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The immunosuppressive activity of mesenchymal stromal cells (MSCs) in graft versus

host disease (GvHD) is well-documented, but their therapeutic benefit is rather

unpredictable. Prospective randomized clinical trials remain the only means to address

MSC clinical efficacy. However, the imperfect understanding of MSC biological

mechanisms has undermined patients’ stratification and the successful design of

clinical studies. Furthermore, although MSC efficacy seems to be dependent on

patient-associated factors, the role of patients’ signature to predict and/or monitor

clinical outcomes remains poorly elucidated. The analysis of GvHD patient serum

has identified a set of molecules that are associated with high mortality. However,

despite their importance in defining GvHD severity, their role in predicting or monitoring

response to MSCs has not been confirmed. A new perspective on the use of MSCs

for GvHD has been prompted by the recent findings that MSCs are actively induced

to undergo apoptosis by recipient cytotoxic cells and that this process is essential to

initiate MSC-induced immunosuppression. This discovery has not only reconciled the

conundrum between MSC efficacy and their lack of engraftment, but also highlighted the

determinant role of the patient in promoting and delivering MSC immunosuppression. In

this review we will revisit the extensive use of MSCs for the treatment of GvHD and will

elaborate on the need that future clinical trials must depend on mechanistic approaches

that facilitate the development of robust and consistent assays to stratify patients and

monitor clinical outcomes.

Keywords: mesenchymal stromal cell, graft versus host disease, biomarker, apoptosis, efferocytosis, extracellular

vesicles

A BRIEF HISTORY OF MSCs

Mesenchymal stromal cells (MSCs) are typically described as a highly heterogeneous population
of stem and progenitor cells selected and expanded in vitro as unfractionated fibroblastic-like and
plastic-adherent cells (1). This population was first described in the early 1970s by Friedenstein
and colleagues who isolated from the bone marrow (BM) of guinea-pigs and mice a group
of fibroblastoid cells able to differentiate into adipocytes, chondrocytes and osteocytes and to
reconstitute the microenvironment for the culture of hematopoietic stem cells (HSC) (2, 3). These
cells were later identified in human tissues (4) and referred to as mesenchymal stromal cells
(MSCs) (5).
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Since their first description, cells with analogous
characteristics have been successfully isolated and expanded
from many other tissues (6), such as placenta (7), umbilical cord
(UC) (8), adipose tissue (AT) (9), and dental pulp (10). MSC
identification relies on the combined expression of CD73, CD90,
CD105, CD71, CD44, CD106, and the lack of hematopoietic and
endothelial markers (CD34, CD45, CD11b, CD14, and CD31)
(11). The definition of MSCs features a substantial overlap with
the traditional concept of other more mature stromal cells, such
as fibroblasts (12–14), making it plausible to consider that these
are equivalent or related cell types.

MSC heterogeneity has been described within the same
species (15), tissue preparations (16, 17) and even on same
donor isolations. As observed by Mets and Verdonk, during
MSC sub-cultivation, younger passages were characterized by
higher rates of plasticity and proliferation compared with older
passages (18). Yang et al. (19) also described gradual loss of
the typical fibroblast-like spindle shape, decreased expression
of the adhesion molecule CD146 and genetic instability in
human MSCs under increasing in-vitro passages. Despite their
heterogeneity, MSCs have been largely employed in experimental
cell-based therapies for treating human diseases. Historically,
the lack of the expression of major histocompatibility complex
(MHC) class II and co-stimulatory molecules (CD40, CD40L,
CD80, and CD86), associated with low levels of MHC class I on
MSC surface (20, 21), initially introduced the idea of a population
of “immune-privileged” cells which could be widely used beyond
MHC-compatibility restrictions (22), and this consideration
greatly ignited the enthusiasm aroundMSCs as therapeutic tools.

The possibility that MSCs might be devised as therapeutically
effective cellular products mainly derived from studies describing
MSC ability to improve tissue healing and regeneration (23, 24)
and to alter host immune responses by suppressing inflammation
(22, 25–28). It has not been fully elucidated how healing and
immune suppressive MSC properties are intertwined. However,
they are not mutually exclusive or completely independent
as tissue regeneration requires resolution of injury-associated
inflammation. In this review, the multipotency of MSCs will not
be further discussed [reviewed in Bianco et al., (29) and Caplan
(30)]. Conversely, immunosuppression mediated by MSCs will
be extensively examined.

It is widely accepted that MSC immunosuppressive properties
are not constitutive. Instead, their immune regulation depends
on a process of “licensing” which needs to be acquired in an
inflammatory microenvironment. This concept finds support
not only in vitro but also in preclinical models of graft versus
host disease (GvHD), whereby MSC therapeutic activity could
be obtained only when MSCs were infused in the presence of
a specific inflammatory milieu (31). Accordingly, MSCs were
effective in reducing GvHD signs only when multiple infusions
were administered after transplant but not when one single dose
was co-infused with HSC transplantation (HSCT) (32). These
experimental observations have been strongly supported by a
meta-analysis recently performed by Wang and collaborators
(33). In this work, the authors included 6 randomized clinical
trials enrolling 365 patients. MSCs were infused at different
time points from HSCT (within 24 h, at a median time of 28

days, or with multiple infusions at different time points). The
analysis showed that infusion of MSCs significantly reduced the
incidence of chronic GvHD (cGvHD) and there was a trend of
longer overall survival inMSC-treated patients (33). Importantly,
the meta-analysis on different sub-groups demonstrated that
these favorable outcomes were significantly associated with late
MSC administrations, thus supporting a more effective role of
MSCs when licensed by a specific microenvironment developed
after HSCT.

