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The murine intestinal nematode Heligmosomoides polygyrus releases the H. polygyrus

Alarmin Release Inhibitor (HpARI) - a protein which binds to IL-33 and to DNA, effectively

tethering the cytokine in the nucleus of necrotic cells. Previous work showed that a

non-natural truncation consisting of the first 2 domains of HpARI (HpARI_CCP1/2) retains

binding to both DNA and IL-33, and inhibited IL-33 release in vivo. Here, we show that

the affinity of HpARI_CCP1/2 for IL-33 is significantly lower than that of the full-length

protein, and that HpARI_CCP1/2 lacks the ability to prevent interaction of IL-33 with its

receptor. When HpARI_CCP1/2 was applied in vivo it potently amplified IL-33-dependent

immune responses to Alternaria alternata allergen, Nippostrongylus brasiliensis infection

and recombinant IL-33 injection, in direct contrast to the IL-33-suppressive effects of

full-length HpARI. Mechanistically, we found that HpARI_CCP1/2 is able to bind to and

stabilize IL-33, preventing its degradation and maintaining the cytokine in its active

form. This study highlights the importance of IL-33 inactivation, the potential for IL-33

stabilization in vivo, and describes a new tool for IL-33 research.
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INTRODUCTION

Heligmosomoides polygyrus is a parasitic nematode that infects the intestines of mice. It has
a fecal/oral lifecycle, with infective L3 larvae being ingested, and then rapidly penetrating the
epithelium of the proximal duodenum. There, the larvae develop to L4 stage and emerge as adults
into the intestinal lumen at around day 10 of infection (1, 2). The transit of the parasite through the
intestinal wall is likely to cause epithelial damage and cell death, resulting in the release of alarmins
such as IL-33 from stromal cells or mast cells (3), in turn inducing an anti-parasite type 2 immune
response (4). In order to negate this response, and allow persistence of the parasite in the host, H.
polygyrus secretes multiple immunomodulatory factors, including Hp-TGM, a protein mimic of
host TGF-β (5), and microRNA-containing extracellular vesicles (6) which modulate transcription
of multiple host genes, including suppression of Suppression of Tumorigenicity 2 (ST2), the IL-33
receptor. Furthermore, our recent work shows that H. polygyrus secretes HpBARI, a protein which
binds and blocks ST2 (7). We previously showed that the parasite also secretes the H. polygyrus
Alarmin Release Inhibitor (HpARI), which blocks IL-33 responses (8).
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IL-33 is an alarmin cytokine constitutively produced by
epithelial cells. It is stored preformed in the nucleus and released
on necrotic cell death, due to mechanical, protease-mediated
or chemical damage to the epithelium (9). On necrotic cell
death, proteases from the cell cytoplasm, or those secreted
by recruited mast cells, neutrophils or those in allergens can
then cleave the cytokine between the N-terminus chromatin-
binding domain and the C-terminus receptor binding domain,
potently increasing the activity of the cytokine (10–12). The IL-
33 receptor-binding domain contains four free cysteine residues,
which upon release from the reducing nuclear environment into
the oxidizing extracellular environment rapidly form disulphide
bonds, changing the cytokine’s conformation, rendering it unable
to bind to its receptor and effectively inactivating it (13).
Proteases can also further degrade IL-33 to smaller, inactive
forms (12). Thus, the active form of IL-33 has only a very short
half-life, and by 1 h after release the vast majority of IL-33 is
inactive or degraded.

HpARI binds to the active reduced form of IL-33 and to
genomicDNA. This dual binding tethers IL-33 within the nucleus
of necrotic cells, preventing its release, and inhibiting interaction
of IL-33 with ST2. The HpARI protein consists of 3 Complement
Control Protein domains (CCP1-3), and our previous data
showed that HpARI binds IL-33 through the CCP2 domain,
while DNA-binding was mediated by the CCP1 domain (8).
Here, we further characterize the functions of the CCP domains
of HpARI, finding that CCP3 stabilizes the interaction between
HpARI and IL-33, increasing its affinity and being required for
blockade of IL-33-ST2 interactions. Furthermore, we show that
HpARI_CCP1/2 (the HpARI truncation lacking CCP3) is able to
stabilize IL-33, increasing its half-life and amplifying its effects.

