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Background: Butyric acid (BA) is a short-chain fatty acid (SCFA) with anti-inflammatory

properties, which promotes intestinal barrier function. Medium-chain fatty acids

(MCFA), including caproic acid (CA), promote TH1 and TH17 differentiation, thus

supporting inflammation.

Aim: Since most SCFAs are absorbed in the cecum and colon, the measurement of

BA in peripheral blood could provide information on the health status of the intestinal

ecosystem. Additionally, given the different immunomodulatory properties of BA and CA

the evaluation of their serum concentration, as well as their ratio could be as a simple

and rapid biomarker of disease activity and/or treatment efficacy in MS.

Methods: We evaluated serum BA and CA concentrations, immune parameters,

intestinal barrier integrity and the gut microbiota composition in patients with multiple

sclerosis (MS) comparing result to those obtained in healthy controls.

Results: In MS, the concentration of BA was reduced and that of CA was increased.

Concurrently, the microbiota was depleted of BA producers while it was enriched in

mucin-degrading, pro-inflammatory components. The reduced serum concentration

of BA seen in MS patients correlated with alterations of the barrier permeability, as

evidenced by the higher plasma concentrations of lipopolysaccharide and intestinal

fatty acid-binding protein, and inflammation. Specifically, CA was positively associated

with CD4+/IFNγ+ T lymphocytes, and the BA/CA ratio correlated positively with

CD4+/CD25high/Foxp3+ and negatively with CD4+/IFNγ+ T lymphocytes.

Conclusion: The gut microbiota dysbiosis found in MS is possibly associated with

alterations of the SCFA/MCFA ratio and of the intestinal barrier; this could explain the

chronic inflammation that characterizes this disease. SCFA and MCFA quantification

could be a simple biomarker to evaluate the efficacy of therapeutic and rehabilitation

procedures in MS.

Keywords: short-chain fatty acids (SCFAs), butyric acid, caproic acid, gut microbiota, dysbiosis, cytokines, T

lymphocytes, multiple sclerosis
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INTRODUCTION

Multiple sclerosis (MS) is a chronic disease of the central nervous
system (CNS) characterized by demyelination and mediated by
auto-reactive immune processes directed against neural tissues.
Inflammation drives and accompanies MS, and this disease
has repeatedly been shown to be characterized by augmented
activation of TH1 and TH17 lymphocytes and downregulation
of Treg cells. The etiopathogenesis of MS is still only partly
understood, but a number of recent publications suggest that
alterations of the intestinal microbiota play a role, even if
the underlying mechanisms are unclear (1–4). Compared to
healthy individuals, the gut microbial ecosystem ofMS patients is
indeed enriched with Methanobrevibacter (5), an archaeal genus
associated with inflammatory and autoimmune diseases (6), and
Akkermansia, a mucin-degrading bacterium capable of favoring
pro-inflammatory T lymphocyte responses,7 but is depleted of
Parabacteroides distasonis (7), bacterial species that support T
cell differentiation into Treg cells (8). An additional body of data
indicates that the relative abundance of the Lachnospiraceae and
Ruminococcaceae families, which include short-chain fatty acid
(SCFA) producers, as well as Bacteroides fragilis, Butyricimonas,
and Prevotella is considerably reduced in MS (4, 5, 9–11). The
hypothesis that these alterations play a role in the pathogenesis
of MS has recently been reinforced by results showing that diet-
induced changes in the gut microbiota resulted in a significant
increase in Lachnospiraceae that correlated with an augmented
expression of anti-inflammatory immune cells and a significant
reduction of the relapse rate, as well as of the expanded disability
status score (EDSS) (12).

Butyric, acetic and propionic acids are the main SCFAs,
i.e., carboxylic acids containing 2–5 carbon atoms, which are
produced in the proximal colon by bacterial fermentation of
non-digestible carbohydrates (13, 14). Butyric acid (BA), in
particular, is endowed with immunomodulatory properties that
are mediated by histone deacetylase (HDAC) inhibition (15–
17) or through the activation of the metabolite-sensing G
protein-coupled receptors GPR41, GPR43, and GPR109A (18–
23). Thus, SCFA-mediated stimulation of Treg cell differentiation
is driven by HDAC inhibition, while IL-10 production is
mediated by GPR41 or GPR43 activation (23). Notably, recent
results have shown that SCFAs could mediate the activation
of pro-inflammatory immune circuits as well, depending on
the cytokine milieu and immunological context (23–26). In
contrast to SCFAs, medium-chain fatty acids (MCFAs) mostly
derive from the diet, even if the liver contributes to their
production via peroxisomal beta-oxidation of long-chain fatty
acids. MCFAs control carbohydrate and lipid tissue metabolism
as well as the production of mitochondrial energy (27) and
antagonize the anti-inflammatory activities of SCFAs, as they
favor TH1 and TH17 differentiation. The immunological roles
of BA and MCFAs, particularly of caproic acid (CA), have been
confirmed in animal models (28, 29). In these models, BA has
been shown to stimulate the maturation of fully functional Treg
cells, and MCFAs have been confirmed to have an effect that
antagonizes that of SCFAs, as they enhance TH1 and TH17 cell
differentiation (29). In addition to its direct anti-inflammatory