Once licensed, MSCs are able to mediate potent
immunoregulatory effects through diverse modes of action
on a variety of cell types, involving both the adaptive and
innate immunity. The immunomodulatory repertoire induced
by primed MSCs includes factors such as indoleamine 2,3-
dioxygenase (IDO) (34–36), prostaglandin E2 (PGE2) (28, 34),
heme oxygenase-1 (HO-1) (37), transforming growth factor beta
(TGF-β), IL-10 (38), human leukocyte antigen-G5(HLA-G5)
(39), leukemia inhibitory factor (LIF) (40), and galectin 1, 3, and
9 (41–43). IDO, PGE2 and HO-1 can directly induce metabolic
reprograming on activated T lymphocytes, reducing their
proliferation rates, cytokine production and cytotoxic activity
(28, 34, 37, 44). Likewise, MSCs suppress the proliferation
and modulate the cytokine production of activated natural
killer (NK) cells (45, 46) through the action of IDO and PGE2
(28, 34, 36, 47). Furthermore, MSCs can inhibit B-cell activation,
proliferation and IgG secretion both in vitro and in vivo (44, 47)
in a soluble-factor dependent manner (48). In addition, MSCs
can dampen the activation of effector immune cells via cell-
contact interactions through the association of the programmed
death 1 and its ligand (PD-1/PDL1) (49, 50) and HLA-G1 (51).

Reprogramming of the host immune cells is another mean of
MSC immunomodulation, especially in vivo. MSCs can recruit
monocytes to the site of inflammation by the secretion of
chemokine ligand 2 (CCL2) (52). In a heart injury model,
MSCs reduced the number of pro-inflammatory monocytes,
while increased those with anti-inflammatory phenotype (53).
Moreover, in the presence of colony stimulating factor 1 (CSF-
1/M-CSF), MSCs can promote monocyte differentiation into
macrophages with upregulated expression of CD206, IL-10, and
TGF-β and improve phagocytic efficiency, which suggests the
characteristics of M2 macrophage differentiation (54). Likewise,
bone marrow progenitors are induced to differentiate into a
population of CD11b+ myeloid cells with potent suppressive
activity in the presence of MSCs. Such differentiation is mediated
by nitric oxide synthase-2 and these MSC-educated CD11b+
cells accelerate hematopoietic reconstitution in bone marrow
transplant recipients (55).

MSCs can also inhibit monocyte differentiation into dendritic
cells (DCs) and skew them into a tolerogenic profile via reducing
their expression of HLA-DR, CD1a, CD80, and CD83 as well as
down-regulating their IL12 secretion (56–59). Moreover, effects
of MSCs on regulatory T cells (Treg) expansion have also
been documented in many inflammatory conditions (60–62).
MSCs induce differentiation of functional Treg through TGF-β,
HLA-G5, IDO, and PGE2 (39, 59, 63). Remarkably, MSCs can
further favor Treg expansion in vitro indirectly by inhibiting DC
maturation, CD8T cells, and NK cells expansion (59, 64).
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FIGURE 1 | MSCs as therapeutic agents in immune-mediated diseases. Number of Clinical trials registered at the U.S. NIH database registry (ClinicalTrials.gov) plotted

according to the year of registration. Search was performed in August 2019 and included all studies whereby MSCs (Mesenchymal Stromal/Stem Cells) were used as

drug for the treatment of GvHD (black bars), or other immune-mediated diseases (white bars) such as Chron’s Disease, Cystic Fibrosis, Diabetes Mellitus, engraftment

of HSCT, inflammatory lung diseases (including asthma and Chronic Obstructive Pulmonary Disease), Multiple Sclerosis, neuromyelitis, Retinitis Pigmentosa,

Rheumatoid Arthritis, Rheumatic arthritis, Sjogren Syndrome, solid allograft rejection, Systemic Lupus Erythematosus, Systemic Sclerosis, Ulcerative Colitis.

The up-stream mechanism of MSC licensing has been a
puzzle for decades in MSC research. Pro-inflammatory cytokines
such as IFN-γ, TNF-α, IL-1α, or IL-1β have been extensively
reported on MSC activation in vitro. These molecules are
predominately secreted by activated monocytes or T cells,
and subsequently trigger the production of immunosuppressive
molecules in MSCs (35, 36, 65, 66). Blockage on either these
soluble factors or cell-contact pathways successfully undermined
MSC immunomodulatory effects. Yet, generally none of these
molecules taken alone is sufficient to account for MSC
suppressive function which in fact seems to be the result of a
synergistic combination of more factors. Therefore, how these
molecules are intertwined in vivo and the degree of redundancy
of their effects on MSC licensing warrants further investigation.

CURRENT CHALLENGES ASSOCIATED
WITH THE USE OF MSCs FOR THE
TREATMENT OF GvHD

MSC Use as a Therapeutic Tool
The characteristics described in the previous paragraph elicited
the interest in MSCs, considered as promising therapeutic
tools to control aberrant inflammatory responses. As shown in
Figure 1, consultation of the public registry of clinical trials at the
U.S. National Institute of Health database (at ClinicalTrials.gov)
shows a continuous increase of the number of new studies
involving MSCs for the treatment/prophylaxes of immune-
mediated diseases which were registered between 2004 and 2010,
with at least 6 new registrations thereafter.