MATERIALS AND METHODS

Protein Expression and Purification
Constructs encoding HpARI, HpARI_CCP1/2 and
HpARI_CCP2/3 (all with C-terminus myc and 6-His tags)
were cloned into the pSecTAG2A expression vector as
previously described (8). Purified plasmids were transfected
into Expi293FTM cells, and supernatants collected 5 days
later. Expi293FTM cells were maintained, and transfections
carried out using the Expi293 Expression System according
to manufacturer’s instructions (ThermoFisher Scientific).
Expressed protein in supernatants were purified over a HisTrap
excel column (GE Healthcare) and eluted in 500mM imidazole.
Eluted protein was then dialysed to PBS, and repurified on a
HiTRAP chelating HP column (GE Healthcare) charged with
0.1MNiSO4. Elution was performed using an imidazole gradient
and fractions positive for the protein of interest were pooled,
dialysed to PBS and filter-sterilized. Protein concentration was
measured at A280 nM (Nanodrop, ThermoFisher Scientific),
using calculated extinction coefficient.

Surface Plasmon Resonance (SPR)
SPR measurements were performed using a BIAcore T200
instrument (GE Healthcare). Ni2+-nitrilotriacetic acid (NTA)
sensor chips, 1-ethyl-3-(3-diaminopropyl) carbodiimide

hydrochloride (EDC), N-hydroxysuccinimide (NHS) and
ethanolamine (H2N(CH2)2OH) were purchased from GE
Healthcare. HpARI, HpARI_CCP1/2 or HpARI_CCP2/3 were
immobilized and covalently stabilized on an NTA sensor chip
essentially as described (14) with the following modifications:
following Ni2+ priming (30 sec injection of 500µM NiCl2 at 5
µl·min−1), dextran surface carboxylate groups were minimally
activated by an injection of 0.2M EDC; 50mM NHS at 5
µl·min−1 for 240 sec. Respective proteins (at concentrations
between 10 and 400 nM), in 10mM NaH2PO4, pH 7.5; 150mM
NaCl; 50µM EDTA; 0.05% surfactant P20, were captured via
the hexa-His tag and simultaneously covalently stabilized to
400 RU, by varying the contact time. Immediately following the
capture/stabilization a single 15 s injection of 350mM EDTA and
50mM Imidazole in 10mM NaH2PO4, pH 7.5; 150mM NaCl;
50mM EDTA; 0.05% surfactant P20, at 30 µl·min−1, was used
to remove non-covalently bound protein, followed by a 180 sec
injection of 1M H2N(CH2)2OH, pH 8.5 at 5 µl·min−1. Prior
to any experiments, the surface was further conditioned with a
600 s wash with 10mMNaH2PO4, pH 7.5; 150mMNaCl; 50µM
EDTA; 0.05% surfactant P20 at 100 µl·min−1.

SPR single-cycle kinetic titration binding experiments were
performed at 25◦C. Three-fold dilution series of mIL-33 (2.47 nM
to 200 nM), were injected over the sensor surface, in 10mM
NaH2PO4, pH 7.5; 150mMNaCl; 50µMEDTA; 0.05% surfactant
P20, at 30ml.min−1 for 30 s followed by a final 600 s dissociation
phase. The on- (k+) and off-rate (k−) constants and the
equilibrium dissociation constants were calculated from the
double referenced sensorgrams by global fitting of a 1:1 binding
model, with mass transport considerations, using analysis
software (v2.02) provided with the Biacore T200 instrument.

Immunoprecipitation
Protein G dynabeads (ThermoFisher Scientific) were coated
with 1 µg mouse ST2-Fc (Biolegend), and washed on a
DynaMag-2 magnet with PBS 0.02% Tween 20. 100 ng
recombinant murine IL-33 (Biolegend) was then mixed with 1
µg HpARI, HpARI_CCP1/2 or HpARI_CCP2/3, and incubated
at room temperature for 15min, prior to adding to ST2-Fc-
coated protein G dynabeads. Beads were washed and bound
IL-33 eluted with 50mM glycine pH2.8, then ran on 4–
12% SDS-PAGE gels (ThermoFisher Scientific) under reducing
conditions, and transferred to nitrocellulose membranes for
western blotting, probing with anti-IL-33 goat polyclonal
antibody (R&D Systems AF3626), rabbit anti-goat IgG-HRP
secondary antibody (ThermoFisher Scientific) and detected using
WesternSure Premium reagent (Licor). Densitometry was carried
out using ImageJ, and expressed as fold change from controls at
each timepoint.