effect, BA also downregulates inflammation secondarily to its
pivotal role in maintaining the integrity of the gastrointestinal
(GI) epithelial barrier through regulation of mucus production
and tight junction expression (13, 30, 31). Therefore, BA
prevents alterations of intestinal permeability and the consequent
translocation of lipopolysaccharide (LPS) from the gut lumen to
the peripheral blood. As repeatedly demonstrated in the setting of
other diseases, such as HIV infection (32), increased amounts of
LPS in peripheral blood drive chronic inflammation by binding
to toll-like receptor (TLR) 4, an activatory receptor expressed by
lymphoid cells.

Since over 90% of SCFAs are absorbed in the cecum and
colon, and only 5–10% of them are excreted in the feces (33–36),
the measurement of BA in peripheral blood could provide
information on the health status of the intestinal ecosystem (37).
Additionally, given the many beneficial functions of BA as an
immune-modulator, its monitoring could work as a simple and
rapid biomarker of disease activity and/or treatment efficacy in
MS. Herein, we analyzed serum concentrations of BA and CA, as
well as immune parameters and parameters of integrity of the GI
epithelial barrier, and profiled the gut microbiota in MS patients
and healthy controls (HC).

METHODS

Individuals Enrolled in the Study
Thirty-eight patients with a diagnosis of relapsing-remitting
(RR) or secondary-progressive (SP) Multiple Sclerosis (MS) (20
females and 18 males; median age = 47 years, IQ = 42–57) who
are followed by the Multiple Sclerosis Rehabilitation Unit of the
Don Carlo Gnocchi Foundation in Milan, Italy, were enrolled
in the study. Inclusion criteria were age >18 years and disease
stability for >6 months prior to enrollment. Main exclusion
criteria were: (1) changes in disease-modifying treatment (DMD)
in the 6 months prior to enrollment; (2) use of corticosteroids
in the 6 months prior to enrollment; (3) presence of significant
co-morbidities, including arterial hypertension, cerebrovascular
disorders, heart or pulmonary diseases, diabetes, endocrine,
gastrointestinal, or psychiatric diseases. Patients were following
a free diet (western type) as determined by an expert dietician
through interviews. At the time of enrolment and of biological
sampling none of the patients was using antibiotics; none of
the patients had used any antibiotic in the 3 months preceding
enrolment and biological sampling. Stable disease was diagnosed
on the basis of brain and spinal cord magnetic resonance imaging
(MRI) with gadolinium showing no areas of enhancement
at the time of enrolment. Median disease duration was 19
years (range: 15–24 years); disability level, as assessed by the
median Kurtze Expanded Disability Status Scale (EDSS) score
was 5.3 (range: 3–6). Finally, a group of 38 sex- and age-
matched HC (median age = 48 years; range 33–62; 20 females
and 18 males) was enrolled as well in the study. HC were
also following a free, western style diet and had not taken
antibiotics or probiotics in the 3months prior to sampling. Italian
controls have been specifically selected to reduce any bias related
to lifestyle or, more generally, to the geographical effect, for
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which the strongest associations with microbiota variation have
recently been shown (38). The Ethics Committee of the Don
Carlo Gnocchi Foundation approved the study protocol; all the
enrolled subjects signed an informed consent. The clinical and
demographic characterization of the MS patients enrolled in the
study is presented in Supplementary Table 1.

Serum
Serum was collected in vacutainer tubes containing serum
separator (Becton Dickinson & Co., Rutherford, NJ, USA),
centrifuged at 3,000 rpm for 10min, and stored at −80◦C
until use.

Analysis by LC-MS/MS of Serum
Fatty Acids
Butyric and caproic acids were extracted and analyzed by LC-
MS/MS according to the protocol described in Dei Cas (39).
Briefly, serum (50 µl) was deproteinized by isopropanol (100
µl) and fatty acids derivatized with nitrophenylhydrazine. The
extract was analyzed on an HPLC Dionex 3000 UltiMate system
(Thermo Fisher Scientific, MA, USA) coupled to a tandem
mass spectrometer AB Sciex 3200 QTRAP (AB Sciex, Milan,
Italy) operated by multiple reaction monitoring under negative
electrospray ionization.

Blood Sample Collection and
Cell Separation
Whole blood (10ml) was collected in vacutainer tubes containing
ethylenediaminetetraacetic acid (EDTA) (Becton Dickinson &
Co.). Peripheral blood mononuclear cells (PBMCs) were
separated on lympholyte separation medium (Cedarlane,
Hornby, Ontario, CA, USA) and washed twice in PBS at 1,500
rpm for 10min; viable leukocytes were determined with Bio-Rad
TC20 Automated Cell Counter (Bio-Rad Laboratories, Hercules,
CA, USA).

