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Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by an

autoimmune response in the joints and an exacerbation of cytokine responses. A

minority of patients with RA experience spontaneous remission, but most will show

moderate/high disease activity, with aggressive joint damage and multiple systemic

manifestations. There is thus is a great need to identify prognostic biomarkers for disease

risk to improve diagnosis and prognosis, and to inform on the most appropriate therapy.

Here we focused on suppressor of cytokine signaling 1 (SOCS1), a physiological negative

regulator of cytokines that modulates cell activation. Using four independent cohorts of

patients with arthritis, we characterized the correlation between SOCS1 mRNA levels

and clinical outcome. We found a significant inverse correlation between SOCS1 mRNA

expression and disease activity throughout the follow-up of patients with RA. Lower

baseline SOCS1 levels were associated with poorer disease control in response to

methotrexate and other conventional synthetic disease-modifying anti-rheumatic drugs

in early arthritis, and to rituximab in established (active) RA. Moreover, we identified

several single nucleotide polymorphisms in the SOCS1 gene that correlated with SOCS1

mRNA expression, and that might identify those patients with early arthritis that fulfill

RA classification criteria. One of them, rs4780355, is in linkage disequilibrium with a

microsatellite (TTTTC)3−5, mapped 0.9 kb downstream of the SNP, and correlated with

reduced SOCS1 expression in vitro. Overall, our data support the association between

SOCS1 expression and disease progression, disease severity and response to treatment

in RA. These observations underlie the relevance of SOCS1 mRNA levels for stratifying

patients prognostically and guiding therapeutic decisions.
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INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disease
characterized by chronic inflammation in diarthrodial joints. RA
is known to have a very heterogeneous clinical course with a
period of preclinical disease, and can be classified in several
phases, from the initial genetic and environmental risk factors for
RA, to the development of autoimmunity, arthralgia symptoms
and inflammatory arthritis, and finally to established RA (1).

A small number of patients with inflammatory arthritis
experience spontaneous resolution of symptoms, and some
have a mild disease course with slow progression, which is
diagnosed as undifferentiated arthritis (UA). Most patients with
inflammatory arthritis nonetheless fulfill the European League
Against Rheumatism (EULAR) 2010 criteria for RA and develop
moderate-to-high disease activity and aggressive joint damage,
often with systemic complications. In this scenario, clinical
trials (2, 3) and daily clinical practice (4) have confirmed
that early treatment with disease-modifying anti-rheumatic
drugs (DMARDs) improves the outcome patients with early
RA. To avoid the generalized use of aggressive therapies
that could expose patients to unjustified risks of side effects
and whose cost would needlessly burden National Health
Services, much effort has been made to identify prognostic
biomarkers for disease risk, to improve diagnosis and prognosis
and to help guide the most appropriate therapy for each
patient (5).

Cytokines were originally identified as soluble messengers in
the context of the immune system, but are now known to be
released by myriad cell types with multifunctional actions on cell
proliferation, survival, apoptosis, differentiation and activation.
Based on their role in the immune response, cytokines are
classified as either pro- or anti-inflammatory (6), and some
have key functions in different stages of RA (7). Cytokines
act by engaging specific receptors constitutively associated with
the Janus family tyrosine kinase–signal transducer and activator
of transcription (JAK–STAT) signaling pathway. Upon ligand
binding to receptors, JAKs are activated by transphosphorylation,
and phosphorylate both the receptor and members of the STAT
family of transcription factors. In turn, activated STATs dimerize
and translocate to the nucleus to regulate gene expression (8).
Dysregulated activation of the JAK–STAT pathway is associated
with many diseases, including autoimmune disorders such as
RA (9).

Cytokine-mediated signaling pathways are controlled
precisely at several levels, including activation of phosphatases,
upregulation of proteins that interfere with STAT binding to
DNA, and expression of SOCS (suppressor of cytokine signaling)
proteins, which suppress JAK activity, prevent STAT recruitment
to the receptor, and induce substrate degradation (10–12).
The SOCS proteins constitute a family of intracellular proteins
comprising eight members that, among other processes, regulate
cytokine-triggered signaling and cell activation status (13).
While a recent genome-wide meta-analysis failed to identify
a significant association between RA and SOCS1 (14), SOCS1
mRNA levels are significantly increased in peripheral blood
T-cells and in synovial membranes of RA patients as compared

with patients with osteoarthritis (15), pointing to a possible role
for SOCS1 in RA.

In the present study, we used four independent cohorts of
patients with arthritis to test for associations between SOCS1
expression and RA. We observed an inverse correlation between
SOCS1 mRNA expression levels and disease activity, with
lower baseline SOCS1 levels associating with poorer disease
control. Genotyping analysis identified several single nucleotide
polymorphisms (SNPs) in the SOCS1 gene that associate with
RA development and with response to treatment. Finally, in vitro
expression analysis indicated that the minor allele of one of these
SNPs, rs4780355, correlated with reduced SOCS1 expression,
supporting a functional relationship between this SNP and
disease progression.

