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Humans have always been in contact with natural airborne particles from many

sources including biologic particulate matter (PM) which can exhibit allergenic properties.

With industrialization, anthropogenic and combustion-derived particles have become a

major fraction. Currently, an ever-growing number of diverse and innovative materials

containing engineered nanoparticles (NPs) are being developed with great expectations

in technology and medicine. Nanomaterials have entered everyday products including

cosmetics, textiles, electronics, sports equipment, as well as food, and food packaging.

As part of natural evolution humans have adapted to the exposure to particulate

matter, aiming to protect the individual’s integrity and health. At the respiratory barrier,

complications can arise, when allergic sensitization and pulmonary diseases occur in

response to particle exposure. Particulate matter in the form of plant pollen, dust mites

feces, animal dander, but also aerosols arising from industrial processes in occupational

settings including diverse mixtures thereof can exert such effects. This review article

gives an overview of the allergic immune response and addresses specifically the

mechanisms of particulates in the context of allergic sensitization, effector function and

therapy. In regard of the first theme (i), an overview on exposure to particulates and

the functionalities of the relevant immune cells involved in allergic sensitization as well

as their interactions in innate and adaptive responses are described. As relevant for

human disease, we aim to outline (ii) the potential effector mechanisms that lead to

the aggravation of an ongoing immune deviation (such as asthma, chronic obstructive

pulmonary disease, etc.) by inhaled particulates, including NPs. Even though adverse

effects can be exerted by (nano)particles, leading to allergic sensitization, and the

exacerbation of allergic symptoms, promising potential has been shown for their use

in (iii) therapeutic approaches of allergic disease, for example as adjuvants. Hence,

allergen-specific immunotherapy (AIT) is introduced and the role of adjuvants such as

alum as well as the current understanding of their mechanisms of action is reviewed.

Finally, future prospects of nanomedicines in allergy treatment are described, which

involve modern platform technologies combining immunomodulatory effects at several

(immuno-)functional levels.

Keywords: adjuvants, alum, animal dander, house dust mite feces, immunomodulation, mold spores,

nanomedicine, pollen
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THE ALLERGIC IMMUNE
RESPONSE—BASICS OF THE DISEASE

Worldwide more than a billion people are suffering from allergic
disease (1). As one of the most prevalent chronic respiratory
illnesses, allergic rhinitis/conjunctivitis and allergic asthma are
estimated to affect up to 30% of the population in Western
countries (2). Not only the quality of life, but also school
and work performance are significantly impacted for those
afflicted, further making allergy an economic burden. (3–5).
Allergic diseases have seen a dramatic increase; while they
have been described as rare in the beginning of the 20th
century, it is expected that by 2025, half of the European
population will be affected (6, 7). The observed boost in
prevalence of respiratory allergy is associated with several factors
associated with the “Western lifestyle,” including urbanization,
industrialization, agriculture, air pollution, climate change,
alterations in biodiversity, increase in personal cleanliness and
reduced contact with infectious pathogens (1, 8–10). In this
context, this review will on the one hand focus on air pollution,
and specifically on particulate matter (PM), which is believed to
be among the major factors for the increase in allergic disease
prevalences. On the other hand, this review will detail how the
resulting disease burden manifests upon exposure to common
aeroallergens of grass/weed/tree pollen, house dust mite, pet
dander, and mold spores.

According to common text book knowledge (11, 12)
the allergic response is divided into two stages: (i) the
sensitization phase, which is accompanied by an immune
deviation toward a T helper (Th)2-type response and is
facilitated by allergen-specific Th2 cells secreting the cytokines
interleukin (IL)-4, IL-5, and IL-13, ultimately leading to
the generation of allergen-specific immunoglobulin E (IgE)
antibodies; in the second stage, (ii) the effector phase, IgE-
loaded mast cells (MCs) and basophils degranulate upon
exposure to the allergen source, resulting in the release
of mediators (i.e., histamines, prostaglandins, leukotrienes).
Consequently, individuals with respiratory allergies suffer from
symptoms typical for rhinoconjunctivitis, such as a runny nose,
sneezing, itching, and watery or swollen eyes. More critical
symptoms comprise signs of airway hyperresponsiveness (AHR),
characterized by shortness of breath, coughing and wheezing.
Allergies are commonly diagnosed via clinical anamnesis, skin
testing and in vitromethods for quantification of allergen-specific
IgE (13). Allergy treatment mostly consists of pharmacological
interventions with antihistamine, corticosteroids, MC stabilizers,
anti-cholinergic agents and leukotriene inhibitors (14). The only
curative treatment, however, is allergen-specific immunotherapy
(AIT), which displays success rates of around 80% for respiratory
allergies (15, 16). While allergen avoidance remains the most
important type of intervention, there are notable limitations
concerning inhalable environmental allergens in respiratory
allergies. As climate change has extended pollen season, higher
pollen counts have been documented in several European
countries (17). A German study has furthermore observed
an association between ozone levels and reactivity to allergen
extracts in skin tests (bigger wheal and flare sizes) (18). Likewise,

combustion-derived PM is believed to increase allergic reactions
by interacting with pollen, as shown by increases in hospital visits
related to pollinosis on days with high PM levels (19).

THE ALLERGENIC
ENTITIES—DISCREPANCY BETWEEN
MOLECULAR UNDERSTANDING AND
CLINICAL REALITY

Humans are constantly exposed to allergenic substances in
the form of particulates releasing biologically active substances,
i.e., proteins and other biomolecules which come into contact
with the human mucosal tissue. More than 150 pollen
allergens originate from environmental sources such as grasses,
weeds, and trees and they have been recognized to play a
significant role in triggering allergic responses in sensitized
individuals (20, 21). In addition to seasonally confined outdoor
allergens, indoor allergens lead to perennial exposure, which
has further implications for the clinical outcome in the affected
patients (11). The major cat allergen Fel d 1 was detected
in 99.9 and 99.7% of American homes, respectively, in two
large US surveys (22, 23). Similar findings were reported
for the major dog allergen Can f 1 and detectable levels
of the individual group 1 and 2 house dust mite (HDM)
allergens were found in 60-85% of surveyed homes (23, 24).
Fungal spores are ever present and constitute the biggest
proportion of aerobiological PM (25), even exceeding pollen
grains (26). The official allergen database (www.allergen.org)
of the WHO/IUIS currently lists 961 distinct sequences of
allergenic molecules, and many more isoallergens and variants,
classified into 852 taxonomic groups (www.allergenonline.org).
Interestingly, among the 17,929 currently listed protein families
(http://pfam.xfam.org/), allergens only appear in 216 Pfam
domains, thus, constituting a share of just 1.3% (http://www.
meduniwien.ac.at/allfam/). A recent report by the European
Academy of Allergy and Clinical Immunology (EAACI) has
pointed out discrepancies between the molecular definition
of allergic sensitization, in the Molecular Allergology User’s
Guide termed bottom-up approach, and observations made
in clinical settings considered as top-down approach (27).
Since physicians commonly use natural allergen sources for
allergy diagnosis, this implies that the degree of allergenicity
is determined not only by the mixture of allergenic proteins
itself but by a variety of bystander substances and other co-
factors contained in the allergen source. Discrepancy also exists
when it comes to the clinical efficacy of allergic treatment
by immunotherapy using crude natural extracts or chemically
modified preparations, so-called allergoids, vs. highly purified
recombinant molecules, while safety concerns clearly direct
the way into a future of using recombinant allergens enabling
development of genetically modified products with optimized
safety profiles termed hypoallergens (28, 29). In the present
review, we will give a broad overview on the particulate aspects
in sensitization, effector function and therapeutic treatment of
allergic disease.