Intracellular Cytokine and Transcription
Factor Staining in PBMCS
Lymphocyte subsets were analyzed in freshly isolated PBMCs
that were incubated for 30min at 4◦C in the dark with
Phycoerythrin-Cyanine-7 (PC7)-labeled anti-CD4 (clone
SFCI12T4D11, mouseIgG1, Beckman-Coulter, Brea, CA, USA)
or Phycoerythrin-Texas Red (ECD)-labeled anti-CD25 (clone
B1.49.9, mouse IgG2a, Beckman-Coulter). After incubation cells
were washed, permeabilized with a Cell Permeabilization kit
(FIX & PERM kit, eBioscience) and incubated for 30min at 4◦C
in the dark with either anti-IL-10 (clone JES9D7, mouse IgG1,
R&D Systems), or anti-IFNγ (clone 25723, mouse IgG2b, R&D
Systems) PE-labeled antibodies. The PC-5-labeled-anti-IL-17
(clone BL168, mouse IgG1k, Biolegend) and the Alexa Fluor 488-
labeled-anti-Foxp3 (clone 1054C, rabbit IgG, R&D) antibodies
were used as well.

Flow Cytometry Analysis
PBMCs were analyzed to identify regulatory T cells (Tregs:
CD4+CD25++FOXP3+), TH1 (CD4+IFNγ+), TH17
(CD4+IL-17+) and inducible regulatory T cells (THR1:

CD4+IL-10+) using a Beckman-Coulter GALLIOS flow
cytometer equipped with a 22 mW Blue Solid State Diode
laser operating at 488 nm and with a 25 mW Red Solid State
Diode laser operating at 638 nm, and interfaced with Kaluza
analysis software. Two hundred thousand cells were acquired
and gated on lymphocyte FSC and SSC properties. Isotype
control or single fluorochrome-stained preparations were used
for color compensation.

Microbial Translocation and
Gastrointestinal Barrier Function
LPS was measured in plasma with the LAL Chromogenic
Endpoint Assay (Hycult biotechnology, Uden, The Netherlands);
I-FABP was measured with an ELISA kit (CUSABIO BIOTECH,
Newark, DE, USA) according to the manufacturer’s instructions.

Gut Microbiota Analysis
Total bacterial DNA was extracted from stool samples of 35MS
patients, as previously described (40). The V3-V4 hypervariable
region of the 16S rRNA gene was PCR-amplified using the
341F and 785R primers (41) with Illumina overhang adapter
sequences as previously reported (40) PCR products of about 460
bp were purified using a magnetic bead-based system (Agencourt
AMPure XP; Beckman Coulter) and indexed by limited-cycle
PCR using Nextera technology. Indexed libraries, further cleaned
up as described above, were pooled at equimolar concentrations,
denatured and diluted to 6 pmol/l. Sequencing was performed
on an Illumina MiSeq platform using the 2 × 250 bp protocol,
according to the manufacturer’s instructions (Illumina, San
Diego, CA, USA). Sequence reads were deposited in the National
Center for Biotechnology Information Sequence Read Archive
(NCBI SRA; BioProject ID PRJNS633233).

Bioinformatics and Statistical Analysis
Quantitative data were not normally distributed (Shapiro-Wilk
test) and are therefore summarized as median and interquartile
range (IQR; 25th and 75th percentiles). Comparisons between
groups were performed using a two-tailed Mann-Whitney test
for independent samples. Kruskal-Wallis analysis of variance was
utilized for each variable. Statistical correlations between the
immunological parameters and BA, CA, or the BA/CA ratio were
investigated by the Spearman correlation coefficient and 95%
confidence limits performed by Fisher’s Z transformation. Data
analysis was performed using the MEDCALC statistical package
(MedCalc Software bvba, Mariakerke Belgium).

As for microbiota analysis, paired-end reads were processed
using a pipeline combining PANDAseq (42) and QIIME 2 (43).
High-quality reads were filtered and clustered into Amplicon
Sequence Variants (ASVs) at 99% similarity through an open-
reference strategy performed with DADA2 (44). Singleton
ASVs were discarded and chimeras were identified using
ChimeraSlayer (45) and then filtered out. Taxonomywas assigned
using the vsearch classifier (46) against the Greengenes database
as a reference (release May 2013). 16S rRNA gene sequencing
data of MS patients were compared to publicly available data
of age- and sex-matched healthy Italian subjects [20 subjects:
MG-RAST ID 17761 (47), 15 subjects: MG-RAST ID 7058
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(48)]. Genus-level community composition was generated for
all combined cohorts. Alpha diversity was measured using
the Shannon and Simpson indices (estimating evenness and
richness), while beta diversity was computed based on Jaccard
similarity and visualized on a Principal Coordinates Analysis
(PCoA) plot. The significance of the separation between the
study groups was tested by a permutation test with pseudo-
F ratios using the function adonis in the R package, vegan
(49). Bar plots were built using the packages made4 (50)
and vegan. Kendall rank correlation test was used to assess
the associations between genus-level relative abundances and
EDSS, levels of T lymphocytes, LPS, I-FABP and fatty acids
in MS patients. Statistics was performed using R Studio
1.0.44 on R software version 3.3.2 (https://www.r-project.org/)
implemented with the packages stats and vegan. P-values
were corrected for multiple comparisons using the Benjamini–
Hochberg method when appropriate. A p-value ≤ 0.05 was
considered statistically significant.