The focus of the use of MSCs as cell-therapy products has
been mainly focused on two aspects: (1) the use of MSCs to

exert peripheral tolerance in contexts whereby this tolerance
was altered after the use of MSCs (i.e., usefulness of MSCs as
prophylaxes), and (2) the use of MSCs when an inflammatory
or autoimmune response was already established before MSC
infusion (i.e., MSC use as specific therapy to restore peripheral
tolerance). Aim of this review is to focus on the use of MSCs after
HSCT and in GvHD patients.

MSCs for the Treatment of GvHD
GvHD is a life-threatening complication of allogeneic HSCT, and
currently represents one of the major factors limiting the success
of this potentially curative option for hematological malignancies
(67, 68). GvHD has been classified into acute (aGvHD) and
cGvHD (69, 70). Currently, there is no standardized treatment
for patients with aGvHD who do not respond to steroids, and
their prognosis is still very poor, with overall survival inferior
to 20% at 2 years (71). The interest in MSCs for the treatment
of aGvHD has sparked remarkably since the very encouraging
results published in 2008 by the European Group for Blood and
Marrow Transplantation Developmental Committee (72), with
30 out of 55 patients with steroid resistant aGvHD showing
complete response to MSCs. Importantly, these responding
patients had 55% overall survival at 2 years. To date (last analysis
in September 2019), at least one new clinical trial involving the
use of MSCs to mitigate GvHD has been registered every year at
ClinicalTrial.gov with a peak of 5 different studies started in 2015
(Figure 1). A systematic search of the published manuscripts in
peer-reviewed journals has identified 14 studies (72–85), both
retrospective and interventional, with more than 30 patients
enrolled. In these studies, all aGvHD patients were steroid-
resistant. Only one study used MSCs as first line treatment in
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TABLE 1 | Clinical studies with MSCs used in aGvHD.

Patients MSC infusion Outcome

Publication N Median age (range) Dose (×106/Kg) Median (range) CR (%) PR (%) NR (%)

LeBlanc et al. (72) 55 22 (0.5–64) 0.40–9.00 2 (1–5) 54 16 29

Ball et al. (73) 37 7 (0.7–18) 0.90–3.00 2 (1–13) 65 22 13

Kurtzberg et al. (74) 75 8 (0.2–17) 2.00 NRe (8–12) NRe NRe NRe

TeBoom et al. (75) 48 44.9 (1.3–68.9) 1.80 (0.90–2.50) 3 (1–4) 25 50 25

Kebriaei et al. (76) 31 52 (34–67) 2.00–8.00 2 (2) 77 16 7

Erbey et al. (77) 33 7 (3–18) 0.50–2.80 2 (1–4) 54 21 25

Servais et al. (78) 33 58 (5–69) NRe (1.00–4.00) 1 (1–2) 22 41 37

vonDalowski et al. (79) 58 55 (19–71) 0.99 (0.45–2.08) 2 (1–6) 9 38 53

Dotoli et al. (80) 46 28 (1–72) 6.81 (0.98–29.78)** 3 (1–7) 7 43 50

Bader et al. (81) 69 8.2 (6 mo-18) 45.5 (18.9–65.5) NRe (1.00–2.00) NRe (1–4) 32 51 14*

Introna et al. (82) 37 27.8 (1–65) NRe (0.80–3.10) NRe (2–11) 30 43 27

Fernandez-Mazqueta et al. (83) 33 46 (18–61) 1.06 (0.66–1.76) 1.06 (0.66–1.76) 34 50 16

Resnick et al. (84) 50 19 (1–69) 1.00 (0.3–3.10) NRe (1–4) 34 32 34

Galleu et al. (85) 60 40 (4 mo-68) 2.60 (0.60–15.60) 1 (1–4) 2 52 46

CR, Complete Response; NRe, Not reported; NR, No Response; PR, Partial Response; *3%, no data available at day 28; **cumulative dose.

association with steroids (76). Both pediatric and adult patients
were treated with age ranging from 2 months to 72 years. It is
not possible to directly compare these studies in terms of efficacy
due to the heterogeneity of the patients enrolled. However,
results seem to be very encouraging. Indeed, as summarized
in Table 1, overall response rates ranged from 47 to 93%
even though patients were mostly resistant to multiple lines of
treatments. Notably, the use of MHC-matched, haploidentical or
third-party MSC donors does not have any impact on patient
outcomes (72–85).

MSCs could successfully be expanded from disparate tissues,
spanning from BM (72–82, 84), UC (86, 87), AT (88, 89), or
placenta (90). BM has been the first MSC source ever described
and the most frequently deployed thus far. However, the origin
of MSCs does not seem to affect their anti-proliferative and
immunological properties in vitro (91). Furthermore, despite
the small number of patients treated with UC (86, 87), AT
(88, 89) or placenta (90), similar response rates were reported
when compared to the outcomes obtained when BM-MSCs
were used (Table 1), thus supporting the role of these sources
as valid alternatives for clinical-grade MSC production. In
fact, UC and AT may be considered as more “affordable”
alternative sources in terms of manufacturing logistics and costs
compared to BM. ObtainingMSCs fromUC or AT has important
advantages. First, the invasive BM harvest procedure, associated
with (minimal) risk for donors, can be spared. Secondly, both
UC- and AT-MSCs can be obtained from tissues which are
currently otherwise discarded and also from samples previously
frozen before isolation (this at least it has been described in UC-
MSCs) (92, 93). Third, they have higher proliferative capacity
and longer life-span in vitro with higher cells yielded per
expansion (94, 95).