Frontiers in Immunology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 1334

www.allergen.org
www.allergenonline.org
http://pfam.xfam.org/
http://www.meduniwien.ac.at/allfam/
http://www.meduniwien.ac.at/allfam/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Joubert et al. Particles in Allergy

FIGURE 1 | Overview on sources, targets and impact of particulates in allergic sensitization.

THE ROLE OF PARTICULATES IN
ALLERGIC SENSITIZATION—WHAT ARE
WE EXPOSED TO?

Exposure to allergens is not only dependent on their
environmental distribution, but also on the form in which
they become airborne and their aerodynamic properties. Due to
their molecular size and vapor pressure, allergenic proteins and
glycoproteins cannot become airborne themselves, but instead
are either contained inside particulates (e.g., pollen grains), or
attach to airborne particles such as dust (i.e., fragments of human
keratin or animal epithelium) (30–32). In general, particle-bound
allergens smaller than 5µm can stay suspended in the air for
longer periods of time (33), while larger ones settle quickly
(34). An overview on the sources, the targets and the impact of
particles on allergic sensitization is depicted in Figure 1.

The major cat allergen Fel d 1 is produced in sebaceous
and salivary glands of cats and is found on its fur, skin and
in saliva (35). While the primary source of cat allergens is
assumed to come from dander (36, 37), Fel d 1 can also be
found associated to a range of differently sized dust particles
from <1 to 20µm (38), some of which can remain airborne for
15–35min after disturbance (33). The highest concentrations of
the major HDM allergen Der p 1 is found in mite feces, whose
physical properties are similar to those of pollen grains. De Lucca
et al. (39) investigated particles containing HDM allergens and
reported size ranges of 15–40µm (feces), 10–150µm (fibers) and

5–50µm (flakes). Particles of that size can only be deposited on
the nasal mucosa and do not enter the lungs. The prevalence
of mold is highly dependent on season and climatic factors
(humidity, temperature and wind) and their spores have a
wide spectrum of different shapes and sizes in the range of
2–250µm. A substantial proportion of fungal spores is small
enough to enter the lower airways and common allergens are
found in the respirable fine particle fraction (<3µm) (40).
While pollen grains themselves are large (10–200µm) (41), and
only few can reach the lower airways, grass, weed and birch
pollen allergens associated with particles under 5µm (starch
grains, subpollen particles) have been shown to be released
from the pollen grain after light rainfall (42–45). They can
furthermore occur in association with smaller airborne fractions
such as suspended particulate material deriving from industrial
combustion and vehicle exhaust emissions (46, 47). Under
occupational settings, mixed aerosols containing food-borne
allergens have been identified as sources for a higher prevalence
of fish allergy in fish-processing workers (48).

Respirable diesel exhaust, indoor soot and dust particulates
especially are known for their capability to bind various classes
of allergens in vitro and might facilitate their transport into
peripheral and deep airways (49–51). Hence, the outcome of
allergen exposure is lastly also dependent on the nature of the
particle carrying it. Diesel exhaust particles (DEPs), for example,
have been shown to contribute to asthma and allergic airway
disease (52–55). Binding to carrier particles can furthermore
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enable allergen concentration, increasing their potential for
triggering asthma attacks (49). This may explain the importance
of combustion-derived PM in the context of allergic disease, as
it provides an ideal vehicle for the distribution and uptake of
allergens, which would otherwise not reach the lower airways.
Furthermore, PM also displays the capacity to modify the
immunological reactions against the transported allergen. The
latter will be discussed in detail in this review.

For environmental studies of air pollution, PM is commonly
divided according to its size (aerodynamic diameter) into
different categories: PM10, coarse particles with an aerodynamic
diameter≤ 10µM, PM2.5, fine particles with a diameter≤ 2.5 nm
and PM0.1, ultrafine particles with a diameter≤ 0.1µm (56). The
size of PM is a crucial factor concerning its capability to penetrate
into the respiratory tract: while PM10 is only able to reach the
upper respiratory tract, PM2.5 reaches the tracheobronchial tract
and PM0.1 is able to penetrate into the alveolar region (57).
The composition of PM varies among geography, season and
proximity to roadways (58). Various studies have shown that
PM exposure is associated with enhanced allergic sensitization
and aggravation of asthmatic symptoms (59, 60). Moreover,
the exposure to PM during childhood is believed to contribute
to the increase in allergies worldwide (61). In the context of
allergic disease, PM has furthermore been shown to exert harmful
effects as a chemical toxin. Upon inhalation, PM can induce
cell stress and toxicity, dependent on its particle size, chemical
composition, and surface-bound molecules (62). For instance,
PM containing transition metals such as iron have been shown
to exert genotoxic effects and increase the production of reactive
oxygen species (ROS) (63, 64). Furthermore, PM-associated
endotoxins can contribute to increased airway inflammation and
dysfunction (65) In summary, PM has differential implications
on allergic disease by either enhancing allergic sensitization
or exacerbating pulmonary symptoms, as will be discussed in
further detail in subsequent sections of this review.

Outdoor PM can be derived from various sources such as
vehicular traffic, fuel combustion, agriculture or industry, but
also non-anthropogenic sources like volcanic eruptions, wildfires
or ocean-derived salts. A major component of traffic-related
outdoor PM are DEPs, which typically consist of a carbon core
that has adsorbed different organic compounds, e.g., polycyclic
aromatic hydrocarbons (PAHs), transition metals and other
compounds (66, 67). The combined effects of air pollution and
pollen grains on cells, animal models and allergic patients have
been extensively reviewed (68). Different types of particulates
were found to be adsorbed to pollen grains (69). DEP-associated
PAHs have been shown to exert pro-allergic effects on basophils
of birch pollen-allergic patients in an allergen-independent
manner (70). Another study has shown that DEPs disrupt
the nasal epithelium and thereby lead to the exacerbation of
allergic rhinitis symptoms in a mouse model (71). The PIAMA
prospective birth cohort study has identified metal constituents
of non-tailpipe road traffic emissions such as iron, copper and
zinc as risk factors for respiratory disease in school children (72).