PATIENTS, MATERIALS, AND METHODS

Study Populations
Princesa Early Arthritis Register Longitudinal (PEARL)

Study
The PEARL study includes patients referred to the Early Arthritis
Clinic at the Hospital Universitario La Princesa, Madrid (Spain)
(16). Inclusion criteria were at least one swollen joint and
symptoms for < 1 year. The register protocol included the
collection of socio-demographic, clinical, and therapeutic data,
as well as samples obtained in four scheduled visits (baseline,
6, 12, and 24 months). At the 24-month visit, a diagnosis of
RA was established definitively based on the 1987 American
College of Rheumatology criteria (17) as opposed to chronic UA
(18) (Table 1). The PEARL study was approved by the Ethics
Committee for Medical Research (CEIM, Hospital Universitario
La Princesa. Instituto de Investigación Sanitaria La Princesa,
Madrid; PI-518). All patients gave written informed consent.
From the PEARL register, we selected both discovery and
validation populations (Supplementary Table 1, Studied), The
discovery group included patients that did (RA) or did not
(UA) fulfill RA criteria at the end of follow-up, whereas the
validation group included more stringent criteria for inclusion
and all patients fulfilled the 1987 RA criteria at the end of follow-
up. The main characteristics of the two groups are shown in
Supplementary Table 2.

Leeds Cohorts
Leeds patients (Table 1) were included in two cohorts. The
first cohort included 74 DMARD-naïve patients with early
RA fulfilling the 2010 EULAR criteria that were selected
from a prospective Early Arthritis Register (Table 1) and
were treated in a standardized fashion with methotrexate
at 15 mg/week, increasing to 25 mg/week over 8 weeks if
remission was not achieved. Additional DMARDs (sulfasalazine
or hydroxychloroquine) were used if low disease activity was
not achieved by 3 months. The DAS28 (Disease Activity Score
including a 28-joint count) was used as a 6-month outcome to
classify response, with a DAS28 score <2.6 defining remission.
The second cohort included 64 patients with established RA
who showed an inadequate response to classic/synthetic DMARD
treatment and were treated with rituximab (Table 1). Approval
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TABLE 1 | Baseline characteristics of the populations studied.

PEARL study (n

= 456)

LEEDS (n = 74)

early RA

LEEDS (n = 64)

established RA

Female; n (%) 361 (79%) 56 (76%) 52 (81%)

Age* (years) 55 (44–67) 53 (43–73) 58 (48–67)

Disease duration

(months)*

5.4 [3.0–8.5] 6.5 (4–13) 84 (36–204)

RF positive; n (%) 243 (53%) 37 (50%) 64 (100%)

ACPA positive;

n (%)

220 (49%) 44 (60%) 64 (100%)

DAS28* 4.5 [3.4–5.6] 4.3 (3.15–5.4) 5.7 [4.8–6.3]

HAQ* 1 [0.5–1.625] na na

n, number; *median and interquartile range; RA, rheumatoid arthritis; RF, rheumatoid
factor; ACPA, anti-citrullinated protein antibodies; DAS28, disease activity score
calculated with the 28 joint count; HAQ, health assessment questionnaire; na,
not available.

for the study with the Leeds cohorts was obtained from the North
East Yorkshire Research Ethics Committee (PI: 07/S0703/68,
10/H1307/138). Written informed consent was obtained from
all patients.

DNA Extraction, qRT-PCR, and PCR
For all samples, peripheral blood mononuclear cells (PBMCs)
were isolated by Ficoll density gradient centrifugation
(Histopaque-1077, Sigma-Aldrich, USA). For the PEARL
study samples, total RNA (2 µg) obtained using the TRI
Reagent (Sigma-Aldrich) was reverse-transcribed using the
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, USA). For the Leeds samples, RNA was extracted
using a standard guanidium/phenol method and first-strand
cDNA was synthesized using a High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher, USA).

For SOCS1 analysis, and in order to confirm an amplification
efficiency ∼2, three 1:4 serial dilutions of each cDNA
(corresponding to ∼5 ng, 1.25 ng and 0.31 ng of the original
RNA per well) were amplified in triplicate by qRT-PCR on an
ABI PrismHT7900 sequence detection system using SYBRGreen
PCR Master Mix (both from Applied Biosystems) and 0.3µM of
the following primers:

SOCS1.5′: ACCCCGTCCTCCGCGACTAC; SOCS1.3′:
TCCGCTCCCTCCAACC CAGG; β-actin.5′: AGCG
AGCATCCCCCAAAGTT; β-actin.3′: GGGCACGAAGGCT
CATCATT; GAPDH.5′: AGAAGGCTGGGGCTCATTTG;
GAPDH.3′: AGGGGCCA TCCACAGTCTTC; HPRT1.5′:
ACCAGTCAACAGGGGACATAAAAG; HPRT1.3′: GTCTGC
ATTGTTTTGCCAGTGTC. For relative quantification, the
higher template concentration (5 ng) of each sample was used,
normalized against the expression of ACTB and with the mean
value obtained from 40 healthy donors (2−11Ct) (19). GAPDH
was used as a second internal control to validate ACTB levels.
The same primers were used for SOCS1 in samples from the
Leeds study, and HPRT was used as a housekeeping gene:
HPRT.5′: GGAAAGAATGTCTTGATTGTGGAAG; HPRT.3′:
AAGGAACCAGTCC GTCATATTAGG.

For in vitro phytohemagglutinin (PHA; Sigma, Spain)
activation assays, ACTB and HPRT1 were used in a similar
manner, although in this case normalization againstHPRT1 levels
was used for the figures shown here.