MSC therapeutic activity has been tested also in cGvHD, albeit
the experience in this setting is more limited than in aGvHD.
Most studies reported the treatment of only few patients, and

they should be considered as case reports. Results were in fact
variable, with overall responses ranging from 0% (82, 96) to more
than 50% of the patients treated (97–100). More promising are
the results obtained from larger groups of patients and reported
in three different studies. In two of these studies, a total of
57 steroid-refractory cGvHD were treated with 1–5 infusions
of BM-MSCs. The median time to response varied between 3
and 24 months after the first MSC infusion (101, 102). Notably,
26% of the patients treated could wean immunosuppressive
therapy until complete discontinuation in one of the studies
(102). Recently, 14 patients with moderate to severe cGvHDwere
prospectively treated with one infusion of AT-MSCs as first-line
treatment in association with steroids and cyclosporine (103). In
total, 13 patients could be evaluable, since 1 patient withdrew
participation consent. Ten patients achieved a response at 56
weeks [8 complete response [CR] and 2 partial response [PR]],
all stopped steroids and were alive at the end of the study.
Conversely, of the 3 non-responding patients, none was alive and
the cause of death was progressive cGvHD (103).

MSCs for the Improvement of HSCT and as
Prophylaxis of GvHD
MSCs have been demonstrated to enhance haematopoietic
engraftment and hematological recovery after both autologous
(104) and allogenic (105–107) HSCT when administered at
the time of transplant. This property may become crucial
in situations in which, due to damage of the BM niche after
conditioning regimens for HSCT, haematopoietic recovery may
be severely delayed. Koc et al. (104) were the first to report
improvement of haematopoietic engraftment when autologous
BM-MSCs were co-transplanted with HSCT. These findings,
along with positive results from preclinical models whereby
MSCs were able to delay the onset of GvHD (108, 109),
prompted investigators to assess whether MSCs could be used
for the improvement of HSCT engraftment and prophylactically
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to decrease the frequency of GvHD when co-administered
with the transplant. The ability of MSCs of improving HSCT
engraftment, or preventing graft failure, seemed to be confirmed
in some studies (106, 107, 110–113). However, absence of any
improvement has also been reported (114, 115). Recently, a
comprehensive meta-analysis carried out by Kallekleiv et al.
(116) determined the potential benefits of MSCs when co-
administered with allogenic HSCT within a range of 24 h (before
or after the transplant). The study included a total of 309
patients enrolled in 9 controlled trials performed until May
2015, thereof 3 randomized and 6 non-randomized studies. The
analysis suggests that MSCs do not have any beneficial effects in
terms of facilitation of engraftment or either aGvHD nor cGvHD
prevention (116). Important limitation of this meta-analysis
relates to the small sample sizes of the studies included and their
weak designs, thus results should be interpreted with caution.

Taken together, these data suggest that, while MSC use is
safe, the efficacy of this treatment as tool to promote HSCT
engraftment or GvHD prophylaxis should not be routinely
supported. Factors which may play a role in influencing
the activity of MSCs include the concomitant therapy, the
underlying disease or the conditioning regimen. By modifying
the inflammatory milieu of the patient, these components may
affect theMSC “licensing” and hamper their immunomodulatory
capacity to reset the haematopoietic niche.

MSC Biomarkers for GvHD: An Unmet
Need
In the previous paragraph, we have reported the very encouraging
results when MSCs are used for the treatment of aGvHD.
However, the only randomized phase III trials, sponsored by
Osiris Therapeutics (NCT00562497 and NCT00366145) and
making use of commercially available MSCs (Prochymal), missed
their endpoints and failed to demonstrate efficacy of MSCs.
Nonetheless, this failure was only announced by press-release
and results were never published in peer-reviewed manuscripts.
To make them more difficult to interpret, the publicly available
results (published in abstract forms only) did demonstrate the
efficacy of MSC treatment in specific sub-categories of patients
with improvements in response rates in pediatric patients (117)
or patients with gut or liver GvHD (118).

These results and the contrast with the outcomes reported
in most phase II studies raised many questions on the possible
causes of this failure (119). Furthermore, it drove to question
the very same utility of MSCs as part of the available treatments
of GvHD, as highlighted by the recent clinical commissioning
policy on GvHD treatments published by NHS England, which
concluded that there was not enough evidence for supporting
the use of MSCs in GvHD patients (120). It is conceivable that
to definitely and robustly assess the role of MSCs in GvHD
therapeutic armamentarium, we need prospective phase III trials
whose design needs to be guided by potency assays or biomarkers
able to effectively stratify patients and predict clinical responses.

A biomarker (or biological marker) is a parameter that can
be objectively measured or evaluated to indicate a biological
process, pathogenic processes, or pharmacologic responses to a

therapeutic intervention (121). In the regard of MSC therapy in
aGvHD, ideal MSC biomarkers can be served as a prognostic tool
to (1) forecast the clinical outcome, or (2) predict the clinical
response, or (3) monitor the efficacy of MSC therapy among a
variety of aGvHD patients.