Indoor PM is an important factor as most people spend
90% of their time indoors (73). A major source of indoor PM
is tobacco smoke. It accounts for around 50–90% of the total

indoor PM concentration in areas frequented by smokers (57).
The particles sizes present in smoke caused by six different
commercial available cigarettes was analyzed by Becquemin and
co-workers and determined to be 0.27 ± 0.03µm (inhaled by
the smoker) or 0.09 ± 0.01µm (inhaled by passive smokers)
(74). Besides its well-known risk for causing lung diseases in
smokers as well as in non-smokers who are exposed to second-
hand smoke (75), there is evidence that environmental tobacco
smoke is responsible for an increased sensitivity to allergens
in children (76). In a birth cohort study, Thacher et al. (77)
found that maternal smoking during pregnancy did not relate
to sensitization to food allergens. However, exposure to parental
smoking during early infancy was shown to increase the risk of
food allergen sensitization during childhood and adolescence.
Contrasting results were obtained in studies by Shargorodsky
et al. (78) who showed that tobacco smoke exposure was related
to increased prevalence of rhinitis symptoms, but independent
from allergic sensitization in US adults. In another study, a
decreased prevalence of allergic sensitization of children was
found in respect to tobacco smoke exposure (79). The connection
of tobacco smoke and allergy may thus be complex, but it
is clear that smoking interferes with immunity at different
levels. A review by Maes and colleagues describes that both,
tobacco smoke and DEPs, affect allergic sensitization and the
development or exacerbation of asthma by similar mechanisms
(80) suggesting that the particular characteristics of combustion-
derived PM can play an important role here.

Co-exposure to PM and specific allergic sensitizers such as
pollen, HDM feces, mold spores or animal dander is difficult to
study in humans under real-life environmental conditions. The
main problem is that sensitization is a highly individual response.
Its investigation relies on application of in vitro methods or use
of in vivo animal models, which is also how co-exposure has
been experimentally addressed (57). A study by Acciani et al. (81)
revealed that young BALB/c mice display intensified features of
allergic sensitization, including an increase of IgE, inflammatory
cells, and Th2/Th17 cytokines after co-exposure to DEPs and
HDM, while DEPs alone in the same concentration did not
lead to the aforementioned effects. A later study by the same
researchers reported that combined exposure to DEPs and HDM
leads to a significantly higher number of specific memory T
cells in the murine lung promoting secondary responses to the
allergen (82). The authors also showed a prolonged presence of
DEPs in lung macrophages, but excluded DEPs as the culprits of
increased HDM recall responses observed in lymphoid organs.
This study illustrates the difficulty in understanding the detailed
mechanism and role of particles in the context of allergic
disease. Nevertheless, it is clear that DEPs in combination with
allergen lead to an exacerbation of the Th2-driven response
compared to the effects caused by the allergen alone. The authors,
furthermore, proved relevance of theirmechanistic investigations
in mice for humans by analyzing the Cincinnati Childhood
Allergy and Air Pollution Study birth cohort resulting in positive
association of increased asthma prevalence in allergic children
with early-life exposure to high DEP levels compared to non-
allergic children. Castaneda and colleagues strengthened these
mechanistic findings by showing that PM enhanced allergic
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FIGURE 2 | Mechanisms of allergic sensitization. DCs located in the epithelia of peripheral tissues are exposed to allergens, immunomodulatory compounds and

particulate matter (PM). Once activated, highly specialized CD11b+/CD301+/PDL2+/KFL4+/IRF4+ DCs migrate into the lymph nodes to initiate the Th2 differentiation

program. Upon exposure to epithelial-derived factors (IL-25, thymic stromal lymphopoietin (TSLP) and IL-33), group 2 innate lymphoid cells (ILC2) produce Th2

cytokines. This further promotes Th2 cell polarization and leads to exacerbation of the allergic response characterized by the secretion of IgE by B cells, and the

activation of MCs and eosinophils. Basophils act as antigen-presenting cells (APCs) by presenting DC-derived antigenic peptides to T cells via a specific membrane

transfer mechanism called trogocytosis.

immune responses of Balb/c mice, characterized by increased
monocyte and eosinophil migration, Th2 cytokines and IgE
expression (83). They, furthermore, suggested that PAH contents
are responsible for Th17 immune responses by activation of
the aryl hydrocarbon receptor. Taken together, it is likely that
both particle-specific effects as well as effects exerted by PM-
associated chemicals play a role in the enhanced immune
responses observed upon co-exposures.

IMMUNE CELLS INVOLVED IN ALLERGIC
SENSITIZATION—HOW DO THEY REACT
TO PARTICLES?

The mechanisms underlying allergic sensitization in general, and
upon exposure to particulatematter, are still not fully understood.
Recently it has been shown that sensitization toward certain
allergens may not primarily result from intrinsic properties of
the allergen itself, but can also depend on immunomodulatory
compounds co-delivered with the allergen (84, 85). To better

understand the complex process of allergic sensitization, the
following section gives a brief overview on the different types of
immune cells, their interactions, and their possible role as triggers
of particle-mediated allergic reactions.

Dendritic cells (DCs) play a crucial role in priming specific
T cell responses (Figure 2). They are located close to the
epithelial barriers, where they are exposed to allergens, allergen-
associated immunomodulatory components and particulate
matter. Once activated by the respective stimulus, DCs undergo
a specific maturation process, which primes them to promote the
differentiation of naïve CD4+ T cells into Th2 cells (86). While
DCs can release T cell-priming cytokines that determine the type
of immune responses, IL-4, the classical Th2-priming cytokine,
is not produced by DCs. This raises the question whether,
in the absence of alternative Th cell-priming stimuli, DCs
would induce a Th2 phenotype by default. Another hypothesis
states that DC-derived stimuli, other than IL-4, can potently
induce Th2 differentiation as well. One example are DCs,
which are characterized by the expression of CD11b+ CD301b+

PDL2+. These cells are particularly potent activators of Th2
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cell differentiation and further enhance their Th2-polarizing
capacity by expression of the costimulatory molecules OX40L
and Jagged 1 (87–90). Especially upon exposure to fine particles
and ultrafine particles, the Jagged 1/Notch signaling axes is
essential for allergic inflammation (91). Jagged 1 interacts
with Notch receptors on T cells, which can promote Th2
cell polarization via induction of GATA-3 (92, 93). This
mechanism is particularly important in PM0.1-induced allergic
inflammation of the airways. PM0.1-dependent transcriptional
expression of Jagged 1 (91, 94) seems to be regulated via
the aryl hydrocarbon receptor, which in turn is activated by
PAH contained in the particles. Thus, PM0.1-induced Jagged
1 transcription depends on aryl hydrocarbon receptor, but is
independent of classical pattern recognition viaToll-like receptor
(TLR)4 and NOD-like receptors (NLRs) (94). Neutralizing
Notch-signaling downstream of Jagged 1/Notch interactions
further demonstrated that PM0.1-induced exacerbation of allergic
airway inflammation was abrogated (91). This points toward a
crucial involvement of the Jagged/Notch pathway in promoting
particle-mediated Th2 immune responses.