Animals
BALB/cAnNCrl and C57BL/6JCrl mice were purchased from
Charles River, UK. Heterozygous IL-13eGFP+/GFP mice (15)
were bred in-house. All mice were accommodated and
procedures performed under UK Home Office licenses with
institutional oversight performed by qualified veterinarians.
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Alternaria Models
Alternaria alternata allergen was used in vivo as previously
described (8, 16). Alternaria allergen (10 µg), OVA (20 µg),
HpARI (10 µg) and HpARI_CCP1/2 (10 µg) were intranasally
administered to BALB/cmice.Where indicated, the OVA-specific
response was recalled by daily intranasal administration of 20
µg OVA protein on days 14, 15, and 16. Tissues were harvested
24 h or 17 days after initial Alternaria allergen administration.
Lungs were flushed with 4 washes of 0.5ml ice-cold PBS to
collect bronchoalveolar lavage cells, followed by lung dissection
for single cell preparation.

Nippostrongylus brasiliensis Infection
The life cycle ofN. brasiliensiswasmaintained in Sprague-Dawley
rats as previously described (17), and infective L3 larvae were
prepared from 1 to 3 week rat fecal cultures. C57BL/6 mice were
subcutaneously infected with 400 L3 N. brasiliensis larvae, and
culled 3 or 6 days later.

Intraperitoneal IL-33 Treatment
Recombinant murine IL-33 (Biolegend) was injected
intraperitoneally to C57BL/6 mice (100 ng/mouse). Mice
were culled 3 h later and peritoneal lavage cells collected in 3
washes of 3ml ice-cold RPMI.

Flow Cytometry
Cells were stained with Fixable Blue Live/Dead stain
(ThermoFisher Scientific), then blocked with anti-mouse
CD16/32 antibody and surface stained with CD3 (FITC, clone
145-2C11), CD5 (FITC, clone 53-7.3), CD11b (FITC, M1/70),
CD19 (FITC, clone 6D5), GR1 (FITC, clone RB6-8C5), CD45
(AF700, clone 30-F11), ICOS (PCP, clone 15F9), CD4 (PE-
Dazzle, cloneRM4.5), CD11c (AF647, clone N418), Ly6G (PerCP,
clone 1A8), CD25 (BV650, clone PC61) (Biolegend); CD49b
(FITC, clone DX5), ST2 (APC, clone RMST2-2) (ThermoFisher
Scientific); Siglec-F (PE, clone ES22-10D8) (Miltenyi). The
lineage stain consisted of CD3, CD5, CD11b, CD19, CD49b and
GR1, all on FITC. Samples were acquired on an LSR Fortessa
(BD Biosciences) and analyzed using FlowJo 10 (Treestar).

CMT-64 Cell Line
CMT-64 cells (ECACC 10032301) were maintained by serial
passage in “complete” RPMI [RPMI 1640 medium containing
10% fetal bovine serum, 2mM L-glutamine, 100 U/ml Penicillin
and 100µg/ml Streptomycin (ThermoFisher Scientific)] at 37◦C,
5% CO2. Cells were seeded into 24- or 96-well plates for
Triton-X100 or freeze-thaw treatment, respectively. Cells were
grown to 100% confluency prior to 2 washes with PBS. For
Triton-X100 treatment, cells were then washed into RPMI 1640
containing 0.1% BSA with or without 0.1% Triton-X100, and
incubated at 37◦C as indicated, prior to collection of supernatants
and measurement of IL-33 by ELISA and western blot. For
freeze-thaw assays, cells were then washed into complete RPMI
containing 10µg/ml of HpARI or HpARI_CCP1/2, frozen on
dry ice for at least 1 h, then thawed and incubated at 37◦C as
indicated, prior to collection of supernatants and application to
bone marrow cell cultures.