There have been two major approaches to predict or monitor
the therapeutic effects of MSC in GvHD. The first approach
has been to apply a panel of GvHD biomarkers, which are
molecules related to the tissue damage during the pathogenesis of
aGvHD (122). They were first identified to provide diagnostic and
prognostic information on GvHD independently of the clinical
symptoms (122). The initial panel included the plasma level
of interleukin 2 receptor subunit α (IL-2Rα), tumor necrosis
factor receptor 1 (TNFR1), interleukin-8 (IL-8), and hepatocyte
growth factor (HGF). Subsequently, the same research group
included two organ–specific biomarkers, which are regenerating
islet-derived 3α (Reg3α) (123) and elafin (124), specific for
gastrointestinal and skin GvHD, respectively. Several studies in
aGvHD have reported the change of these biomarker after the
MSC infusion and their correlation with the MSC responses. For
instance, Dander et al. (125) found a decrease of plasma TNFRI,
IL-2Rα, and elafin in those patients who responded to MSCs but
not in the non-responders. At the same year, von Bahr et al.
(126) reported similar decline of serum IL-2Rα in GvHD patients
after MSC infusion, although they did not compare the change
of IL-2Rα between responders and non-responders. Later, Yin
et al. (127) found a fall of Reg3α and cytokeratin fragment 18
(CK18), another tissue damage biomarker in liver and intestinal
GvHD, in MSC responders (128). However, discrepancies have
also been reported. In contrast to Yin et al. (129) another study
indicated that Reg3α and IL-2Rα were not correlated with the
response to MSCs in aGvHD patients. Furthermore, in a phase
II study, there was no correlation of any GvHD biomarkers
with the clinical response following MSC treatment in aGvHD
patients (75), raising questions on the reliability of these GvHD
biomarkers in monitoring MSC efficacy.

The second approach has been to monitor some effector
molecules or cellular pathways reported as mediators of MSC
immunosuppression in vitro and in pre-clinical studies. Dander
et al. (125) reported an increase in the proportion of Treg
compared to Th1 and Th17 cells after MSC treatment in
the responders, while opposite results were found in the
non-responders. However, another study did not find any
increase of the Treg population in both responders and non-
responders. Moreover, both the numbers and functions of
CD4 and CD8T cells also remained unchanged. The only
significant difference between responders and non-responders
was the proportion of immature DCs which was increased
among the responders following MSC infusion (75). Similar
ambiguity was also noticed in the effector molecules which
have been described in MSC immunosuppression in vitro. For
instance, no changes of the serum level of IL-6 or HLA-G
was detected in patients after receiving MSCs regardless of
the clinical response (126). Importantly, the same study also
found that MSC immunosuppressive potency, measured as anti-
proliferative activity against T cells after stimulation in vitro, did
not correlate with MSC clinical efficacy in vivo. This observation
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indicates that the role of this in vitro potency assay was not
optimal to predict the clinical efficacy of MSCs in aGvHD
patients (126).

Albeit not strikingly biomarkers by definition, there have been
several associative factors which can seemingly influence MSC
responses among aGvHD patients. Dosage of MSC infusion, age
of MSC recipients and organ involvement have been reported
as affecting responses in aGvHD patients (72, 77, 78, 82, 84, 85,
130). Briefly, patients who received higher MSC doses (78, 85),
younger patients (72, 82, 84, 85), or patients with gut or/and
skin involvement seem to achieve a better response to MSCs
(77, 85, 130). However, these results have not been confirmed
in other studies (73, 79, 131), and should be considered with
caution. These discrepancies highlight the weak reliability of
these associative factors when used as predictors of response.
Furthermore, the biology underlying these clinical observations
is still unknown. Nevertheless, they unquestionably stress the
importance of the patient as crucial player in the response.

The Paradox of MSC Immunosuppression
Models (in vitro vs. in vivo)
The unsatisfactory ability to predict or monitor clinical responses
to MSCs by the panel of molecules described in the previous
paragraph can be attributed to two main reasons. First, the
proposed GvHD biomarkers (e.g., Reg3α and Elafin) (75, 125,
128, 132) appear to be reliable sensors of the severity of the
disease and tissue damage but they lack anymechanistic rationale
regarding the immunosuppressive activity of MSCs and their
licensing. It is then arguable that their impact on MSC clinical
response may be minimal. However, if variations of their values
among responders and non-responders are consistently found
in larger studies, they will acquire a more defined role in the
monitoring of the GvHD after MSC treatment.

Second, the immunosuppressive effector pathways that have
been extensively and elegantly characterized as crucial in models
of MSC immunosuppression in vitro (75, 125, 126, 128, 132)
have not been demonstrated to have a reproducible role in
predicting MSC therapeutic activity in vivo. The impossibility
to exploit these molecules as biomarkers should also be taken
into account. Although it is relatively easy to determine and
monitor these soluble molecules in vitro, our ability to measure
them in vivo might be jeopardized by their restricted range
of action and limited bioavailability over time. The correct
timing to assess these effectors may also differ significantly based
on the nature of studies (in vitro vs. in vivo), with a further
layer of complexity associated with difference in metabolism
secondary to patient age, disease severity, co-morbidities, or use
of concomitant treatments.

At the state of the art, our well-established in vitro models
of MSC immunosuppression are not fully elucidated for the
development of robust biomarkers as predictors of clinical
response in GvHD patients treated with MSCs. It appears that
a better understanding of the mechanisms underlying MSC-
mediated immunosuppression in vivo is therefore fundamental
to provide novel perspectives and mechanistical platforms as
starting points for the development of reliable biomarkers.