In addition to OX40L and Jagged 1, it was shown that
DCs capable of inducing Th2 responses also require Interferon
regulatory factor 4 (IRF4) and Krüppel-like factor 4 (KLF4). Mice
with IRF4 deficiency in the DC lineage show a strongly reduced
population of CD11b+ CD301b+ PDL2+ DCs, which correlates
with a strong reduction of allergen-induced lung inflammation
(95, 96). Conditional KLF4 deletion within conventional CD8α+-
type DCs provided evidence that KLF4 is required to promote
Th2 cell responses induced upon HDM challenge or helminth
infection, whereas KLF4 deletion did not affect Th1 or Th17
responses in other infection models (97). These experiments
suggest that KLF4 is an important molecule enabling DCs to
promote Th2 immunity.

Although DCs are the most important cell type contributing
to the development of type 2 responses, naïve Th cells also
receive important signals from epithelial barrier organs. Allergen
contact, protease activity of certain allergens, and cell damage
can result in the release of cytokines and alarmins including
IL-25, thymic stromal lymphopoietin (TSLP) and IL-33 from
epithelial cells (98). Th2 cells upregulate the receptors for these
cytokines, indicating that priming as well as re-activation of
Th2 cells is strongly promoted by those factors (99, 100).
Especially at sites of inflammation, IL-25, IL-33, and TSLP
facilitate terminal differentiation of Th2 cells and foster their
effector functions (101).

The inability of DCs to produce IL-4 has drawn the attention
to basophils, which produce substantial amounts of IL-4. Murine
basophils additionally express MHC class II as well as the co-
stimulatorymolecules CD80 andCD86, indicating that these cells
might be able to initiate the process of Th2 differentiation (102).
However, human studies failed to confirm the important role
of basophils in priming Th2 differentiation (103, 104) and later
studies have shown that inflammatory CD11b+ conventional
DCs, rather than basophils, are crucial for the initiation of
Th2 responses (105). The role of basophils in priming the
Th2 response is now explained via trogocytosis. This is a
process through which cells (in this case basophils) extract

membrane fragments from neighboring cells (in this case DCs),
thereby passively acquiring peptide-MHC class II molecules from
DCs, to control Th2 development as antigen-presenting cells
(APCs) (106).

Group 2 innate lymphoid cells (ILC2s) also play an important
role in the induction and maintenance of immune responses
mediated by Th2 cytokines. Since ILC2s do not express
rearranged antigen receptors or pattern recognition receptors,
they are mainly activated by signals derived from the epithelial
barrier, including IL-25, IL-33, and TSLP (107). Similar to
Th2 cells, ILC2s are characterized by high expression of
the transcription factor GATA3 (108), which simulates the
transcription of IL-5 and IL-13 (109, 110). In animal models
of allergic asthma, ILC2s were identified as the major source
of IL-5 or IL-13 (111). Upon stimulation with Heligmosomoides
polygyrus, ILC2s can also secrete IL-4 in a Leukotriene D4-
dependent way. Specific deletion of IL-4 from the ILC2
compartment abrogated the Heligmosomoides polygyrus-induced
Th2 response, indicating that ILC2-derived IL-4 was sufficient to
promote a Th2 response in this model (112). Thus, synergistic
effects between ILC2s and Th2 cells may be required to achieve
maximum release of Th2 cytokines.

AGGRAVATION OF ALLERGIC ASTHMA BY
INHALED AEROSOLS

Asthma can generally be described as hyperresponsiveness and
obstruction of the airways caused by chronic inflammation and
an overproduction of mucus (113). Although asthma tends to be
a lifelong condition, its severity can vary throughout the patient’s
life. Chronic inflammation is facilitated by the infiltration of
a collection of inflammatory cells including eosinophils, MCs
and CD4+ T cells (114). While T cells are known to express
Th2-type cytokines associated with the aggravation of asthma
symptoms (115–117), they can also play a role in regulating the
Th2 response and hence, alleviate allergic diseases (118–122).
Worldwide, ∼300 million individuals are affected by asthma,
with its prevalence increasing over the last decades (123, 124).
However, some studies have suggested that the prevalence of
asthma might have reached a plateau in Western countries (125–
128). Among the multiple clinically identified types of asthma,
allergic asthma is the most common (129–131).

Many different external factors have been associated with
the exacerbation of asthma symptoms, including viral infections
and exposure to air pollutants (53, 132, 133). Immunological
effects exerted by particulates heavily depend on the tested
material as their immunomodulating properties vary with
material chemistry as well as size, shape, and surface-properties
(134–137). Consequently, it is essential to evaluate individual
particulates and avoid generalizations on the basis of single
attributes. Silica NPs have been shown to increase the number
of eosinophils found in the bronchoalveolar lavage fluid (BALF)
in an ovalbumin (OVA)-asthma model (138) and to raise serum
IgE titers (139). Furthermore, enhanced AHR and modulation
of inflammatory cytokines and chemokines was observed. This
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modulation mainly consisted of an increase in the asthma-
associated cytokines IL-4, IL-5, and IL-13 in response to the
application of OVA-silica NP conjugates and was not observed
for OVA alone (140, 141). Carbon NPs have also been shown
to affect mouse asthma models. Carbon black NPs given in
conjunction with OVA increased inflammatory- and antigen-
presenting cell counts in the lung in an OVA-mouse model
(142, 143).

It is worth mentioning that silver NPs have been shown to
mitigate asthma and decrease the levels of IL-4, IL-5, IL-13, and
NF-κB in addition to lowering AHR in OVA-induced allergic
inflammationmousemodels (144, 145). Although various studies
demonstrate the suppression of allergic responses by silver NPs,
they have also been shown to increase neutrophilia and levels of
circulating TNF-α in an allergen-independent context (146, 147).
However, it is important to note that effects observed for silver
NPs could, at least in part, be attributed to the dissolved fraction
of the material, as Ag+ ions are known to be biologically active
(148, 149). In the case of lung exposure, different results were
observed between silver NPs and Ag+ ions using instillation
experiments in mice (150). These findings might be further
substantiated by a study from Seiffert et al. (151) which implied
that interactions with lung surfactant provides a stabilizing effect
on the NP surface preventing the release of Ag+ ions.

Studies on the effects of gold NPs on asthma show
contradicting results and are dependent on the asthma model
used. Gold NPs were found to increase AHR and the
neutrophil/macrophage count in BALF in a toluene diisocyanate-
induced asthma model (152). PEGylated and citrated gold NPs,
however, decreased the mucus production, cytokine levels and
inflammatory cell accumulation in the lung in an OVA-asthma
model (153, 154).