Bone Marrow Cell Culture
Single cell suspensions of bone marrow cells were prepared from
C57BL/6 mice, by flushing tibias and femurs with RPMI 1640
medium using a 21 g needle. Cells were resuspended in red blood
cell lysis buffer (Sigma) for 5min at room temperature, prior
to resuspension in medium and passing through a 70µm cell
strainer. Cells were cultured in round-bottom 96-well-plates in a
final 200µl volume, containing 0.5× 106 cells/well. IL-2 and IL-7
were added at 10 ng/ml final concentration, with 50 µl of CMT-
64 freeze-thaw supernatant. Cells were then cultured at 37◦C, 5%
CO2, for 5 days, prior to assessment of responses by cytokine
ELISA and flow cytometry.

Cytokine Measurement
ELISAs were carried out to manufacturer’s instructions for
IL-5, IL-13 (Ready-SET-go, ThermoFisher Scientific) and IL-
33 (Duoset, Biotechne). IL-33 was also measured in CMT-64
supernatants by western blot – supernatants were ran on 4–
12% NuPAGE gels (ThermoFisher Scientific) under reducing
conditions, before transferring to nitrocellulose membrane and
probing with goat anti-mIL-33 (Biotechne), and rabbit anti-goat
IgG HRP secondary antibody (Thermo Fisher), and detected
using WesternSure Premium reagent (Licor).

Statistical Analysis
All data was analyzed using Prism (Graphpad Software Inc.).
One-way ANOVA with Dunnet’s multiple comparisons post-
test was used to compare multiple independent groups, while
two-way ANOVA and Tukey’s multiple comparison’s post-test
was used to compare multiple timepoints or concentrations
between independent groups. Where necessary, data was log-
transformed to give a normal distribution and to equalize
variances. ∗∗∗∗p < 0.0001, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05,
N.S.= Not significant (p > 0.05).

RESULTS

HpARI CCP2 Binds IL-33, While HpARI
CCP3 Is Required to Block IL-33-ST2
Interaction
Constructs encoding full-length HpARI, or truncations lacking
CCP3 (HpARI_CCP1/2), or lacking CCP1 (HpARI_CCP2/3)
were expressed in Expi293FTM mammalian cells, and purified
on 6-His tags. These constructs were then tested for binding to
IL-33 in surface plasmon resonance experiments, showing that
the affinity for IL-33 of full-length HpARI and HpARI_CCP2/3
were similar (Kd of 1.1 +/− 0.44 nM and 1.4 +/− 0.14 nM,
respectively), while HpARI_CCP1/2 had approximately a 10-
fold lower affinity for the cytokine (Kd = 9.8 +/−6.7 nM). This
difference in affinity was largely due to an approximately 20-fold
faster off-rate for HpARI_CCP1/2 (K− of 30 × 10−4 s−1 vs. 1.5
× 10−4 s−1 for HpARI) (Figure 1A).

The CCP3 domain also appears important for
preventing IL-33-ST2 interactions. While full-length
HpARI and HpARI_CCP2/3 were able to prevent IL-33
immunoprecipitation by ST2-Fc, HpARI_CCP1/2 could not
(Figure 1B).
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FIGURE 1 | (A) Surface plasmon resonance measurements of IL-33 binding to chip-bound HpARI, HpARI_CCP1/2 and HpARI_CCP2/3. Kd values calculated from 3

replicate experiments, and indicates mean and SD. (B) ST2-Fc was bound to protein G-coated magnetic beads and used to immunoprecipitate murine IL-33

(mIL-33). IL-33 western blot of eluted material shown. Image representative of two independent experiments.

HpARI_CCP1/2 Increases Responses to
IL-33
We previously showed that HpARI_CCP1/2 was capable of
suppressing the release of IL-33 in vivo, 15min after Alternaria
alternata administration (8). To assess whether HpARI_CCP1/2
could replicate the inhibition of IL-33-dependent responses
seen with full-length HpARI, we administered HpARI or
HpARI_CCP1/2 together with Alternaria allergen and OVA
protein and assessed type 2 immune responses after OVA
challenge 2 weeks later (Figure 2A). While HpARI suppressed
allergic reactivity in this model (as shown previously (8)),
HpARI_CCP1/2 had the opposite effect, increasing BAL and lung
eosinophil, and lung ILC2 and ICOS+ST2+ Th2 cell numbers
(18) (Figure 2A and Supplementary Figure 1).