ROLE OF MSCs UNDERGOING
APOPTOSIS TO DELIVER
IMMUNOSUPPRESSION IN VIVO

MSCs Undergoing Apoptosis in vivo to
Induce Immunosuppression
One major unresolved challenge which undermines the progress
in our understanding of MSC immunosuppression in vivo is
that the vast majority of infused MSCs become undetectable
a few hours after transiently residing in the lungs (133, 134).
Nevertheless, MSCs appear to maintain their ability to deliver
therapeutic activities and engage with other regulatory cells
like T-reg and macrophages. It is clear that our current in
vitro models of MSC immunosuppression are still lacking some
important aspects and cannot reconcile the paradox of the
absence of engraftment and immunosuppressive functions (44,
135–137).

Starting from these observations, we tested the hypothesis
that the lack of MSC engraftment might be due to cell death
after infusion. In our experimental model of aGvHD, we have
demonstrated that MSCs undergo extensive caspase activation
and apoptosis after infusion in the presence of cytotoxic cells,
and that this is a requirement for their immunosuppressive
function (138). This apoptosis is mediated by both CD8 and
NK cells and is not MHC-restricted. After MSC apoptosis,
phagocytic cells are also required to engulf apoptotic MSCs
and produce IDO which in turn triggers immunosuppression
(138). These findings are in line with previous studies, whereby
activated but not resting NK cells were able to lyse MSCs in vitro
(46), or MSCs were cleared in vivo by deployment of different
recipient-dependent reactions (139–143). Notably, these data
provide a completely novel perspective which undermines the
so-called “immune-privileged” status of MSCs. Conversely, by
demonstrating the instrumental role of in vivoMSC apoptosis in
delivering immunosuppression after infusion, they reconcile the
role of the observed MSC rejection in vivo (144) in the context
of MSC immunosuppressive functions across MHC barrier (72,
145) and highlight the capacity of apoptotic MSCs to modulate
immune responses (146–149).

MSC Apoptosis Provides a Predictive
Biomarker Selecting MSC Responders in
GvHD
The observation that MSC apoptosis requires and is induced
by cytotoxic granules in a mouse model of aGvHD led us to
investigate the role of cytotoxic immune cells against MSCs also
in human patients. We found that the cytotoxic activity against
MSCs can also be detected in the PBMCs of GvHD patients.
More importantly, our data show that patients displaying high
cytotoxicity respond to MSC therapy, whilst those with low
or absent cytotoxic activity do not improve following MSC
infusion (138). These data have now been confirmed in an
extended cohort of patients and the cytotoxic assay has been
found to predict clinical responses with high sensitivity and
specificity (Galleu A et al. Oral presentation, Abstract S252, EHA
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2020). It is important to point out that the limited number of
patients analyzed warrants further validation in a prospective
clinical study.

Currently, we do not know whether the cells mediating this
cytotoxicity are derived from the donor of HSCT or from the
recipient. Furthermore, it cannot be excluded that patients who
have very poor reconstitution after HSCT with both CD8 and
NK cells may have a hampered capacity to kill MSCs and then
reduced likelihood to respond to MSC treatment. However,
neither the absolute numbers nor the frequencies of CD8 and
NK cells seem to have a role in predicting the response to MSCs
(75), as supported by our observation that there is no difference
between CD8 or NK cell percentages between responders
and non-responders (138). It is likely that only a better
characterization of the phenotype of the cytotoxic cells mediating
MSC apoptosis will enable us to identify the actual subpopulation
of cells eventually responsible of this apoptosis and to develop
a quantitative and more approachable assay for use in a routine
pathology laboratory.

Despite these limitations, this predictive biomarker represents
a paradigm shift in MSC therapeutics. Its strength relies on
the fact that the assay is supported by mechanistic insights.
Furthermore, an important consequence of these observations
is that, although MSCs remain the necessary starting point for
therapeutic immunosuppression, patient-derived cells play a
crucial role in delivering such an immunosuppression. This new
perspective, in line with clinical data whereby MSCs from the
same donor can give different responses in different patients
(72–74, 76, 78, 79, 150), may significantly affect the Research and
Development sector of MSC manufacturing. In the last decades,
much efforts have been spent on the identification of the most
clinically effectiveMSC preparations. Several strategies have been
proposed, including the selection of MSCs based on biological
parameters such as the magnitude of IDO synthesis (151) or the
intracellular levels of the transcription factor TWIST1 (152).
Conversely, other groups suggested to overcome the intrinsic
variability among MSC batches by generating MSCs from pooled
BM-MNCs of multiple third-party donors (153). It is not clear
whether different MSCs exhibit similar or different capacity to
undergo apoptosis. Further studies are needed to verify whether
MSCs from different sources, administered after thawing or from
fresh cultures, expanded in selected conditions, or differentially
sorted based on specific features, have different susceptibility to
undergo apoptosis. In this perspective, the cytotoxic assay may be
devised as a tool for standardization of MSC manufacturing by
select specific thresholds of killing used as product specification.
Such an assay would also address the unmet need for a potency
assay as a guideline for Regulatory Authority requirements (154)
to implement quality control of manufactured MSCs. Thus far,
most potency assays are designed with the aim to identify or
select the “most immunosuppressive” MSC batches (155, 156),
but they are exclusively based on MSC in vitro properties.
By measuring their susceptibility to undergo apoptosis
when exposed to cytotoxic cells, the cytotoxic assay would
possibly identify “the most fit MSCs” which will deliver their
therapeutic activity once administered to patients able to induce
their apoptosis.