Not only single pristine particle sources can have an effect on
asthma exacerbation. It has been shown that ambient air-derived
PM2.5 can aggravate asthmatic symptoms in an OVA-asthma
mouse model. Studies have shown that PM2.5 in conjunction
with OVA increased the levels of Th2 cytokines, AHR, and
the number of eosinophils and neutrophils in BALF (155–157).
PM2.5 had been obtained by filtering ambient air followed by
up-concentration, however, the exact chemical composition was
not elucidated. One of the studies attributed the elevated AHR
to an increase in apoptosis and TIM-1 activation, which was
also witnessed in the OVA/PM2.5 group (156). Another study
has shown that prolonged exposure to high concentrations
of PM2.5 leads to an increase in AHR, which was linked to
necroptosis-induced neutrophils as well as IL-17 production
(158). PM2.5 are not only linked to the induction and increase
of asthmatic symptoms in animal models, but have also shown to
be associated with a higher frequency of emergency room visits
upon human exposure to wildfire-related particulate matter (159,
160). Moreover, controlled human exposure studies have shown
an association between DEP-allergen exposure and an increase
in IL-5, eosinophil cationic protein and airway eosinophils
(161). Interestingly, females and adults over the age of 65 years
are suggested to be more susceptible to smoke-derived PM2.5,
indicated by a comparably higher number of ER visits in these
cohorts (160).

A possible explanation for the health impacts exerted by
particulate matter, and carbon black in particular, is its potential
to modify methylation patterns. Sofer et al. (162) for instance,
have shown a correlation between carbon black and sulfate
particle exposure and changes in methylation patterns in the
asthma pathway. The identified affected genes were coding for
the high-affinity IgE receptor alpha and gamma subunits, the
major basic protein of eosinophil granules, and for IL-9 (162).
Nadeau et al. (163) also demonstrated a link between exposure
to particulate matter and methylation. In their study, exposure to
ambient air pollution was associated with hyper-methylation in
the Foxp3 locus, which impairs regulatory T cell (Treg) function
and in turn increases asthma morbidity (163).

Additionally, indoor particulates in the fine (PM2.5) and
coarse (PM10) range have been shown to directly affect asthmatic
symptoms. This was demonstrated by two different studies,
which were able to link elevated levels of indoor PM to an
increase in asthmatic symptoms and the use of rescue medication
in children (164, 165). Long-term as well as short-term exposure
to PM has an impact on the aggravation of asthmatic symptoms.
This was illustrated by a study showing a decrease in FEV1

(Forced Expiratory Volume in 1 second) and an increase of
neutrophilic lung inflammation determined in asthmatic patients
already after a 2 h walk along a polluted street in London
(166). Moreover, indoor dust biological ultrafine particles, which
are mainly composed of microbial extracellular vesicles, have
been shown to induce neutrophilic inflammation and, thus,
contribute to pathogenesis of chronic lung diseases, such as
asthma, chronic obstructive pulmonary disease, and lung cancer
(132). In this regard, extracellular vesicles in indoor dust may
be recognized as important diagnostic and therapeutic targets.
The following sections will first address the allergen-specific
and, later, the particle-related aspects of immune deviation as
well as the potential of nanomaterials as carrier platforms in
allergy treatment.

ALLERGEN-SPECIFIC IMMUNOTHERAPY

Allergen avoidance and pharmacotherapy aim to build a first line
of defense and relieve symptoms of allergy (167–169). However,
pharmacotherapy does not prevent allergic disease progression
and has to be administered as long as symptoms prevail (170),
which typically translates into life-long treatment. The efficacy
of allergen avoidance is not supported by robust evidence (171)
and is furthermore not feasible in every case (172). So far, AIT
is the only curative treatment for allergic diseases as it reinstates
immune tolerance against allergens (173).

First described by Leonard Noon and John Freeman in the
early 20th century (174), AIT is a highly effective treatment for
individuals suffering from IgE-mediated diseases (175–177). The
primary goal of AIT is the inhibition of both early- and late-phase
allergic responses, which are regulated by a plethora of cellular
and molecular events (Figure 3). Three main mechanisms are
suggested to lead to the induction of tolerance after successful
treatment, differentiating AIT from other vaccines: (i) immune
deviation toward a Th1-oriented response (and reduction of
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FIGURE 3 | Mechanisms of allergen-specific immunotherapy. Tregs produce cytokines such as IL-10 and TFG-β, which have the potential to suppress Th2

responses. Upon induction of tolerogenic DCs Th1 are mobilized at the expense of Th2 cells. They produce IFN-γ and stimulate the production of IgG4 and IgA

antibodies by means of class switching. IgG4 antibodies can block allergen-induced MCs, basophils and eosinophils and hence, limit allergic symptoms by

decreasing mediator release (178, 179).

atopy-associated Th2 responses); (ii) production of allergen-
specific IgG4 antibodies and (iii) induction of Tregs and
regulatory B cells, (173, 180, 181).

AIT can be administered to adults and children via
the subcutaneous (SCIT)- or sublingual (SLIT) route. SCIT
treatments consist of an initial up-dosing phase, in which
increasing doses of allergen are administered to carefully assess
the patient’s individual sensitivity and the maximum-tolerated
dose. This allergen dose is then continued throughout the
maintenance phase. Individual shots have to be given with a
physician present, due to the risk of adverse effects, which
can range from local site reactions to systemic reactions, such
as anaphylaxis (182). Sublingual routes for IT have been first
proposed in 1986 (183) and facilitate the mucosal deposit of
the allergen in the form of drops or dissolving tablets/capsules
under the tongue. While this route has been tested in clinical
trials in the US, only a few SLIT products have yet been
approved by the U.S. Food and Drug Administration (FDA)
(184). In general, SLIT is associated with a favorable safety profile,
lower risks and offers patients the convenience of an at-home
and injection-free administration. It has been suggested that

it requires the continuous administration of SCIT/SLIT for 3
years to achieve immunological changes consistent with allergen-
specific tolerance in allergic rhinitis, which can be sustained for
at least 2 to 3 years after treatment cessation (185).