When the innate Alternaria-induced immune response was
assessed 24 h after initial administration of the allergen to
naïve mice, we found that although HpARI_CCP1/2 did not
change the eosinophil response compared to Alternaria alone,
HpARI_CCP1/2 increased BAL neutrophil numbers. At this
timepoint, no ILC2 proliferation has yet occurred, as previously
described (19), so total lung ILC2 cell numbers were similar in
all groups (data not shown). However, allergen-activated ILC2s
showed strong upregulation of CD25 expression, as described
previously during activation of ILC2s in this model (20), which
was further increased by HpARI_CCP1/2 (Figure 2B).

To exclude the possibility that HpARI_CCP1/2 is interfering
with the Alternaria allergen directly, exacerbating the response
to it, we used a second model of IL-33-dependent responses
(21–23), infecting mice with Nippostrongylus brasiliensis and
administering HpARI or HpARI_CCP1/2 to the lungs during
the first 3 days of infection. During N. brasiliensis infection, L3

larvae migrate through the lung at days 1–4, enter the intestines
as L4 larvae and develop to adults at days 4–10 post-infection
(21). Mice were culled at days 3 and 6 post-infection, when
parasites were present in the lung and gut, respectively, and
the type 2 immune response in the lung was assessed at both
timepoints. Again, HpARI suppressed type 2 immune responses
as shown previously (8), while HpARI_CCP1/2 increased BAL
eosinophilia, IL-5 and IL-13 production (Figure 2C). Neither
HpARI nor HpARI_CCP1/2 had any effect on BAL neutrophilia
at these timepoints (data not shown), implying that neutrophil
recruitment in N. brasiliensis is not IL-33 dependent. Similarly,
in Strongyloides venezuelensis lung-stage infection, neutrophil
recruitment is IL-33-independent (24).

Finally, we utilized a model of recombinant IL-33
intraperitoneal injection, which induces a mast cell-dependent
neutrophilia (25, 26), in contrast to the ILC2-dependent, largely
eosinophilic response seen on IL-33 release in the lung. Again,
here we found that while HpARI suppressed IL-33 induced
neutrophilia, HpARI_CCP1/2 exacerbated it (Figure 2D).

In conclusion, HpARI_CCP1/2 amplifies IL-33-dependent
responses in vivo. We hypothesized that this activity was due
to stabilization of the cytokine, increasing its effective half-life.
To test this hypothesis, we developed an in vitro model of IL-33
release and IL-33 responses.

HpARI_CCP1/2 Maintains IL-33 in Its
Active Form
The CMT-64 cell line constitutively produces IL-33, which is
released on cellular necrosis (12). Confluent CMT-64 cells were
washed into PBS+0.1% BSA, and necrosis induced by addition
of 0.1% Triton-X100, in the presence or absence of HpARI
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FIGURE 2 | (A) HpARI or HpARI_CCP1/2 (CCP1/2) were co-administered with Alternaria allergen and OVA by the intranasal route, then the OVA-specific response

recalled 2 weeks later. BAL and lung eosinophil (Siglecf+CD11c–CD45+), and lung ILC2 (ICOS+lineage–CD45+) and Th2 (ICOS+ST2+CD4+lineage+CD45+) cell

numbers shown. Data pooled from 2 repeat experiments each containing 4 mice per group. (B) HpARI_CCP1/2 (CCP1/2) was coadministered with Alternaria allergen

by the intranasal route. After 24 h, BAL eosinophil (Siglecf+CD11c–CD45+) and neutrophil (Ly6G+CD11b+Siglecf–CD11c–CD45+) cell numbers, and lung ILC2

CD25 geometric mean fluorescent intensity were assessed by flow cytometry. Data representative of 2 repeat experiments each containing 3–5 mice per group. (C)