MSC Apoptosis Provides a Monitoring
Biomarker Evaluating MSC Immunological
Effects in GvHD
The role of MSC apoptosis in vivo not only provides clinicians
a powerful prognostic tool to predict patient responses to MSC
treatment (138), it also paves the way for the development of
potential tool to monitor the immunological effects after MSC
infusion. The ground for this approach will be centered around
the concept of the reprogramming of myeloid cells in the hosts
following MSC apoptosis and efferocytosis. It has been well-
documented that robust immune suppression and tolerance is
mediated by myeloid cells (monocytes and dendritic cells in
particular) following efferocytosis of apoptotic cells. These effects
can be mediated by TGF-β (157, 158), IDO (147), IL-10 (159),
or COX2/PGE2 (160). The field of dying MSCs has only begun
to unveil their immunomodulation in certain models (161) and
remains largely unexplored. However, it is conceivable that some
of these factors might emerge as valuable biomarkers when
further investigated.

In this perspective, the latest findings from our group
seems to corroborate this idea. Indeed, we have demonstrated
that efferocytosis of apoptotic MSCs endows monocytes with
antiproliferative activity against T cells (162). These monocytes
upregulated several immunosuppressive molecules, including
metabolic enzymes IDO and COX2, immune checkpoint ligand
PDL1 as well as soluble factors PGE2 (enzymatic product of
COX2) and IL-10. Of note, the activity of COX2/PGE2 within
the monocytes is in fact the key to determine the downstream
expression of IDO, PDL1, and IL-10 as well as the monocyte
inhibitory effects against T-cells. Most importantly, in a cohort of
steroid-refractory aGvHD patients, the increase of serum PGE2
after MSC treatment is significantly higher in the responders
compared to the non-responders. Hence, we suggest that the
serum level of PGE2 can be evaluated as a biomarker for the
monitoring of the immunological effects of MSCs in aGvHD
patients receiving MSC treatment. PGE2 can be easily measured
with the current biochemical methods such as ELISA, a rapid
protocol with high sensitivity, specificity and reproducibility.
With a reliable MSC monitoring biomarker, clinicians can be
benefitted from an early predictor of treatment failure, thus
promptly pursuing alternative treatments before the assessment
of a response. Furthermore, this tool can be devised to optimize
the MSC dosage or design a combinational regimen to improve
the clinical efficacy of MSC therapy.

POTENTIAL OF MSC EXTRACELLULAR
VESICLES (EVs) AS BIOMARKERS IN GvHD

Besides the long-term notion about the importance of growth
factors and cytokines as a part of the cell communication, the
concept that cells also secrete large amounts of extracellular
vesicles (EVs) as potential mediators is relatively new (163,
164). EVs are spherical structures limited by a lipid bilayer,
which contains hydrophilic soluble components such as proteins,
small and large RNA and DNA. There are different types
of secreted EVs that have distinct structural and biochemical
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properties depending on their intracellular site of origin (165).
Microvesicles and apoptotic bodies have been described as large
EVs (>100 nm diameter) and can be formed at the plasma
membrane by direct budding into the extracellular space. Smaller
vesicles referred to as exosomes (around 100 nm diameter)
are originated in multivesicular endosomes, subsequently
secreted by fusion of these compartments with the plasma
membrane (166).

The interest in EVs has progressively grown due to the
discovery of their functional content, and the knowledge that
the different EV subtypes contain molecules derived from
different cellular compartments. Omics studies revealed that
exosomes contain proteins originally located in the endosomes
andmicrovesicles from cytosol and plasmamembrane (167, 168).
Apoptotic bodies, on the other hand, can contain molecules
from the nucleus, endoplasmic reticulum or Golgi (169). Such
a selectivity confirms that their cargos are not random, as
might be in the case of cell debris. Instead, EVs contain a
set of well-characterized and evolutionarily conserved proteins
including the protein family of tetraspanins (CD63, CD81, and
CD9) as well as Alix and TSG101, which have been used as
EV markers. Also, they contain a set of molecules that varies
according to different physiology, therefore understanding the
EV cargo modifications, for instance during inflammation, may
provide valuable insights into the prediction and/or monitoring
of pathological processes (170).

EVs have been purified frommany types of cell culture and are
believed to be released from most, if not all, somatic cells, either
constitutively or upon activation. Hence, they can be found in
all different biological fluids such as plasma, serum, saliva and
urine. Due to this specific content, EVs have been proposed as
suitable biomarkers for various conditions (166). For instance,
the use of EVs as a biomarker in allogenic transplantation
context has been extensively investigated (171). In the study from
Gunasekaran et al. (172) in lung transplantation, the detection
of graft-derived exosomes preceded clinical diagnosis of graft
rejection, suggesting that they could serve as a method to predict
chronic rejection and adjust patient treatment accordingly. The
predictive use of EVs as a biomarker was also suggested by
Zhang et al. (173) In their study, they identified a panel
of mRNAs (gp130, SH2D1B, TNFα, and CCL4) present in
plasma EVs that could be used to predict on-going and/or
imminent antibody-mediated rejection in kidney transplants.
Other researchers found that they could correlate plasma and
urinary EV content with graft rejection and its severity in
renal (174–176) and lung transplanted patients (177). These
results have shown that monitoring EVs and their cargos in
patients might represent a promising non-invasive method
to evaluate the status of allografts and the type and stage
of rejection.