Although AIT has been well-established and shows successful
curation of allergic rhinitis and asthma in many cases,
treatments are generally costly, time-consuming and only a
few allergens have been standardized for SCIT and SLIT.
In recent years, several novel administration routes have
been under investigation, including intralymphatic (ILIT),
epicutaneous (EPIT), and intradermal (IDIT) routes (186–189).
Furthermore, intensive research is focusing on allergoids (i.e.,
chemically modified/crosslinked allergen particles), allergen-
fragments, fusions, hybrids and biological immune response-
modifiers for new vaccines to provide a safe, persistent and life-
long cure of allergic disease (188, 190–197). In several of the
before-mentioned approaches, an interrelation between allergen-
specific and particle-related aspects can be observed. In the
subsequent chapters, we will therefore dicuss the impact of
particles on immune modulation, which is mediated by the
specific nature of the particle as adjuvants in AIT.
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MECHANISMS OF ADJUVANTS—THE
CLASSICAL CASE OF ALUMINUM
HYDROXIDE

During AIT, adjuvants are often used to modify the
immunological and pharmacological efficacy of the vaccine.
The use of adjuvants can reduce the required dose of allergen,
consequently lowering treatment cost and increasing patient
compliance (198). The first generation of adjuvants includes
mineral salts such as aluminum hydroxide (alum, i.e., particulates
>1µm) and calcium phosphate (i.e., particles in nano-micro
range), which are the prototypical and most commonly used
adjuvants. Second generation adjuvants used in vaccines include
TLR agonists, probiotics, small molecules and particulate
systems, which aim to induce a shift in the already established
immune response toward a Th1- and Treg-dominated activity
(199). Even though adjuvants have been used in allergy vaccines
since the early 20th century, the full extent of their mechanisms
of action still remains to be elucidated.

Improvement of Allergen Uptake
Adjuvants like alum, which essentially consist of particles, can
per se improve the cellular uptake of the allergen by either
acting as a delivery vehicle or by helping to efficiently target
APCs. Gupta et al. (200) report on the mechanism by which
alum-adsorbed antigens are readily phagocytosed by DCs, hence
increasing the uptake of antigen. Furthermore, NPs have been
shown to improve the uptake of antigen in bone-marrow derived
cells (BMDCs) (201), which is attributed to the small size and
large surface area of NPs contributing to their easy capture and
internalization (202).

Augmenting Immunogenicity
One of the main functions of adjuvants is enhancing the
immunogenicity of the administered allergen, i.e., to deviate
the immune response from Th2- to a Th1- and Treg-
dominated milieu, which can be measured by the resistance to
endolysosomal proteolysis (203), upregulation of cytokines such
as IL-10 (204), IL-12, IFN-γ, and downregulation of cytokines IL-
4, IL-5, IL-13 (205). Furthermore, small molecules like vitamin
D3 (206) and aspirin (207) used as adjuvants, have been reported
to induce Treg cells. Similarly, alum initiates a Th1 response
by the activation of the NLRP3 inflammasome, which further
induces the production of IgG antibodies (208). TLR4 agonists
such as monophosphoryl lipid A have been found to exhibit a
strong potential to induce allergen-specific IgG antibodies (209).
Moreover, biodegradable PLG NPs have been shown to enhance
antigen-specific immune tolerance without the induction of a
Th2 response (210).

Reduction of Antigen Dose/Number of
Immunizations Needed for Protective
Immunity
AIT doses can be decreased if the adjuvant-associated allergen
forms a depot at the site of administration, leading to its release
in a controlled fashion. Alum, as well as various particulate
delivery systems have been shown to form such depots and

deliver antigens over a long period of time. This depot effect
prolongs and sustains the allergen-specific antibody titres and,
thus, can enhance the antigen uptake and presentation (211, 212).

Although many adjuvants have been developed for vaccines,
only a few have been extensively considered for AIT (213).
Marketed allergy vaccines usually contain adjuvants like
alum, calcium phosphate, microcrystalline tyrosine, and
monophosphoryl lipid A. Table 1 lists various adjuvants used
in AIT.

Alum is approved for a wide spectrum of human vaccines
and has a long history of use, particularly in subcutaneous
immunotherapy (SCIT) (199). It is simple in preparation,
has a good stability and has been shown to enhance the
immunogenicity of allergens. During AIT, allergens are strongly
adsorbed onto the surface of alum either through electrostatic
interactions, ligand exchange or hydrophilic-hydrophobic
interactions, which lead to the formation of particulate matter
(218). This particulate matter can then be easily phagocytosed
by the APCs at the injection site, commencing the immune
reaction. Most alum preparations contain small crystalline
structures, which can destabilize lysozymes upon phagocytosis
by inducing the secretion of agents such as heat shock protein
(HSP)-70 (219), cathepsin (220), and potassium ions (221)
into the cytosol. This prompts the activation of the NLRP3
inflammasome, resulting in the secretion of pro-inflammatory
cytokines and the subsequent production of allergen-specific
antibodies (220). Alum has furthermore been shown to induce
the release of self-DNA, leading to cytotoxicity at the site of
administration (222). This release of self DNA can activate either
and IRF3-dependent or IRF3-independent pathway, resulting in
the production of allergen-specific IgG or IgE antibodies (217).

Unwanted Side Effects Associated With
Alum in AIT
While alum is generally well-tolerated in small amounts, AIT
treatments are lengthy and require frequent vaccinations (up to
16 injections within the first year of treatment) (223). Thus, there
is a greater chance of developing certain adverse reactions, such
as urticaria, myalgia, chronic fatigue and cognitive dysfunction in
susceptible individuals. There is also an increased probability for
the accumulation of aluminum salts at the site of administration,
which can lead to macrophagic myofascitis (224). In some
cases, alum has furthermore been reported to induce a Th2-
biased immune response (225, 226) and can, thus, counteract the
therapeutic mechanism of AIT.

Only a small number of studies have so far reported on
the toxicity and adverse reaction of alum in immunotherapy.
Hence, there is still a huge gap of knowledge, regarding the
safety, toxicity, andmode of action of aluminum-based adjuvants
in immunotherapy.

NANOPARTICLES—AN ALTERNATIVE
ADJUVANT TO ALUM

Targeting APC with allergens incorporated into or introduced
on the surface of NPs is an alternative approach to the use
of alum-based adjuvants for AIT (Figure 4). Due to their
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TABLE 1 | Overview on formulations in currently marketed SCIT vaccines in Europe.

Product Allergens Adjuvant Manufacturer Reference

NON-MODIFIED ALLERGEN PREPARATION

Alutard SQ® Pollen, HDM, animal

epithelia, insect venom

Alum ALK-Abello (214)

Depot-HAL® F.I.T. Pollen, HDM, animal

epithelia, molds

Alum Hal Allergy https://www.hal-allergy.com

Novo-Helisen®Depot Pollen, HDM, animal

epithelia, molds

Alum Allergopharma https://compendium.ch/mpro/mnr/1072/html

https://www.allergopharma.com/

Pangramin®Depot A

Plus B

Pollen, HDM Alum Alk-Abello https://www.alk.de

Tyro-SIT Pollen, HDM, animal

epithelia, molds

Microcrystalline tyrosine Bencard Allergie GmbH https://www.bencard.com

Venomenhal® Insect venom – Hal Allergy https://www.hal-allergy.com

CHEMICALLY MODIFIED ALLERGEN PREPARATION

Acaroid® HDM Alum Allergopharma https://clinicaltrials.gov/ct2/show/NCT00263640

Acarovac® HDM Monophosphoryl lipid A Bencard Allergie GmbH https://www.bencard.com