HpARI or HpARI_CCP1/2 were intranasally administered on days 0, 1, and 2 after infection with Nippostrongylus brasiliensis. BAL eosinophil (Siglecf+CD11c–)% of

CD45+ cells, and BAL IL-5 and IL-13 were measured on days 3 and 6 post-infection. Data representative of 3 repeat experiments, each with 4 mice per group. (D)

Recombinant IL-33 was intraperitoneally injected with HpARI or HpARI_CCP1/2, and proportions of Ly6G+CD11b+ neutrophils in the CD45+ peritoneal lavage

population assessed 3 h post-injection. Representative FACS plots shown of CD45+ live cells. Data representative of 2 repeat experiments, each with 3 mice per

group. Error bars show SEM. N.S. = Not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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or HpARI_CCP1/2. Over a 24 h timecourse following Triton-
X100 addition, we assessed IL-33 release by ELISA and western
blot. IL-33 ELISA showed that Triton-X100 caused rapid IL-
33 release, with high concentrations of the cytokine detected in
culture supernatants within 15min of addition of the detergent
in control wells. IL-33 levels then gradually decreased at later
timepoints, presumably as the protein was degraded (Figure 3A)
(12). HpARI addition ablated the IL-33 signal seen in the ELISA,
as shown in our previous study (8): as well as retarding the
release of the cytokine, HpARI binding also out-competes the
ELISA antibodies, abolishing detection of IL-33. HpARI_CCP1/2
did not abolish detection of IL-33 in the ELISA, but did reduce
the IL-33 signal at early timepoints. Moreover, in the presence
of HpARI_CCP1/2, IL-33 accumulated over the timecourse and
maintained high levels at later timepoints.

In contrast, when IL-33 in the same samples was assessed
by western blot, a very strong signal was seen at all timepoints
at a size consistent with full-length IL-33 protein (∼30
kDa), while a weaker signal was seen at around 18–20
kDa, consistent with processed mature IL-33 (Figure 3B and
Supplementary Figures 2A,B). While a strong full-length IL-
33 band was seen across all timepoints and treatments, the
density of the mature bands were dynamically altered by the
presence of each treatment. In control wells, mature IL-33 was
present early after Triton-X100 treatment and was degraded at
later timepoints. In contrast, in the presence of HpARI_CCP1/2,
the mature form was present at lower intensities than in
control wells at early timepoints, but accumulated over the
timecourse and was strongest at 24 h post Triton-X100 treatment,
reflecting ELISA data (Figure 3A). HpARI treatment had a
similar effect to HpARI_CCP1/2 when IL-33 was assessed by
western blot. Quantification of band intensities by densitometry
reflected this increase of mature IL-33 signal in the presence
of HpARI or HpARI_CCP1/2 (Supplementary Figure 2C). The
difference in IL-33 signal strength between ELISA and western
blot in the presence of HpARI was seen in a previous
study (8), and is thought to be due to interference with
antibody binding to the endogenous IL-33-HpARI complex in
ELISA, but in a denaturing western blot proteins from this
complex are dissociated and available for antibody detection.
Together, this data suggests that binding of IL-33 by HpARI
or HpARI_CCP1/2 stabilizes the mature cytokine, protecting it
from degradation.

To assess the activity of the cytokine released, we induced
necrosis of CMT-64 cells via freeze-thaw treatment. This
treatment could be carried out in complete culture medium
(without toxic additives such as Triton-X100), allowing
downstream assessment of cellular responses to the released
cytokine. On thaw, necrotic CMT-64 cells were incubated for
up to 48 h at 37◦C, and IL-33 levels in supernatants assessed by
ELISA. Similarly to Triton-X100-mediated necrosis, we found
high levels of IL-33 released rapidly after freeze-thaw necrosis,
which gradually decreased over the 48 h timecourse in control
wells, while IL-33 levels increased over the timecourse in the
presence of HpARI_CCP1/2 (Figure 3C). These supernatants
were applied to total bone marrow cells from IL-13eGFP+/GFP

reporter mice (15) cultured in the presence of IL-2 and IL-7
(to support ILC2 differentiation), and cytokine responses were