MSCs are well-characterized producers of a wide range of EVs
with different cargos. The presence of selected miRNAs within
MSC-derived EVs has been first described by Collino et al. (178).
In their studies, they found that some of the miRNAs were
present in both the EVs and the original cells. The similarities
between cells and EVs were further confirmed by Kim et al.
(179), when they conducted a study characterizing the protein

content of BM-MSC-derived EVs and revealed their overlaps
in surface markers, signaling molecules, cell adhesion molecules
and additional MSC antigens. These data suggest MSC-derived
EVs as potent mediators of intercellular communication locally
and systemically.

EVs released from licensed MSCs have different composition
and probably roles, when compared to those released by resting
MSCs. Several studies have recently reported a significant
variation on the EV content depending on the extracellular
microenvironment priming the MSCs (180–183). Although the
characterization of EVs released by the apoptotic MSCs is
still under investigation, it is well-documented that apoptotic
cells can produce a range of EVs and apoptotic bodies with
different cargos that influences their microenvironment (169,
184, 185). In this regard, we can characterize the MSC-derived
EVs to monitor their licensing process and/or the process of
apoptosis. Furthermore, they might reveal the immunological
effects of MSCs. Therefore, monitoring EVs isolated from the
circulation of patients receiving MSCs holds a promising non-
invasive method to evaluate the clinical efficacy of the treatment.
Lastly, the analysis of EV content over time could also give
hints of MSC kinetics, allowing to the adjustment of MSC
administration accordingly.

CONCLUSIONS

MSC immunobiology makes them ideal candidates for their
use in cellular therapy in several immune mediated diseases,
including GvHD. After thousands of infusions, the most
convincing conclusion is that MSCs are well-tolerated and
safe for patients. Major infectious events, secondary neoplasms,
or malignancy relapse do not seem to increase after MSC
therapy (33, 186). However, available data on MSC use in
GvHD treatment represent the paradigm of the limitations
of our current use of MSCs in most clinical applications.
It is unquestionable that patients who responded to MSCs
exhibit longer overall survivals than the non-responders (72–
76, 78, 85). Importantly, this is a consistent finding across
heterogenous cohorts of patients (Table 1). Nonetheless, there
is not definitive and proved evidence of efficacy and responses
are unpredictable.

The furious arguments ignited on the legitimacy of the
use of MSCs in GvHD in the last few years highlights the
unmet need to better understand how to improve the durability
and the rates of responses to MSCs. We believe that only
an in-depth understanding of the reasons behind clinical
responses represents the necessary milestone for the design of
the next generation of clinical trials in MSCs. Their success
will undoubtedly route on our ability to identify the effective
instruments (namely biomarkers and functional assays) that help
us to predict clinical responses, guide us in selecting the best
patient candidates, and ideally provide information as early
predictors of treatment failure. Our ability to select only “fit
patients” will be crucial in terms of sustainability of the costs
of the MSC treatment and of a better management of limited
resources, especially in the case of universal health care systems.
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FIGURE 2 | MSC immunomodulation depends on the interaction with the host. Schematic representation of MSC mediated immunosuppression after infusion. 1:

After infusion, MSCs interact with the cytotoxic granules produced by CD8T cells and NK cells of MSC recipient. 2: MSCs are induced to undergo apoptosis. 3:

apoptotic MSCs are cleared from the circulation by the mononuclear phagocyte system. After efferocytosis, phagocytic cells of MSC recipient are induced to produce

PGE2 and IDO which are the final mediator of MSC immunosuppression. Importantly, while the cytotoxic activity against MSC can be used as a biomarker to predict

the response before MSC infusion, PGE2 levels in patient serum could be devised to monitor response after treatment.

The identification of such biomarkers will also harmonize the
broad heterogeneity amongMSCmanufacturing processes across
different centers (187). This will be a crucial pre-requisition for
rigorous and scientific reproducibility across studies by which
assess the difference between MSC preparations, MSC sources,
administration regimens and doses.

So far, the translation of the in vitro models of MSC
immunosuppression has failed to provide assays able to guide
patient stratification. The discovery that MSC apoptosis is
essential for MSC therapeutic efficacy in vivo represents a
paradigm shift in the MSC field. This does not necessarily imply
that it is the only possible mechanism and we cannot exclude the
co-existence with other soluble-mediated mechanisms. However,
this provides a reconciliation of the paradox between absence
of engraftment and activity thus giving a strong mechanistic
base of apparently contradictory experimental observations.
Furthermore, in agreement with clinical data, it strengthens
the notion that it is the patient with his/her inflammatory
environment who plays a crucial role in the final response.
Most importantly, this novel mechanism can be easily translated
into reliable biomarkers. While the ability of the recipient
to generate apoptotic MSCs appears to be a requirement for
the therapeutic efficacy and could be used to stratify patients
for MSC infusions before the treatment, the PGE2 levels in
patient after MSC infusion could be exploited to monitor the

response and provide a tool for detecting early treatment failures
(Figure 2).

These new biomarkers may represent the dawn of a new era
of MSC use in GvHD. However, we are only scratching the
surface of the challenge in our attempt to improve the use of
MSCs in GvHD and other inflammatory diseases. New questions
need to be addressed and new paths identified to pave the way.
Gaps are also yet to be filled regarding the relationship between
MSC apoptosis and the classical “cytokine licensing.” A follow-on
question regards the extent and the durability of the tolerogenic
environment created by apoptotic MSCs. The restricted location
of MSC apoptosis does not seem to reconcile with the systemic
effects on inflammation. Answers to these questions will certainly
provide novel insights and will lead us to the improvement
of the available biomarkers or the discovery of new and more
precise assays.
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