Allergovit ® Pollen Alum Allergopharma https://clinicaltrials.gov/ct2/show/NCT00263601

Alustal® Pollen, HDM, animal

epithelia, molds

Alum Stallergenes (215)

Alutek® Pollen, HDM, animal

epithelia

Alum Inmunotek https://www.inmunotek.com

Alxoid® Pollen, HDM, animal

epithelia

Alum Inmunotek https://www.inmunotek.com

Clustoid® Pollen, HDM, animal

epithelia

Alum Inmunotek https://www.inmunotek.com

Clustoid® Pollen, HDM Alum Roxall (216)

Depigoid® Pollen, HDM Alum Leti Pharma GmbH https://alergia.leti.com

Phostal® Pollen, HDM, animal

epithelia, molds

Alum Stallergenes (215)

Pollinex Quattro® Pollen Monophosphoryl lipid A Bencard Allergie GmbH (217)

size, NPs are efficiently taken up at the site of immunization.
Additionally, APCs have a variety of receptors on the cell
surface and their targeting orchestrates the cell activation status
and the later immune polarization. Therefore, implementation
of specific receptor ligands (e.g., carbohydrates) into vaccine
delivery systems, may not only facilitate internalization, but also
modulate the subsequent immune response.

Resident skin dendritic cells form different subsets based
on expression of surface receptors. Moreover, targeting of
specific receptors leads to specific DCs activation determining
T cell function. For example, activated epidermal Langerin+

DCs promote cytotoxic immune response and can be targeted
via DEC-205. Human dermal CD1a+ DCs express MGL
(macrophage galactose-type C-type lectin), MR (mannose
receptor), DEC-205 and DC-SIGN. Targeting of these receptors
activates DCs driving CD4+ T cell proliferation (227, 228).
CD14+ dermal DCs express high levels of DC-SIGN and
are important for generation of follicular Th cells and hence
efficient antibody production. Oral administration of vaccines
can target gut mucosal DCs. Depending on the environment,
these CD103+ DCs can be either tolergenic or pro-inflammatory
under inflammatory gut conditions (229). CD103+ CD11b+ have
also been shown to be critical for Th17 induction (230). Thus,

tailor made immune responses can be induced by targeting
specific DC subsets via their respective receptors. Amore detailed
discussion on the link between DCs and T cell functions can be
found elsewhere (231).

Nanomaterials are convenient systems for the introduction of
functional modifications and are able to combine antigenic and
adjuvant properties.

Due to their different physical and chemical properties,
NPs have the ability to improve the efficacy of AIT. Here we
discuss different particle types currently in either the preclinical
or clinical testing phase (e.g., glycoconjugates and virus-like
particles) and their potential for immunotherapy.

Carbohydrate Nanoparticles
Polysaccharides are components of fungal and bacterial cell
walls and are recognized by receptors on APCs, which in
turn induce strong immune responses against these pathogens.
Allergy vaccines containing carbohydrates—ligands of innate-
immune receptors—are more efficiently taken up by APCs, not
only due to their receptor-mediated internalization, but also their
particulate nature. Additionally, via specific receptor targeting,
allergen carbohydrate NPs induce stronger responses compared
to native proteins and can modulate the immune polarization.
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FIGURE 4 | Dendritic cell-targeting by different nanoparticles. Novel approaches intend to increase immunogenicity (green arrow in box) and decrease allergenicity

(red arrow in box) of the nano-fromulated vaccines (i.e., virus-like NPs, copolymer, and peptide-based polymeric NPs and carbohydrate NPs) taken up by DCs

through receptor-mediated phagocytosis. Allergen encapsulation and increased uptake shall render vaccines hypoallergenic (i.e., inhibition of MC degranulation, red

arrow in box) and more immunogenic (green arrow in box), hence, improving the overall efficacy of AIT.

Chitosan NPs have been shown to induce Th1 responses
when administered via different routes. In prophylactic mouse
experiments, oral immunizations with chitosan and plasmid
DNA encoding the allergen induced a Th1 response and
protected from subsequent allergen challenge. Chitosan particles
mainly accumulated in Peyer’s patches and likely were taken
up by M cells (232, 233). Intranasal and oral therapeutic
administrations of allergen-chitosan particles furthermore
improved lung function in sensitized mice (201, 234). Similarly,
sublingual allergen-maltodextrin formulations reduced AHR
and Th2 responses in OVA-allergic mice (235). The authors
suggest that oral Langerhans-like dendritic cells internalize the
modified allergen and subsequently prime T lymphocytes in
cervical lymph nodes.

Allergen neoglycoconjugates containing mannan were found
to render the vaccine hypoallergenic, and to inducemixed Th1/17
immune responses after epicutaneous immunization. Bet v 1
neoglycoconjugates were tested in human skin explants and
preferentially activated CD14+, CD14+ CD1a+ and CD14−

CD1a− DC subsets as well as Langerhans cells. As CD14+

DCs overexpress mannose receptor, conjugates were most likely
internalized via this C-type lectin receptor. Additionally, Bet v
1-mannan activated complement, which can enhance uptake via

complement receptors (236). Animals treated intradermally with
the mannan-modified allergen papain displayed significantly
higher antigen-specific IgG titers in sera and showed the lowest
induction of IgE responses compared to unconjugated allergen.
MHC IIhigh CD8α+ DCs were efficiently targeted by these
conjugates (237). Mannose glycodendropeptide nanostructures
conjugated with Pru p 3 peptide protected sensitized mice
from anaphylactic shock after sublingual applications (238). The
protection was provided due to a decreased Th2 and increased
Th1/Treg responses. Subcutaneous injections of allergoid-
mannan conjugates for the treatment of canine atopic dermatitis
resulted in a clear clinical improvement of the disease. The
conjugates were shown to be internalized by human monocyte-
derived dendritic cells via C-type lectin receptors (239, 240).
Mannan neoglycoconjugates and allergoids of grass pollen and
mites are currently in phase II clinical trials of sublingual and
subcutaneous immunotherapy (241).

Copolymer Nanoparticles
Encapsulating allergen in biodegradable polymeric NPs provides
a better safety profile during immunizations and activates the
uptake by APCs, thus enhancing cellular and humoral responses
(242). Poly(lactic-co-glycolic acid) (PLGA)-based drugs are
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approved by the FDA and the European Medical Agency for
subcutaneous, intramuscular and oral administration. In a model
of murine allergic rhinitis induced by the pollen allergen Che a 3,
animals were treated with recombinant Che a 3 incorporated into
PLGANPs (243, 244). In both studies, sublingual AIT with PLGA
NPs resulted in the eradication of allergic rhinitis symptoms
and induced Th1/Treg responses. Liu et al. (245) targeted liver
sinusoidal endothelial cells with surface-modified PLGA NPs
to induce tolerance against ovalbumin in a murine asthma
model. In a murine cow’s milk allergy model, prophylactic oral
applications of beta-lactoglobulin-derived peptides incorporated
into PLGA NPs induced tolerance to the whole whey protein
after sensitization (242). In SLIT nanoparticles are captured
within sublingual mucosa by Langerhans-like dendritic cells
(246) and swallowed allergen is later taken up byM cells in Peyer’s
patches (244).