assessed 5 days later. As shown in Figure 3D, control freeze-
thaw CMT-64 supernatants could only induce bone marrow
cell IL-5 and IL-13 production at early timepoints post-thaw,
implying that after ∼6 h post-thaw, all IL-33 present in the
culture medium was inactive. This response appeared IL-33-
dependent as HpARI entirely inhibited IL-5 and IL-13 release. In
contrast, supernatants from cells freeze-thawed in the presence
of HpARI_CCP1/2 were able to maintain high levels of IL-5 and
IL-13 stimulation (∼10-fold higher than the peak production
seen in control wells) and this stimulation was maintained even
when supernatants had been incubated for 48 h post-thaw. To
specifically assess the ILC2 response within these total bone
marrow cell cultures, we used flow cytometry for IL-13eGFP
reporter or CD25 expression on ICOS+lineage−CD45+ ILC2s
to confirm that these cells were activated by supernatants from
medium of freeze-thaw control wells at early (45min post-thaw),
but not late (48 h post-thaw) timepoints, while wells containing
HpARI_CCP1/2 remained highly activated throughout the
timecourse (Figure 3E and Supplementary Figure 3).

DISCUSSION

HpARI blocks IL-33 responses and is secreted byH. polygyrus, as
part of a suite of immunomodulatory effector molecules which
act to prevent immune-mediated ejection of the parasite (27).
HpARI acts by binding to IL-33 through the HpARI CCP2
domain and to genomic DNA in necrotic cells through the
HpARI CCP1 domain, tethering the cytokine within the necrotic
cell nucleus and preventing its release (8). Here, we further
characterize these interactions, showing that a synthetic, non-
natural construct lacking the CCP3 domain (HpARI_CCP1/2)
binds IL-33 with an approximately 10-fold lower affinity
than the full-length HpARI protein, and lacks the blocking
activity of HpARI against IL-33-ST2 interactions. Furthermore,
HpARI_CCP1/2 had the surprising effect of stabilizing and
amplifying IL-33 responses in vitro and in vivo.

As opposed to HpARI_CCP1/2, HpARI_CCP2/3 showed high
affinity binding to IL-33, and prevented ligation of ST2 by IL-33,
replicating the IL-33-blocking effects of full-length HpARI. In a
previous study (8), we showed that HpARI_CCP2/3 lacked the
DNA-binding activity of full-lengthHpARI andHpARI_CCP1/2,
implying that this activity is mediated by the CCP1 domain. We
previously also showed that HpARI_CCP2/3 increased, rather
than decreased IL-33 levels in the bronchoalveolar lavage of
mice 15min after Alternaria allergen treatment. Our work here
supports the hypothesis that this increase in IL-33 is due to
HpARI_CCP2/3 preventing the rapid uptake and degradation
of bound IL-33 by ST2-expressing immune cells (13, 28, 29),
while lacking the DNA-binding (and hence tethering function)
of HpARI or HpARI_CCP1/2. Thus, all IL-33 released is retained
in the bronchoalveolar lavage, leading to increased IL-33 levels
compared to controls.

IL-33 is known to mediate parasite expulsion in a type-2
dependent-manner (22). The HpARI_CCP1/2 truncated protein
maintains the activity of IL-33, potentially amplifying its anti-
parasitic effects. It is worthwhile emphasizing that this truncated
construct is not a protein naturally secreted by the parasite, but
rather a synthetic product with an unexpected activity.

Frontiers in Immunology | www.frontiersin.org 6 June 2020 | Volume 11 | Article 1363

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chauché et al. Truncated HpARI Amplifies IL-33 Responses

FIGURE 3 | (A) CMT-64 cells were cultured to confluency and treated with 0.1% Triton-X100+0.1% BSA alone, or in the presence of HpARI or HpARI_CCP1/2

(CCP1/2). Supernatants were harvested over a timecourse and IL-33 levels assessed by ELISA. Each measurement contains 4 technical replicates and is

representative of 3 repeat experiments. (B) IL-33 western blot of pooled samples from (A). Representative of 3 repeat experiments. (C) CMT-64 cells were cultured to

confluency in RPMI+10% FCS, and freeze-thawed in the presence of complete medium (Med), HpARI or HpARI_CCP1/2. After thaw, cultures of necrotic cells were

incubated at 37◦C, and supernatants taken over a timecourse, and assessed for IL-33 levels by ELISA. Each timepoint shows 4 technical replicates. (D) Supernatants