RESULTS

Serum Concentration of Butyric and
Caproic Acids
The concentration of butyric acid (BA) and caproic acid (CA) was
analyzed in the serum of all individuals enrolled in the study, by
liquid chromatography coupled to mass spectrometry (LC-MS).
The results showed that BA was significantly reduced (median:
HC = 907 ng/ml; MS = 752 ng/ml; p < 0.0001) whereas CA
was significantly increased (median: HC = 181 ng/ml; MS =

863 ng/ml; p < 0.0001) in MS compared to HC. Accordingly,
the BA/CA ratio was significantly reduced in MS (ratio: 0.9)
compared to HC (ratio: 5; p < 0.0001). These data are shown
in Figure 1.

T Lymphocyte Functional Subpopulations
BA regulates Treg lymphocyte development whereas CA
is known to support TH1 and TH17 differentiation. To
verify possible associations between BA and CA and these
lymphocyte subsets Treg, TH1 and TH17 were measured in
freshly isolated and unstimulated PBMCs from all patients
and controls. The results indicated that Treg lymphocytes

(CD4+/CD25high/Foxp3+) were decreased in MS (median:
0.1%) compared to HC (median: 0. 8%; p < 0.0001). On the
contrary, both TH1 (CD4+/IFNγ+) (median: HC = 0.01%;
MS = 0.1%; p < 0.0001) and TH17 (CD4+/IL-17+) (median:
HC = 0.0%; MS = 0.3%; p < 0.0001) T lymphocytes were
significantly increased in MS compared to HC. CD4+/IL-10
positive T lymphocytes were also measured in all individuals;
these cells were not significantly different when MS and HC were
compared. These results are shown in Figure 2.

Correlation Between Butyric or Caproic
Acid or Their Ratio and T Lymphocyte
Subpopulations
Possible correlations between the serum concentration of
BA and CA or their ratio and different T lymphocyte
functional subpopulations were sought. The results showed the
presence of significant positive correlations between CA and
CD4+/IFNγ+ T lymphocytes (RSp = 0.35, p = 0.02), as well

as between the BA/CA ratio and CD4+/CD25high/Foxp3+ T
lymphocytes (RSp = 0.35, p = 0.02) in MS patients. On the
other hand, the BA/CA ratio was negatively correlated with
CD4+/IFNγ+ T lymphocytes (RSp = −0.37, p = 0.01) in
these same patients. Finally, BA was positively correlated with
CD4+/CD25high/Foxp3+ T lymphocytes in HC (RSp = 0.53, p
= 0.0006). These results are shown in Figure 3.

Microbial Translocation and Gut
Barrier Permeability
Since BA is known to maintain the integrity of the
gastrointestinal (GI) epithelial barrier, parameters of GI
permeability were subsequently measured. The results showed
that the plasma concentration of lipopolysaccharide (LPS)
(median: HC = 0.3 Eu/ml; MS = 0.7 Eu/ml; p = 0.001) and
intestinal fatty acid-binding protein (I-FABP) (median: HC =

336 pg/ml; MS = 715 pg/ml; p < 0.0001) were significantly
increased in MS compared to HC (Figure 4). LPS translocates
from the intestinal lumen to the peripheral circulation when
the integrity of the GI barrier is altered; I-FABP is released into
circulation in case of enterocyte damage and intestinal ischemia.

FIGURE 1 | Serum concentration of butyric and caproic acid in MS patients compared to healthy controls. LC-MS/MS analysis of (A) serum concentration (ng/ml) of

butyric acid and (B) caproic acid in Multiple Sclerosis patients (MS) (n = 38) and healthy controls (HC) (n = 38). (C) The butyric/caproic acid ratio. In all panels the

boxes stretch from the 25th to the 75th percentile; the line across the boxes indicates the median value; the lines stretching from the boxes indicate extreme values.