SOCS1 expression in the PEARL-validation group was
analyzed using the Roche RealTime ready Custom Panels 384
and LightCycler 480 Probes Master with pre-plated primers
from a Universal Probe Library (Roche, Germany). Assays were
performed in triplicate and results were normalized to ACTB
expression levels.

SOCS1 Genotyping
The Immunochip array on the Illumina iScan System (Illumina
Inc., USA) was used to genotype 261 patients from the PEARL
study. The chip array includes 196,000 SNPs with genetic
positions according to the NCBI build 36 (hg18) map (Illumina
manifest file Immuno_BeadChip_11419691_B.bpm). To control
batch effects, stringent quality controls were applied to datasets
prior to the final analysis. Raw data from Immunochips were
filtered using PLINK v1.07 software as follows: low-quality
SNPs were discarded when call rates were <95%, minor allele
frequencies (MAFs) <0.01, and deviation from the Hardy-
Weinberg equilibrium p < 0.001. Samples were also discarded
when they showed <90% of successfully called SNPs. Ten SNPs
were selected for subsequent genotyping in the 571 remaining
PEARL early arthritis patients. The selected SOCS1 genetic
variants (rs11074956, rs181582, rs149597, rs2021760, rs4780355,
rs193779, rs243327, rs1559392, rs3844576, and rs243323)
were genotyped using predesigned TaqMan probes (Applied
Biosystems, assay ID: C___3189858_10, C___1004298_10,
C___3189853_10, C__11185228_10, C___3189846_10,
C___1004284_10, C___3189840_10, C___9697634_10,
C___3189819_10, C___3189829_10, respectively). After
PCR, the genotype of each sample was attributed automatically
by measuring allele-specific fluorescence on a CFX Touch
Real-Time PCR System using CFX 3.1 Manager (BioRad, USA).
Duplicate samples and negative controls were included to verify
genotyping accuracy.

PBMC Activation
To resolve the problem of the small volume of available
blood obtained from patients, we first determined the optimal
experimental conditions to activate PBMCs from both healthy
donors and patients with RA. PBMCs were isolated as described
and were activated with PHA (5µg/ml). A peak of SOCS1
transcription was detected between 2 and 4 h post-stimulation,
followed by a decline and then a second peak at ∼16 h. We
included NF-kB as an activation marker, as it is well-known
to regulate inflammatory genes and cytokine production (20).
Because the second upregulation peak might be the result
of responses to multiple cytokines secreted by the distinct
PBMC populations, we selected the early stimulation peak for
comparative analysis.

Thus, PBMCs from patients, healthy donors or, when
required, buffy coats, were isolated as above, seeded at 106

cells/ml, and stimulated with 5µg/ml PHA for 3 h (21). Cells were
then harvested for RNA extraction.
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Luciferase Assay
Genomic DNA that included the SOCS1 polyadenylation signal
and downstream sequences was cloned from DNA of buffy coats
from healthy donors. Two clones with the rs4780355 minor
allele (C) and two with the major allele (T) were selected for
expression assays. A 790-base pair (bp) fragment comprising
68 bp upstream of the polyadenylation signal and rs4780355
(located 435 bp downstream), and a second fragment of 2.1
kbp with the same 5′ end and containing (TTTTC)3−5 located
at 0.9 kbp 3′ of rs4780355, were PCR-amplified, individually
cloned and sequenced verified. The fragments were cloned into
the psiCHECK-2 vector (Promega, USA), between the Renilla
luciferase coding sequence and its synthetic polyA site. The
psiCHECK-2 plasmid has two different luciferase genes (Firefly
and Renilla) driven by distinct promoters: the Renilla gene
serves as a reporter, whereas the Firefly gene acts as an internal
control. Plasmids were electroporated into Jurkat cells, which
were cultured for 24 h (37◦C, 5% CO2) and harvested. Cell
lysates from 1–3 × 104 cells were analyzed for Renilla and
Firefly luciferase activity using the Dual Luciferase Reporter
Assay System (Promega) and data were normalized to Firefly
luciferase activity.

Statistical Analysis
Statistical analyses were performed using Stata 14 for Windows
(Stata Corp LP, USA) and Graphpad Prism 6 for Mac (GraphPad
Software Inc., USA). Normally-distributed quantitative variables
were expressed as the mean ± standard deviation, and non-
normally-distributed variables were expressed as the median
and interquartile range (IQR). In case of normal distribution,
bivariate analyses were performed using a t-test; Mann-
Whitney U, Kruskal-Wallis or p-trend tests were used for
non-normally distributed variables. The χ2 test was used for
qualitative variables.

Variables
SOCS1 gene expression, expressed as 2−11Ct, does not show
a Gaussian distribution, and so data were normalized through
logarithmic transformation. When required, a variable SOCS1
baseline was used corresponding to low levels (low SOCS1),
defined as those of samples from the baseline visit (PEARL
or Leeds populations) below percentile 25 of their respective
whole population.

Disease activity at the end of follow-up was defined by DAS28
cut-off values (22). In the case of the PEARL study, the EULAR
response (22) was determined at visits at 6, 12, and 24 months
relative to the baseline visit. A dichotomic variable “response” was
developed for logistic regression by joining good and moderate
EULAR responses.