(Continued)
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FIGURE 3 | from (C) were applied to IL-13eGFP+/GFP bone marrow cells in the presence of IL-2 and IL-7 and cultured for 5 days. Levels of IL-5 (upper panel) and

IL-13 (lower panel) in supernatants were assessed by ELISA. Each timepoint shows 4 technical replicates. (E) Bone marrow cells from (D) after 5 days of culture were

pooled, stained, and gated on ICOS+lineage–CD45+ ILC2s, and assessed for IL-13eGFP and CD25 expression. Numbers in parentheses indicate geometric mean

fluorescent intensity for each condition. All data from (C–E) is representative of 3 repeat experiments. Error bars show SEM. N.S. = Not significant, *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001.

As the IL-33 pathway is strongly implicated in human
asthma, HpARI, with its unique mechanism of action and
strong binding to IL-33, is a potential therapeutic agent. IL-
33 is a potently inflammatory cytokine which is kept tightly
regulated. Once released, IL-33 undergoes rapid oxidation and
degradation, confining its effects to a short time after release
(12, 13). Addition of HpARI or HpARI_CCP1/2 prevented
degradation of the cytokine and maintained it in its active form,
possibly due to steric hinderance of proteases. As HpARI also
blocked the interaction of IL-33 with its receptor there was
no cellular response to IL-33 in the presence of HpARI, while
HpARI_CCP1/2, which lacks this IL-33-ST2 blocking activity,
was unable to inhibit responses to IL-33. Furthermore, most
surprisingly, HpARI_CCP1/2 was able to maintain the effects
of IL-33 over a long timecourse, potently exacerbating IL-33-
dependent responses in vivo and in vitro.

The effects of HpARI_CCP1/2 may not be confined to
extending the half-life of IL-33 by preventing its degradation,
but may prevent the much more rapid oxidation of the
cytokine. Partial oxidation of IL-33 occurs in vivo within
15min of release (13), therefore the activity of released
IL-33 in vivo may be less than that of fully active IL-
33. Indeed, when a purified wild-type or an oxidation-
resistant mutant of human IL-33 were tested in vitro, the
mutant form of IL-33 was found to be 30-fold more potent
than WT IL-33 (13). In this study, we were not able to
measure the difference between reduced and oxidized IL-
33, therefore we cannot make definitive statements about
this activity of HpARI_CCP1/2. However, inhibition of IL-
33 inactivation, either through prevention of oxidation or
proteolytic degradation, could be a potent method for amplifying
IL-33-dependent responses.

Although IL-33 is strongly implicated in inducing eosinophilic
inflammation in anti-parasite or allergic type 2 immune
responses (21, 30), the cytokine has also shown protective
effects in models of colitis (31), graft-vs.-host disease (32),
autoimmunity (33), obesity (34), wound healing and tissue
restoration (35, 36). Therefore, treatments which amplify
endogenous IL-33 responses could have clinical potential in a
range of treatments.

HpARI_CCP1/2 could also be a useful tool for IL-33

research. Modulating IL-33 responses by using HpARI and
HpARI_CCP1/2 in parallel allows assessment of the role of IL-
33 in a system in the absence of potentially confounding effects

of recombinant cytokine administration or genetic manipulation.
In addition, the strategy of IL-33 stabilization by HpARI_CCP1/2

may be able to be replicated using a monoclonal antibody-based
therapy, with low-affinity or non-blocking antibodies potentially
able to amplify IL-33 responses. As anti-IL-33 treatments enter

clinical trials (37), this is an important consideration, as sub-
optimal antibodies could result in amplification rather than
suppression of IL-33 responses.

This study sheds further light on the mechanism of binding
of HpARI to IL-33, the function of the domains of HpARI,
and the effects of IL-33 degradation and inactivation. Further
structural characterization of HpARI–IL-33 binding will be
useful in characterizing this interaction and could allow guided
design of more effective IL-33-blocking or IL-33-amplifying
therapeutic agents.
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