Outliers are displayed as separate points. Statistical significance is shown.
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FIGURE 2 | Treg, TH1, TH17, and THR1 CD4+ lymphocyte subsets in peripheral blood of MS patients compared to healthy controls. Representative flow cytometry

dot plots results obtained in Multiple Sclerosis patients (MS) (n = 38) and healthy controls (HC) (n = 38). (A) Lymphocytes and CD4+ T lymphocytes (gate strategy),

(B) Tregs: CD25+ and intracellular FOXP3 expression gated on CD4+T cell (CD4+/CD25high/Foxp3+), (C) TH1: CD4 and intracellular IFNγ (CD4+/IFNγ+) expression

gated on Lymphocyte, (D) TH17: CD4 and intracellular IL-17 (CD4+/IL-17+) expression gated on Lymphocyte and (E) THR1: CD4 and intracellular IL-10

(CD4+/IL-10+) expression gated on Lymphocyte. In the upper right corner the percentage of Treg, TH1, TH17 and THR1 lymphocytes is presented. Summary results

are shown in the bar graphs. The boxes stretch from the 25th to the 75th percentile; the line across the boxes indicates the median value; the lines stretching from the

boxes indicate extreme values. Outliers are displayed as separate points. Comparisons between groups were performed using a two-tailed Mann-Whitney test for

independent samples. Statistical significance is shown.
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FIGURE 3 | Correlation between the serum concentration of butyric and caproic acid and their ratio and peripheral immune cells in MS and healthy controls. Rank

correlation between: (A) serum caproic acid concentration and peripheral IFNγ-producing CD4+ T cell percentage, (B) butyric acid/caproic acid ratio and Treg

(CD4+/CD25high/Foxp3+) cell percentage, (C) butyric acid/caproic acid ratio and TH1 (CD4+/IFNγ+) cell percentage in Multiple Sclerosis patients (MS) (n = 38); (D)

serum butyric acid concentration and Treg (CD4+/CD25high/Foxp3+) cell percentage in healthy controls (HC) (n = 38). Statistical correlations were investigated by the

Spearman correlation coefficient and 95% confidence limits performed by Fisher’s Z transformation. Statistical significance and Spearman’s coefficient of rank

correlation (RSp) are shown.

FIGURE 4 | Indices of microbial translocation and indicators of alteration of the integrity of the gut barrier permeability in MS patients and healthy controls. Plasma

concentrations of (A) LPS (Eu/ml) and (B) I-FABP (pg/ml) in Multiple Sclerosis patients (MS) (n = 38) and healthy controls (HC) (n = 38) were determined by ELISA.

Comparisons between groups were performed using a two-tailed Mann-Whitney test for independent samples. The boxes stretch from the 25th to the 75th

percentile; the line across the boxes indicates the median value; the lines stretching from the boxes indicate extreme values. Outliers are displayed as separate points.

Statistical significance is shown.

These results therefore suggest the presence of damage to the gut
barrier in MS patients.

Gut Microbiota Layout in MS
The gut microbiota (GM) of MS patients was finally profiled
and compared with that of age- and sex-matched HC to verify
whether the differences in SCFAs and MCFAs observed in these
patients could be the result of changes in the gut microbial
ecosystem. The 16S rRNA gene sequencing yielded a total of
1,520,873 high-quality reads, ranging from 23,759 to 80,331
per sample, clustered into 3,221 Amplicon Sequence Variants
(ASVs). No differences in alpha diversity were observed between
MS patients and HC, except for a slightly lower Shannon
index value in the former (Supplementary Figure 1). On the
other hand, when stratifying MS patients according to the
severity of the disease, we found significantly lower diversity
in secondary-progressive MS (SPMS) compared to relapsing-
remitting MS (RRMS) and HC (inverse Simpson index; p ≤

0.01, Wilcoxon test) (Figure 5A). Although not significant, a
similar trend was observed for the Shannon index (p ≤ 0.1).
The Principal Coordinates Analysis (PCoA) of inter-individual
variation, based on the Jaccard similarity index, revealed a

significant separation between MS patients and HC (p < 1 ×

10−4, permutation test with pseudo-F ratios), while no significant
differences were detected between MS subtypes (i.e., SPMS and
RRMS) (p = 0.4) (Figure 5B and Supplementary Figure 1).
In line with recent literature (7), the GM composition of MS
patients showed increased relative abundance of Akkermansia,
as well as a depletion of Parabacteroides (Figure 6A). Compared
to HC, in the GM of MS patients we found a dramatic
depletion of bacterial genera belonging to the Lachnospiraceae
family. In particular, the proportions of the well-known SCFA
producers Roseburia, Coprococcus, and Blautia were reduced
by 4.5, 3.4, and 2 times, respectively, in the GM of MS vs.
HC (p ≤ 0.02, Wilcoxon test) (Supplementary Figure 1). On
the other hand, the MS microbiota showed a 7.4 and 2.4-fold
increase in Collinsella and [Eubacterium], respectively (p ≤ 0.05)
(Supplementary Figure 1). By focusing the analysis by disease
subtype (Figure 6B), we found some commonalities, including
the decrease in the SCFA producers mentioned above, but
also specific microbial signatures. In particular, SPMS patients
were found to be characterized by greater relative abundance
of Akkermansia and Collinsella (p = 0.002), and a decrease in
Dorea (p = 0.003). On the other hand, Parabacteroides was
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FIGURE 5 | The gut microbiota of SPMS and RRMS patients segregates from that of healthy controls. (A) Boxplots showing the distribution of alpha diversity,

measured using the Simpson (top panel) and Shannon (bottom panel) indices, for the gut microbiota of Multiple Sclerosis (MS) patients with secondary-progressive

and relapsing-remitting disease (respectively, SPMS and RRMS). *p = 0.01; **p = 0.004; Wilcoxon test. (B) Principal Coordinates Analysis (PCoA) of the gut microbial

communities, based on the Jaccard similarity index. A significant separation between MS patients and HC was found (p < 1 × 10−4, permutation test with pseudo-F

ratios), but no significant differences were observed between SPMS and RRMS (p = 0.4).

significantly under-represented in RRMS patients (p = 0.003),
who also showed a reduction in [Ruminococcus] and Lachnospira
(p≤ 0.0008), a marked increase in Streptococcus (p= 0.006), and
an increasing trend for [Eubacterium] (p= 0.07).