Diagnosis at the end of follow-up in the PEARL population
was expressed as a dichotomic variable between UA and RA as
described above (see the Study Populations section).

Analyses
Cuzick’s test was used to study SOCS1 evolution during follow-up
and its association with disease activity level.

As several variables can contribute to slight modifications
in SOCS1 expression, the descriptive analyses were followed by
multivariate analyses based on generalized estimating equations
(GEE) nested by patient and visit, using the xtgee command
of Stata. This model allows a better-adjusted SOCS1 value for
each patient. Briefly, we used multivariate models by adding all
variables with p< 0.20 in the bivariate analysis. This was followed
by manual backward-stepwise selection to fit the final models by
sequentially removing variables with p> 0.20, except the variable
diagnosis that was forced since UA was included only in the
discovery subpopulation.

To select the most relevant SNPs from the 10 identified as
representative of genetic heterogeneity in the SOCS1 region,
we used three independent models of logistic regression with
the following dependent variables: (a) low SOCS1 expression at
baseline visit adjusted by the relevant variables that affect SOCS1
expression, selected according to the longitudinal multivariate
model (age, diagnosis, glucocorticoid treatment, disease activity
level, and hemoglobin); (b) diagnosis at the end of follow-up;
and (c) therapeutic response at the 12-month visit, adjusted
by the variables that affect DAS28 (age and sex) (23). As the
studied population showed a very heterogeneous background,
we performed a sensitivity analysis based on ethnicity (not
shown). No differences were observed after this adjustment,
indicating the ancestry of the population does not contribute to
the expression of SOCS1, independently of the contribution of
the SNPs described here.

RESULTS

Patient Characteristics
Baseline characteristics of patients are listed in Table 1. In the
PEARL register, 71% of patients fulfilled the criteria for RA at the
end of 2-year follow-up, whereas 29% were considered to have
UA. The Leeds population included 74 DMARD-naïve patients
with early RA and 64 patients with established RA.

All PEARL study patients were genotyped for various SNPs
in SOCS1 (see Methods), but only a subpopulation (n = 143)
with full follow-up and high-quality mRNA samples was used
for SOCS1 expression analysis (Supplementary Table 1; studied
population). No significant differences were observed in the
disease characteristics between patients studied and not studied,
which indicates that the studied population is fully representative
of the entire register (Supplementary Table 1).

Low Baseline SOCS1 Expression as a
Biomarker of Disease Severity in Patients
With Inflammatory Arthritis
Using blood samples collected at different visits (n = 143
total), we studied SOCS1 expression in 104 patients from the
PEARL register (discovery group; see Supplementary Table 2 for
baseline characteristics). Despite a significant decrease in disease
activity as a result of treatment adjusted over time (Figure 1A,
Supplementary Table 3), we observed a significant reduction in
SOCS1 mRNA expression during follow-up of patients with UA
(Figure 1B; p = 0.013), but no significant changes in SOCS1
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FIGURE 1 | Differential SOCS1 expression throughout follow-up of patients with early arthritis by final diagnosis: discovery population. (A) Evolution of disease activity

by diagnosis (rheumatoid arthritis [RA]: solid dots; undifferentiated arthritis [UA]: empty dots). (B) Variation of SOCS1 expression throughout follow-up in patients with

RA (solid dots) or UA (empty dots). (C,D) SOCS1 expression according to disease activity (DA) assessed by DAS28 in visits of patients with RA (C) or UA (D). Data

shown for mRNA SOCS1 levels normalized to ACTB and to mean SOCS1 expression levels in healthy donors (2−11Ct). Error bars show medians and interquartile

range. Statistical significance was determined with Cuzick’s non-parametric trend test. RA patients, n = 70; UA patients, n = 34; healthy donors, n = 40.

mRNA expression in patients with RA. When patients were
classified by the DAS28 score (remission, low, moderate or high
activity) and after pooling all visits, those with RA showed no
difference in SOCS1 expression (Figure 1C), whereas a significant
direct correlation between SOCS1 levels and disease activity was
observed for patients with UA (Figure 1D; p= 0.027).

In light of these observations, we replicated the study in a
second PEARL group engaged in the 2011–2014 period. This
patient group used more stringent criteria, and included only
those patients with definite RA classification according to the
1987 criteria (17), and for whom sample availability included
baseline and ≥2 visits (validation group; n = 39, 111 samples;
see Supplementary Table 2 for baseline characteristics).
Analysis of these samples confirmed a decrease in disease
activity (Supplementary Figure 1A) that did not correlate
with a reduction in SOCS1 expression either when patients were
classified by follow-up visit number (Supplementary Figure 1B),
by DAS28 score, (Supplementary Figure 1C), or when
considered globally (Supplementary Figure 1D).

We detected some significant differences between the
discovery and validation groups for sex, diagnosis, rheumatoid

factor (RF) and antibodies to anti-citrullinated proteins (ACPA),
likely due to the relatively low number of patients with definite
RA in the validation group (Supplementary Table 2). As these
variables could act as confounders in the analysis, we reanalyzed
the pooled data using a longitudinal multivariate model nested
by patients and visits. SOCS1 expression was significantly lower
in patients older than 65 years, as well as in those with increased
hemoglobin levels (Table 2). Glucocorticoids treatment and
patients with UA tended to associate with higher SOCS1
expression (Table 2). The model adjusted by the aforementioned
confounders showed significantly lower SOCS1 mRNA levels
in samples from visits with moderate or high disease activity
compared with those of patients in remission (Table 2). The
correlation of SOCS1 values with those variables included in
the multivariable analysis (age, glucocorticoids, disease activity
and hemoglobin) is shown in Supplementary Figures 2A–D,
and information on SOCS1 levels in RA vs. UA is included in
Supplementary Figure 2E.

