsistencies might be the use of various cell lines with possibly
divergent membrane compositions in relation to primary cells.
Furthermore, different experimental approaches might also
affect the results and interpretation of the data. For example,
cold non-ionic detergent extraction was once widely used to
investigate the membrane structure of organized domains and
their function [reviewed in (26, 235, 236)]. It was later, however,
demonstrated that detergents diminish the lateral complexity of
membranes. Therefore, detergent-resistant membrane structures
seem to be artificial and not reflecting the native structure
of lipid rafts in living cells [reviewed in (237)]. In recent
years, membrane manipulation has gained popularity in analysis
of complex membrane compositions and the significance of
organized domains. The most commonly used method to
manipulate cellular membranes is based on cholesterol depletion
by chemical reagents. Nevertheless, targeting cholesterol with
various chemicals to disrupt lipid raft organization seems to
differentially affect the cell membrane necessitating cautiousness
when interpreting experimental data. Furthermore, the biological
effects of these chemicals have not been investigated in great

detail [reviewed in (40, 180)]. In addition, present technical
advances in the field of high-resolution microscopy allow
analyzing the impact of native cell membranes, especially lipid
rafts, on the localization of membrane receptors such as FcRs
in relevant cellular contexts. One, however, must be aware that
fixation of samples for microscopy might alter receptor location
and plasmamembrane structure (238, 239). In conclusion, future
research will need to clarify the role of lipid cell membranes and
organized membrane domains for type I and type II FcR function
and hopefully allow implementing some of these findings for
developing novel therapeutic avenues to enhance or suppress FcR
dependent effector functions.
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