Correlations between the relative abundances of bacterial
taxa and EDSS, levels of T lymphocyte subpopulations, LPS
and I-FABP in MS patients were next specifically sought
(Figure 7A). Interestingly, the plasma levels of LPS and I-FABP
were negatively correlated with the relative abundance of the
well-known probiotic genus, Bifidobacterium (respectively, p
= 0.003 and 0.04, tau = −0.363 and −0.252, Kendall rank
correlation test). Inverse correlations were also found between
the levels of CD4+/IL-17+ T lymphocytes and the proportions
of the SCFA-producing genera, Coprococcus and Ruminococcus
(p = 0.02, tau = −0.277 and −0.28, respectively). In contrast, a
positive correlation was found between the levels of this T cell
subpopulation and Prevotella (p = 0.02, tau = 0.295), whose
relative abundance showed a 2.7-fold increase inMS compared to
HC (2.9± 0.9 vs. 1.1± 0.6%), even if in the absence of statistical
significance. Furthermore, levels of CD4+/IL10+ T lymphocytes
were negatively correlated with Akkermansia (p = 0.04, tau =

−0.275). As for fatty acids, a negative correlation was found
between [Eubacterium] and the serum BA levels (p = 0.004, tau
= −0.35). No significant correlations were found between the
proportions of bacterial taxa and EDSS.

With specific regard to disease subtypes (Figure 7B), it
is worth noting that in SPMS patients we found a positive
correlation between CD4+/IFNγ+ T lymphocytes and
[Ruminococcus] (p = 0.05, tau = 0.427), a well-known mucin-
degrading gut microbe to be associated with Crohn’s disease as

well as other inflammatory disorders (51). A positive correlation
was also found between the serum BA/CA ratio and Lachnospira
(p = 0.04, tau = 0.466), consistent with the known ability of this
bacterial genus to produce BA. As for RRMS, as expected based
on available literature (52), Roseburia was found to positively
correlate with the levels of CD4+/IL10+ T lymphocytes (p
= 0.04, tau = 0.341). Another positive correlation was found
between Parabacteroides and the serum levels of I-FABP (p =

0.03, tau= 0.366).

DISCUSSION

Multiple sclerosis (MS) is a chronic and progressive autoimmune
disease characterized by inflammation whose etiopathogenesis
is still unclear. Among the different hypothesis suggested to be
involved in the pathogenesis of MS the inside-out model states
that the disease is initially triggered by oligodendrocytes injury
and/or death, possibly caused by oxidative stress (53). This would
result in the release of myelin antigens into the periphery that
would activate autoreactive B and T lymphocytes; these immune
cells would migrate back into the central nervous system (CNS)
and initiate inflammation (54). Inflammation is indeed observed
throughout disease progression and is driven both by immune
cell infiltration of the CNS and, directly, by CNS cells that are
activated against the tissue damage that accumulates during the
natural history of the disease.

Alterations in the composition of the gut microbiota
have recently been held to be at least partially responsible
for MS-associated inflammation (55). One additional set of
results showed that butyrate-producing bacteria are reduced
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FIGURE 6 | The dysbiotic layout of the gut microbiota in MS patients. (A) Genus-level relative abundance profiles of the gut microbiota of Multiple Sclerosis patients

(MS, red) and healthy controls (HC, blue). Data are shown in the bar plots for each sample and in pie charts as average values. *, unclassified Amplicon Sequence

Variants (ASVs) reported at higher taxonomic level; **, other unclassified ASVs. (B) Boxplots showing the relative abundance distribution of bacterial genera relevant

for MS and significantly different between the study groups. *p ≤ 0.05; Wilcoxon test.

in MS (12). These bacteria are responsible for fermenting
non-digestible carbohydrates in the proximal colon to generate
SCFAs, including butyric acid (BA). The observation that BA
drives Treg differentiation (56, 57) and maintains the integrity
of the GI epithelial barrier (58–62), thus preventing microbial
translocation and LPS-driven triggering of TLR4-mediated
signaling, underlines the immunological importance of these
bacteria and their byproducts, SCFAs, in down-modulating
inflammation. BA can nevertheless induce inflammatory
response as well (23, 63–65), and an elevated BA concentration
in a proinflammatory milieu was shown to possibly result in
stimulation of IFNγ-producing CD4+ T cells by inhibiting
histone deacetylase activity (63), activating GPR41 or GPR43
(23, 64), or promoting survival of CD8+ T cells (65).