We hypothesized that patients with low SOCS1 expression
and high disease activity at baseline might coincide with those
unable to achieve adequate control of disease at follow-up.

Frontiers in Immunology | www.frontiersin.org 5 June 2020 | Volume 11 | Article 1336

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lamana et al. SOCS1 Levels Predicts RA Severity

TABLE 2 | Variables that affect SOCS1 expression: multivariate analysis

performed in the pooled PEARL population.

Variable Value β-coefficient Standard

error

p-value

Age at disease

onset (years)

<45 Reference – –

45–65 0.96 0.93 0.306

>65 −10.28 3.07 0.001

Hemoglobin (gr/dl) −6.44 1.75 <0.001

Glucocorticoids

treatment

No Reference – –

Yes 2.23 1.42 0.116

Diagnosis Rheumatoid

arthritis

Reference – –

Undifferentiated

arthritis

7.27 7.55 0.336

Disease activity Remission Reference – –

Low −6.70 14.31 0.640

Moderate −14.98 3.92 <0.001

High −6.93 1.59 <0.001

We thus tested whether low SOCS1 levels at baseline (values
below the 25th percentile) were associated with higher disease
activity after 2 years. In the combined PEARL patient subsets
(n = 143), our analysis showed a trend for higher disease
activity after 2 years in patients with low SOCS1 expression at
baseline (Figure 2A, p = 0.053). The lack of significance was
not unexpected given the heterogeneity of the cohorts evaluated.
PEARL is a longitudinal observational register and includes
patients with different treatments and even with intensified
treatments in cases when the disease was not under control.

SOCS1 Expression and Response to
Therapy
Disease activity, a parameter strongly influenced by patient
treatment, was heterogeneous throughout the PEARL follow-
up (Supplementary Table 3). We nevertheless evaluated the
potential of baseline SOCS1 expression to predict EULAR
response at 6-, 12-, and 24-months of follow-up. Responder
patients with lower SOCS1 mRNA levels at baseline showed
poorer EULAR response rates in the three visits, although this
was statistically significant only at the 12-month visit (Figure 2B;
p= 0.010).

Data from the independent early, drug-naïve, Leeds RA
cohort (n = 74) treated according to the treat-to-target protocol
(i.e., the achievement of remission (24) with synthetic DMARDs
(methotrexate dose escalation) confirmed that low SOCS1
baseline expression was associated with inability to achieve
remission at 6 months (Table 3, p = 0.036). Receiver operating
characteristic curve analysis (Supplementary Figure 3)
demonstrated an area under the curve of 0.644 (95% confidence
interval 0.514–0.775) for predicting remission. A regression
analysis (Supplementary Table 4) showed the best predictive
model (achieving 73% accuracy) used 4 variables (Age, TJC,

CRP and SOCS1) although replacing TJC/CRP by DAS28 in
a second model improved the regression but had no effect on
accuracy. An AUROC analysis of the variables retained in the
regression (Supplementary Table 5) showed that SOCS1 was the
second best predictor of remission after TJC in this small early
RA cohort (sensitivity/specificity 56%/67%, odd ratio 1.73, and
positive/negative predictive value 78%/64%).

The association between SOCS1 expression and response to
treatment was further investigated with the 64 patients from
Leeds with established RA who were treated with rituximab
(Table 3). This analysis revealed only one significant association
between non-response to treatment and low baseline SOCS1
levels in this small cohort (Figure 2C, p= 0.049). Baseline SOCS1
levels also differed significantly depending on EULAR response
classification 6-months post-rituximab treatment (Figure 2D;
p= 0.050).

The rs4780355 Polymorphism in the SOCS1
Sequence Associates With Reduced
SOCS1 Expression
Given the potential clinical relevance of determining SOCS1
mRNA levels in early RA, we tested whether genetic variability in
the SOCS1 gene and adjacent areas influences SOCS1 expression
and clinical parameters. Immunochip data (25) extracted for
SNPs near the SOCS1 gene and also located at the two intergenic
regions gave a total of 47 SNPs. We generated a linkage
disequilibrium plot using Haploview software and defined three
haplotype blocks of 2, 4 and 12 kb (Supplementary Figure 4).