Polyanhydride is a copolymer of methyl vinyl and maleic
anhydride (PVMA) and it is marketed as Gantrez R©. The material
is biocompatible and provides sustained release (247). When
used in oral administrations, it can protect the allergen from
enzymatic degradation and prolong the duration of allergen
contact with the mucosa (199). Furthermore, PVMA carriers
have been shown to target TLR2- and TLR4-inducing DC
maturation and Th1 induction (248). In two recent studies,
sensitized mice were treated with peanut extract encapsulated
in Gantrez R© NPs (199, 249). Treated mice displayed higher
survival rates after allergen challenge compared to non-
treated and allergen extract-treated groups. Another nut-related
allergy study used cashew allergen-loaded polyanhydride NPs
for oral immunizations. After a single dose, NPs induced a
higher Th1/Th2 ratio and increased Treg cell count. Likely,
polyanhydride nanoparticles interacted with immune cells within
Peyer’s patches (249).

Peptide-Based Polymeric Nanoparticles
γ-PGA is a bacterial exopolymer, which is used with L-
phenylalanine ethylester to generate self-assembling NPs. The
carriers are biodegradable and due to their nature, directly
target DCs and induce APC maturation. After i.v. injection,
nanoparticle internalization was highest in CD11c+ and CD11c+

CD8+ splenic DCs (250). γ-PGA NPs loaded with recombinant
Phl p 5 expanded allergen-specific IL-10-producing memory
T cells when incubated with human monocyte-derived DCs.
Nanoparticles were preferentially internalized by myeloid DCs
(mDCs), but not plasmacytoid DCs. TLR2 and TLR4 played
an important role in the maturation of mDCs induced by γ-
PGA NPs (251). The authors of this study suggested the use of
γ-PGA NPs also for intranasal immunotherapy. However, oral
administration should be considered with caution, since γ-PGA-
containing foods (e.g., fermented soybeans) may cause late-onset
anaphylaxis (252).

Protamine is a 4 kDa-cationic peptide, which is commonly
used to design carriers for cancer therapy (253, 254). Pali-
Scholl et al. (255) used protamine NPs doped with the TLR9
ligands CpG-oligodeoxynucleotides, so-called proticles, for anti-
allergy immunizations. Proticles were efficiently taken up by
BMDCs and activated them. In vivo, proticles formed a depot at

the injection site and subcutaneous immunotherapy of peanut-
allergic mice resulted in a modulation of the immune responses
toward Th1.

Virus-Like Nanoparticles
Virus-like nanoparticles (VLP) are derived from viral
capsid proteins and are often used for allergen-specific
immunotherapy in conjunction with adjuvants such as CpG
oligodeoxynucleotides (256), or more recently, tetanus epitopes
(257). A series of clinical studies with allergen extracts and CpG
oligodeoxynucleotides in bacteriophage QβG10 coat proteins
(CYT003) were performed by Cytos Biotechnology (258, 259).
The vaccine was well-tolerated by sensitized individuals without
any severe adverse effects and alleviated allergic symptoms after
10 weeks of AIT. However, in later studies the company focused
on unspecific treatment of asthma with CYT003 (without
allergen extract) and failed to demonstrate efficacy in a phase II
clinical trial (260). Kratzer et al. (261) delivered Art v 1 allergen
packed in a VLP-envelope from Moloney murine leukemia virus
(MA::Art v 1 VNP). Preventive capacity of the nanoparticles was
tested in humanized mouse model of mugwort pollen allergy.
After intranasal application, these VLPs targeted CD103+ DCs in
lung and alveolar macrophages resulting in Th1/Treg responses
that had a protective effect on subsequent sensitization with
mugwort pollen extract.

Inorganic Nanoparticles
Inorganic NPs based on silicon dioxide carriers have displayed
potential for AIT. They are physically and thermally stable, can
have a wide range of possible chemical modifications on their
surface, and can be produced in a size range of 3 to several
hundred nanometers (262). Silica NPs can either have a solid core
with a functionalized surface, or be mesoporous, i.e., have the
ability to adsorb protein internally and may provide sustained
release of the antigen (263). Mesoporous silica NPs associated
with Der f 2 have been studied in a murine HDM allergy
model. Subcutaneous injections have shown a preventive effect
with a decreased Th2 response and boosted Th1 immunity with
elevated allergen-specific IgG levels (264). However, safety of
inorganic nanoparticles is still under debate and this may prevent
implementation of this method in the clinic (265).

Clinical Outlook
Chitosan, γ-PGA nanoparticles and proticles were successfully
tested in animal models, but no new studies have been published
in the last 7 years. PLGA- and PVMA-based allergen-specific
immunotherapy has shown positive results in pre-clinical animal
models in the last 2 years. However, no data on ongoing clinical
studies is available. Two types of nanoparticles which made their
way to the clinics are mannan conjugates and VLPs. Clinical
trials with empty VLPs did not show any efficacy and were
discontinued. New types of VLPs, MA::Art v 1, have not been
tested in the clinics yet.

Subcutaneous and sublingual administration of
hypoallergenic mannan glycoconjugates were efficient in
animal models of allergic sensitization and currently are in
phase 2 clinical trials (241). Preclinical studies with carbohydrate
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nanoparticles have shown that this approach can be further
improved by the use of skin as immunization site. In contrast to
hypodermis, where subcutaneous vaccinations are performed,
epidermis and dermis are rich in APCs. I.d. injection or
epicutaneous application via laser-generated micropores (189)
allows direct activation of dermal DCs by nanoparticles (237).
The synergy of particulate allergen conjugates targeting C-type
lectin receptors on dermal DCs with delivery to superficial skin
layers (236) may greatly improve existing approaches of AIT.
Additionally, substitution of s.c. injections with epicutaneous
application and shorter treatment protocols may improve patient
compliance for anti-allergic immunizations.

CONCLUDING REMARKS

Much has been learned about the properties of individual
allergens and about general factors that are associated with
increased prevalence of allergic diseases. Still, it is not understood
why a particular person develops sensitivity against a specific
allergen. Allergy is a multifactorial disease and its induction
involves bystander factors, among which particles play an
important role: They promote uptake into cells, can carry

a multitude of chemicals as cargo and offer a platform to
achieve high local concentrations of effectors. Understanding
the complex interplay between particles and allergens will be
essential for fully elucidating the genesis of allergy as well as for
developing new generations of therapeutics.
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