Even more recently, MCFAs, which are derived from the diet
and can be generated by hepatic peroxisomal beta-oxidation of
long-chain fatty acids, were shown to support the differentiation
of TH1 and TH17 and to suppress that of Treg lymphocytes
(29). Caproic acid (CA), in particular, seems to be prototypically
endowed with such pro-inflammatory properties, which result

from the activation of p38 MAPK signaling (29). Notably, CA
can also be directly produced by some of the bacteria that form
the microbiota. Prevotella, in particular, was shown to be able to
generate CA. It is interesting to observe that these bacteria were
indeed increased in MS patients, suggesting its possible role in
the increased CA production seen in these patients.

Herein, we analyzed serum concentrations of BA and CA in
a group of MS patients and observed that BA was significantly
reduced and CA significantly augmented compared to healthy
controls (HC). This peculiar SCFA/MCFA alteration correlated
with the immunological profile expected to be supported by such
a variation, i.e., an increase in TH1 and TH17 and a decrease
in Treg lymphocytes, as it was observed in MS patients. The
reduction in BA concentration had previously been described
in MS patients with chronic progressive disease (66), and both
effector and IL-10+ T cells were shown to be induced by SCFAs
and dietary fiber in experimental autoimmune encephalomyelitis
(EAE), the animal model of MS. These results suggested that
modulation of SCFA production could represent a novel adjunct
to therapeutic approaches in autoimmune CNS diseases (66).
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FIGURE 7 | Associations between taxon relative abundances and levels of fatty acids, T cell subsets, LPS and I-FABP in MS patients. Only statistically significant

correlations (p ≤ 0.05) based on Kendall rank correlation test are shown, for the entire cohort of Multiple Sclerosis (MS) patients (A) as well as for the two disease

subtypes (SPMS, secondary-progressive MS and RRMS, relapsing-remitting MS) (B).

Our data confirm and extend these observations by showing
that the plasma concentration of both lipopolysaccharide
(LPS) and intestinal fatty acid-binding protein (I-FABP) were
significantly increased as well in MS patients compared to HC.
LPS is a key component of the Gram-negative bacterial cell
membrane; alterations of the intestinal mucosa result in the
microbial translocation of such bacteria from the intestinal

lumen into the systemic circulation with a consequent increase
in LPS plasma concentration. I-FABP is a small (14–15 kDa)
cytosolic protein found in mature enterocytes of the small and
large intestine that is released when the integrity of the cell
membrane is compromised (58). These results therefore suggest
that the reduction of BA seen in MS is likely also responsible
for impaired GI permeability (62). We do not know whether
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the augmented I-FABP concentrations observed in MS are the
consequence of functional alterations of the small or of the
large intestine; as SCFAs are produced in the large intestine
it is nevertheless tempting to hypothesize that such I-FABP
increments are the consequence of damages that affect the large
intestine as a result of dysbiosis. Few studies address I-FABP in
the setting of MS. Some data indicated that I-FABP as well as ileal
bile acid binding protein (IBABP) are increased in MS patients,
(67, 68), whereas other data did not observe any differences
between patients and controls (69). Results herein lend support
to the idea that intestinal damages, as indicated by alterations of
LPS and I-FABP, are indeed present in MS; further analyses will
be needed to sort out these discrepancies

The observed alteration of the SCFA/MCFA ratio could thus
support MS-associated inflammation with at least two distinct
mechanisms: a direct one, which is secondary to the skewing
of T lymphocyte functional subset differentiation toward those
subsets that support inflammation, and an indirect one driven
by alterations in GI tract integrity and microbial translocation.
As it has been extensively shown in the setting of another
chronic and inflammatory disease, HIV infection (32), increased
plasma levels of LPS lead to systemic immune activation
and inflammation that is the consequence of LPS binding to
TLR4, an activation protein expressed on different cell types.
Notably, in EAE, the animal model of MS, alterations of the
intestinal microbial ecosystem have also been shown to result in
impaired permeability of the blood-brain barrier and activation
of microglia and astrocytes (58).