After linkage disequilibrium analysis, 10 SNPs representative
of the genetic variability in the SOCS1 gene and adjacent
areas (rs11074956, rs181582, rs149597, rs2021760, rs4780355,
rs193779, rs243327, rs1559392, rs3844576, and rs243323) were
selected for subsequent genotyping in PEARL patients using
predesigned TaqMan probes. The 10 SNPs were studied for
association with baseline low SOCS1 mRNA, RA diagnosis at
the end of follow-up, and response to treatment at 12 months
of follow-up (Supplementary Table 6). The minor allele of four
of these SNPs tended to associate with low SOCS1 expression;
and another two SNPs with high levels at baseline (p < 0.150;
Supplementary Table 6). We observed that from the four SNPs
whose minor allele was associated with low SOCS1 expression,
two were also linked to a higher odds ratio of RA diagnosis (p
< 0.150), and one of these two (rs4780355) was linked to poor
response (p < 0.150) (Supplementary Table 6), suggesting that
this SNP might predict a poorer clinical course in patients with
early arthritis. Regarding the relaxed p-values considered in these
analyses, it should be mentioned that several SNPs in addition to
rs4780355 might affect SOCS1 expression, limiting the feasibility
of recruiting a sufficient number of patients per subgroup to allow
the analysis of SOCS1 expression by haplotypes.

Both rs11074956 and rs4780355 have been associated with
some autoimmune and inflammatory diseases (26, 27), but we
focused on rs4780355 (T/C SOCS1) because it was the most
consistent with the considered criteria (Supplementary Table 6),
and it is located near the SOCS1 3′ untranslated region (UTR)
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FIGURE 2 | Baseline SOCS1 expression as a severity biomarker in patients with RA (PEARL study). (A) Disease activity estimated by DAS28 score after 2 years of

follow-up, relative to baseline SOCS1 expression levels. Data shown as individual values with median and interquartile range. Statistical significance was established

by the Mann-Whitney U test; low SOCS1 levels (n = 25) were defined as those values below percentile 25 at the baseline of PEARL population; the remaining patients

were considered to have a normal SOCS1 level (n = 67). (B) Percentage of patients classified by EULAR response criteria after 12 months follow-up in PEARL

subpopulations. Statistical significance was determined by the χ2 test. low SOCS1 levels (n = 25) were defined as those values below percentile 25 at the baseline of

PEARL population; the remaining patients were considered to have a normal SOCS1 level (n = 67) as described for panel (A). (C) Percentage of responder and

non-responder patients after 6 months rituximab infusion. Low SOCS1 levels (n = 14) were defined as those values below percentile 25 at the baseline of the Leeds

established RA population; the remaining patients were considered to have a normal SOCS1 levels (n = 48). Statistical significance was determined as in (B). (D)

Baseline SOCS1 expression relative to EULAR response criteria after 6-months rituximab infusion (Leeds study). Data shown for mRNA SOCS1 levels normalized to

ACTB and to mean SOCS1 expression levels in healthy donors (2−11Ct); error bars show medians and interquartile range; (n = 14 no response, n = 25 moderate

response and n = 23 good response). Statistical significance was determined using Cuzick’s non-parametric trend test.

(Supplementary Figure 5), allowing the study of its influence on
SOCS1 expression in in vitro transcription assays.

To begin to examine the implications of rs4780355 (T/C
SOCS1) for SOCS1, we first isolated PBMCs from homozygous
C/C and T/T, and heterozygous C/T patients, and measured
SOCS1 mRNA levels before and after in vitro activation of cells
with PHA. PHA stimulation mimics T-cell receptor activation
(28), and therefore does not restrict the analysis to a single
cytokine, thus amplifying the possibilities of an effect triggered
by SOCS1. Although SOCS1 is expressed in control conditions
(29), its expression is upregulated following cell activation (13).
Results showed that SOCS1 mRNA induction in PHA-activated
PBMCs was lower for homozygous (C/C) patients than for
heterozygous (C/T) patients (p = 0.048), and there was also a
trend for lower expression when compared with homozygous
(T/T) patients (p = 0.1) (Figure 3A). Hematological analysis
of these patients showed no differences in the numbers of
lymphocytes or monocytes (Supplementary Figures 6A,B).

We next used an in vitro system to examine the role of
this polymorphism in SOCS1 expression. The SOCS1 3′UTR
(containing the T or C allele region) was cloned into the
psiCHECK-2 vector (see Methods). Jurkat cell transfection
assays showed no significant differences in the ratio of
Renilla/Firefly luciferase between constructs with T or C alleles
(four independent clones for each allele; Figure 3B). Analysis
of the miRDB database (www.mirdb.org) pointed to the DNA
region containing the rs4780355 polymorphism as a potential
target for the microRNA miR-498 (Supplementary Figure 7).
This microRNA is downregulated in CD4+ T-cells in patients
with RA (30), which suggests a role in RA pathogenesis. We
therefore transfected Jurkat cells with the luciferase constructs for
each allele in the presence of miR-498 or an miR-control. Data
showed no significant difference in luciferase activity between
the two conditions (Figure 3C), indicating the lack of a direct
effect of the polymorphism or a potential role for miR-498 in
SOCS1 expression.

Frontiers in Immunology | www.frontiersin.org 7 June 2020 | Volume 11 | Article 1336

www.mirdb.org
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lamana et al. SOCS1 Levels Predicts RA Severity

TABLE 3 | Baseline characteristics of the early RA LEEDS population studied.

mtx Remission (n = 29) No remission (n = 45) p-value

Age* (years) 59 (47–66) 50 (41–62) 0.408

Sex (M/F) 7/22 11/34 0.601

Smoking 15/14 16/28 0.231

Symptoms (m)* 6.2 [4.8–12.9] 6 (3.7–13.6) 0.829

RF (+/–) 15/14 22/22 0.538

ACPA (+/–) 20/9 23/22 0.129

TJC* 2 (1–10) 10 (4–15) 0.001

SJC* 3 (0–9) 4 (1–8) 0.587

CRP* 8 (<5–18.5) 12 (<5–27) 0.077

DAS28* 4.10 (2.24–4.80) 4.50 (3.40–5.6) 0.020

SOCS1*† 0.41 (0.21–0.58) 0.26 (0.08–0.47) 0.036

RITUXIMAB No response (n = 16) Mod/Good response (n = 49) p-value

Age* (years) 48 (46–64) 57 (48–64) 0.598

Sex (M/F) 2/14 9/40 0.443

symptoms (m)* 70 (25–94) 102 (36–204) 0.244

RF (+/–) 16/0 42/7 0.123

ACPA (+/–) 15/1 46/3 0.687

TJC* 15 (9–24) 16 (10–23) 0.703

SJC* 7.5 (3–17) 8 (5–11) 0.328

CRP* 46 (>5–123) 12.5 (>5–23) 0.192

DAS28* 5.76 (4.6–7.2) 5.67 (4.7–6.2) 0.732

SOCS1*† 0.640 (0.273–0.775) 0.880 (0.680–1.405) 0.035

M, male; F, female; RF, rheumatoid factor; ACPA, anti-citrullinated proteins antibodies;
TJC, tender joint count; SJC, swollen joint count; CRP, C-reactive protein; DAS28, disease
activity score calculated with the 28 joint count; SOCS1, suppressor of cytokine signaling;
† (normalized quantity, using GADPDH) *median and (interquartile range). Values in bold
are statistical significance.

Detailed analysis of the DNA sequence surrounding
the rs4780355 polymorphism identified a microsatellite
followed by a variable T-string, GCT[TTTTC](3−5)T(11−19)GC,
0.9 kbp downstream of the polymorphism. The observed
sequence variations were deposited in NCBI’s ClinVar database
SCV000999906 (Supplementary Figure 8). In Spanish and
British populations, allele C is linked (R2 = 0.9456) to the short
microsatellite (three repeats), whereas allele T is associated with
the long form (five repeats) (Supplementary Figure 9). We thus
generated a construct containing the SOCS1 3′UTR (including
the T or C allele region and the associated microsatellites) cloned
into the psiCHECK-2 vector. Jurkat cell transfection showed a
significant reduction in the Renilla/Firefly luciferase ratio when
the construct contained the C allele, that is, the short form of
the microsatellite (Figure 3D). These data suggest that the effect
of rs4780355 on SOCS1 expression is related to presence of
the microsatellite (TTTTC)3−5 and the variable T-string in the
3′UTR region.

DISCUSSION

Genome-wide association studies have found multiple SNPs on
genes that encode cytokines, their receptors and/or signaling

molecules, associating with inflammatory and autoimmune
disease risk (31, 32). This is also the case for RA, an autoimmune
disease for which cytokine-based therapies are included in the
armamentarium of drugs for the treatment of patients with
an inadequate response to conventional DMARDs (33–36).
Baricitinib and tofacitinib, two small-molecule JAK inhibitors
that block JAK/STAT signaling, have recently been approved
for RA treatment (7). Physiologically, cytokine activation also
triggers downregulatory mechanisms that protect cells from
hyperactivation. Cytokines promote the expression of SOCS
proteins that not only block JAK/STAT signaling, but also trigger
protein degradation by the proteasome (37). Here we show
that patients with early arthritis who are unable to upregulate
SOCS1 expression are more likely to be classified as having
RA and have a higher risk of not achieving remission and/or
failing to respond to treatment. Our data concur with previous
observations showing that Socs1−/− mice are hypersusceptible to
IL-1-mediated acute inflammatory arthritis and have increased
joint damage, with no change in the time course of arthritis
(38). In a similar line, Stat1−/− mice show exacerbated zymosan-
induced arthritis, possibly due to reduced SOCS1 expression (39).
Ectopic expression of SOCS1 abolishes IFN-β-mediated STAT1α
stimulation and prevents IFN-β-induced expression of CD40
(40), a protein involved in RA pathogenesis (7). In addition to
its effect on the JAK-STAT pathway, SOCS1 interacts with the
adaptor protein GRB2, the phosphoprotein VAV, calcineurin, and
IL-1 receptor-associated kinase, and thereby suppresses signaling
through KIT, T-cell receptor, and Toll-like receptors 2 and 4 (41,
42). SOCS1 inhibits MYD88 adaptor-like protein degradation
and thus regulates NF-kB activation and, accordingly, Socs1−/−

mice show increased susceptibility to chronic LPS-induced
inflammation (43, 44). This pathway is involved in the expression
of several inflammatory mediators, including TNF-α, IL-1β, IL-6,
and type I interferon, all useful targets for biological therapy for
RA (45, 46).

In humans, SOCS1 expression is associated with CD4+ T-
cell resistance to the immunosuppressive effect of IL-10, which
is detected before the cells migrate to synovial tissue (47).
Expression of miR-155, a microRNA that targets SOCS1, has been
detected in PBMCs from patients with RA, and is involved in
TNFα and IL-1β upregulation (48). Correlation between DNA
methylation of SOCS1 and the degree of inflammation, assessed
by TNFα and IL-6 levels, was also shown in patients with HLA-
B27+ spondylitis (49).