Consistent with the alterations in the SCFA/MCFA ratio and
supporting the above assumptions, the gut microbial ecosystem
of MS patients was characterized by a dysbiotic layout that
included: (1) a decrease in SCFA producers belonging to the
Lachnospiraceae family, i.e., Roseburia, Coprococcus, and Blautia;
(12) (2) an increased relative abundance of Akkermansia, a
mucin degrader capable of inducing pro-inflammatory responses
in human PBMCs and mono-colonized mice; (5, 7) (3) the
depletion of Parabacteroides, a bacterial genus with anti-
inflammatory properties shown to stimulate the maturation of
IL-10–expressing CD4+CD25+ T cells in humans (7) and IL-
10+Foxp3+ Tregs in mice; (7) and (4) an increased proportion
of Collinsella, which has recently been shown to correlate with
the production of the pro-inflammatory cytokine IL-17A and
with altered gut permeability in MS (9). It is interesting to note
that when we stratified patients based on the MS subtype (i.e.,
RRMS and SPMS), two distinct types of dysbiosis emerged. In
particular, reduced microbial biodiversity and an overabundance
of Akkermansia and Collinsella were specifically observed in
patients with SPMS compared to HC. As briefly discussed above,
these bacterial genera have already been associated with MS
and shown to exacerbate its symptoms, because of their ability
to induce pro-inflammatory responses and compromise the
integrity of the intestinal epithelial barrier, thus contributing to
aggravate a condition of chronic inflammation (5, 7, 9). On the
other hand, the ecosystem configuration observed in patients
with RRMS showed a different, somewhat less pronounced
dysbiosis, with levels of diversity comparable to those of HC
and mainly characterized by an overabundance of Streptococcus
and depletion of Parabacteroides. It should be noted that

this dysbiotic profile had already been found in cohorts of
RRMS patients and suggested to influence the population of T
lymphocytes and promote inflammation (4, 9, 70). In particular,
the abundance of Streptococcus spp. has been shown to correlate
positively with the proportion of TH17 cells while negatively
with Tregs (71), thus representing a potential key factor in the
development and/or reactivation of the disease.

CD4+/IL-17+ T lymphocytes were negatively correlated with
Coprococcus, a bacteria known to be depleted in MS patients (72)
and recognized as a beneficial commensal taxon, but correlated
positively with Prevotella, whose role on the host physiology
is instead more controversial. Some studies point in fact to its
pro-inflammatory role in autoimmune diseases (73–75), while a
very recent work indicates that Prevotella histicola can suppress
EAE as efficiently as the disease-modifying drug Copaxone
(76). This stresses the need for species-level analysis in future
microbiome-based studies. On the other hand, the CD4+/IL-
10+ T cell subpopulation was found to negatively correlate
with Akkermansia, an organism that, as mentioned above, can
exacerbate MS symptoms, probably either directly, by shifting
immune responses toward a TH1 phenotype, or indirectly, by
interacting with other bacteria and reducing their ability to drive
Treg differentiation (77). In line with the available literature (52),
the CD4+/IL-10+ T cell subpopulation was positively correlated
with Roseburia, even if only in RRMS patients. On the other
hand, in SPMS patients, CD4+/IFNγ+ T lymphocytes were
found to positively correlate with [Ruminococcus], consistent
with its ability to degrade mucus and induce inflammatory
responses (51).

As for fatty acids, a negative correlation was found between
serum BA levels and the relative abundance of [Eubacterium],
a bacterial genus significantly increased in MS and comprising
potential opportunistic pathogens that could affect the mucus
layer (75, 78). On the contrary, a positive correlation was found
between the serum BA/CA ratio and Lachnospira in SPMS
patients, consistent with the known ability of this bacterial
genus to produce BA. As expected, a negative correlation was
also observed between the proportions of the health-promoting
genus Bifidobacterium and serum levels of I-FABP and LPS.
Several in vitro and in vivo studies in fact show that probiotics,
including Bifidobacterium spp., are associated with improved
barrier function and reduced metabolic endotoxemia (79, 80).

Overall, it is thus tempting to suggest that the disbyotic
profile of the MS-associated gut microbiota justifies the
SCFA/MCFA alterations described herein, possibly shedding
light on the genesis of the inflammatory milieu that characterizes
and accompanies MS. If this assumption is correct, then
therapeutic/dietary interventions aimed at restoring a
physiological (i.e., eubiotic) gut microbial ecosystem should
be considered in MS therapy. The results obtained in the EAE
animal model support this idea, since the administration of a
multistrain probiotic has been shown to result in prophylactic
and therapeutic efficacy that was associated with a reduced
degree of inflammation (81, 82). Even more interestingly, in the
same animal model, a SCFA-rich diet has been shown to increase
the frequency of peripheral Tregs and ameliorate the clinical
course of the disease, whereas mice given MCFA- or LCFA-rich
diets showed an aggravated disease progression (29).
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CONCLUSIONS

Taken together, our results suggest a rationale explaining the
etiology of MS-associated inflammation, possibly supporting
the idea that alterations in the gut microbial ecosystem play
a role in inflammatory autoimmune conditions, including MS,
and reinforce the idea that interventions aimed at restoring
microbiota eubiosis could be integrated into current therapeutic
and rehabilitative strategies for MS. These are preliminary
results and our study has limitations mostly stemming from the
relatively small sample size and the heterogeneity of the enrolled
patients in regard to treatment status. Additionally, we showed
the presence of gut barrier damage and bacterial translocation
in MS patients compared to controls, but the limited number of
enrolled individuals did not allow us to verify possible differences
in these parameters in patients with diverse disease phenotypes.
Further studies will clarify these issues.
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index. A significant separation between study groups was found (p < 1 × 10−4,
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