Non-activated immune cells express low levels of SOCS,
which is rapidly and transiently upregulated after cytokine
activation (13). We found that patients with UA in remission
had low levels of SOCS1 that increased in parallel to
disease activity. By contrast, SOCS1 mRNA levels did not
correlate with disease activity in patients with RA, but those
with the lowest baseline levels showed the poorest clinical
evolution. Genetic variants that affect SOCS1 expression thus
might alter the course of RA. In our analysis, several
SOCS1 gene variants affected its mRNA levels. Three SNPs
(rs11074956, rs4780355, and rs243323) were associated with
low SOCS1 expression and a tendency for poorer clinical
outcomes. In an in vitro luciferase-based assay, we detected
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FIGURE 3 | Effects of rs4780355-linked genomic DNA features on SOCS1 expression. (A) Peripheral blood mononuclear cells from 18 patients with RA (five T/C

heterozygous, seven C/C homozygous and six T/T homozygous for rs4780355) were PHA-activated for 3 h. SOCS1 levels were determined by qRT-PCR (see

Methods) before and after 3 h treatment. Values (2−11Ct) are normalized to ACTB and the mean value from heterozygous samples at t = 0; p-values from unpaired

t-tests are indicated. (B) Luciferase assays. Two independent constructs for each genotype, which included the SOCS1 polyadenylation site and rs4780355 SNP,

were used for Jurkat cell transfection; the Renilla/Firefly luciferase ratio was measured 24 h later. (C) miR-498 or control RNA (MISSION® siRNA Universal Negative

Control #2, Sigma) were co-transfected with plasmid constructs. Renilla/Firefly ratios obtained with miR-498 were normalized to control miRNA values. Results from

two independent clones and triplicate measurements. (D) Two independent clones, including the polyadenylation site, rs4780355 SNP (C or T) and its associated

microsatellite [[TTTTC]3 or [TTTTC]5, respectively], were tested for each haplotype in two experiments with triplicate samples. Statistical significance was determined

by the Mann-Whitney U test.

lower SOCS1 expression in Jurkat cells expressing the minor
allele of rs4780355. This SNP is located in Chr16:11254001
(GRCh38.p7) within the 3′UTR of the SOCS1 gene. In silico
analysis indicated that the SOCS1 sequence involving the
rs4780355 polymorphism is a potential target for miR-498.
Interestingly, miR-498 directly targets the 3′UTR of STAT3 and
is downregulated in CD4+ T-cells of patients with RA (30).
We hypothesized that it might also target the SOCS1 3′UTR
region, triggering SOCS1 downregulation and thus cytokine
hyperactivation. However, based on our in vitro luciferase-
based assays using cells transfected with miR-498, we discarded
this hypothesis.

We found that rs4780355 is in linkage disequilibrium with
expansions of simple sequence repeats, microsatellites, in a
non-coding region near the SOCS1 3′UTR. In the population
origin of our cohorts, the C allele is linked to the shortest
form of the microsatellite, whereas the T allele is associated

with five repeats. The in vitro luciferase-based assays linked
the C allele to reduced SOCS1 expression when cells bore
the minor allele of rs4780355. RNA misprocessing has been
reported for a number microsatellite-expansion diseases (50),
and in other cases microsatellites cause gene silencing, possibly
due to impairment of transcriptional elongation (51). RNA
polymerase II transcription frequently terminates 500 or more
bp downstream of the poly(A) signal (52). Intron or UTR
retention during RNA processing could affect nuclear retention,
nucleocytoplasmic transport, and cytoplasmic turnover and is
a conserved regulatory mechanism that affects a wide range
of cellular events (53, 54). Our luciferase-based assays suggest
that the presence of the shorter microsatellite influences mRNA
processing and thus promotes reduced protein expression.
Althoughmore experiments are needed to clarify themechanism,
we speculate that it involves RNA stability and/or transcriptional
termination efficiency.
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The current paradigm of RA management holds that disease
is better controlled when very early DMARD treatment is
established (55). New lines of research indicate that early
treatment of patients is associated with better disease outcomes
(56); however, the clinical spectrum of RA is very heterogeneous
and the discovery of new severity biomarkers will be needed to
establish tailored treatments. Our data suggest that measuring
SOCS1 mRNA levels could be a technically reliable and robust
procedure with which to predict those patients who will have a
poorer clinical evolution. This is supported by data obtained in
the discovery population, validated in a separate group of patients
selected using more stringent RA criteria, and replicated in two
independent populations for early and established RA.

Our observations, nonetheless, indicate some limitations to
implementing the use of this biomarker, including determining
the appropriate baseline low levels of SOCS1. Prior adjustment by
age and glucocorticoid use is also needed to allow efficient patient
classification. In addition, SOCS1 expression did not discriminate
between patients in remission regarding pre-arthritis stages or
treatment effects. Genotyping of rs11074956, rs4780355, and
rs243323, whose minor alleles were associated with lower SOCS1
baseline levels, might overcome these limitations.

Some authors propose that personalized medicine for RA
is currently not possible (57), and data from daily clinical
practice suggest that earlier treatment for inflammation improves
clinical outcome (5). Our findings point to new candidates for
the development of composite biomarker indices with greater
predictive ability for RA severity that could be useful to guide
patient care from establishment of the diagnosis.
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