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The clinical experience gathered throughout the years has raised awareness of

primary immunodeficiency diseases (PIDD). T cell receptor excision circles (TREC) and

kappa-deleting recombination excision circles (KREC) assays for thymic and bone

marrow outputs measurement have been widely implemented in newborn screening

(NBS) programs for Severe Combined Immunodeficiency. The potential applications

of combined TREC and KREC assay in PIDD diagnosis and immune reconstitution

monitoring in non-neonatal patients have been suggested. Given that ethnicity, gender,

and age can contribute to variations in immunity, defining the reference intervals of

TREC and KREC levels in the local population is crucial for setting up cut-offs for PIDD

diagnosis. In this retrospective study, 479 healthy Chinese sibling donors (240 males

and 239 females; age range: 1 month−74 years) from Hong Kong were tested for TREC

and KREC levels using a simultaneous quantitative real-time PCR assay. Age-specific

5th–95th percentile reference intervals of TREC and KREC levels (expressed in copies

per µL blood and copies per 106 cells) were established in both pediatric and adult

age groups. Significant inverse correlations between age and both TREC and KREC

levels were observed in the pediatric age group. A significant higher KREC level was

observed in females than males after 9–12 years of age but not for TREC. Low TREC

or KREC levels were detected in patients diagnosed with mild or severe PIDD. This

assay with the established local reference intervals would allow accurate diagnosis of

PIDD, and potentially monitoring immune reconstitution following haematopoietic stem

cell transplantation or highly active anti-retroviral therapy in the future.
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immune reconstitution, reference interval

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01411
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01411&domain=pdf&date_stamp=2020-07-16
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kwoksy@ha.org.hk
https://doi.org/10.3389/fimmu.2020.01411
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01411/full
http://loop.frontiersin.org/people/944232/overview
http://loop.frontiersin.org/people/941300/overview
http://loop.frontiersin.org/people/972493/overview
http://loop.frontiersin.org/people/419679/overview
http://loop.frontiersin.org/people/128182/overview
http://loop.frontiersin.org/people/246671/overview


Kwok et al. Hong Kong TREC/KREC Reference Intervals

INTRODUCTION

T and B cells undergo V(D)J recombination to generate diverse
and functional TCR and BCR repertoires, and these are crucial
processes in the maturation of T and B cells that allow the
recognition of unlimited numbers of antigens (1). During the
TCR rearrangement process, excised DNA fragments create T
cell receptor excision circles (TREC) that are exported to the
T cell cytoplasm (2, 3). In particular, the δRec-ψJα signal joint
TREC (sjTREC) is produced during TCRD deletion and detected
in ∼70% of (alpha-beta) αβ T cells. They are considered the
most optimal target to measure the evaluation of thymic output
(4–6). Kappa-deleting recombination excision circles (KREC)
are produced during BCR rearrangement in naïve B cells and
are analogous to TREC (7). Similarly, sjKREC formed during
intronRSS-Kde rearrangements in IGK locus is a robust target
for the evaluation of B cell neogenesis from bone marrow (8, 9).

Both TREC and KREC are stable and non-replicative, and are
subsequently diluted during cell proliferation (10, 11). Hence,
TREC and KREC analyses have been widely applied in different
clinical settings to evaluate thymic and bone marrow output.
Measurement of TREC and KREC levels in peripheral blood
can be used for screening of Primary immunodeficiency diseases
(PIDD). PIDD, also known as inborn errors of immunity (IEI),
are a group of disorders that lead to defects in the development
or function of the immune system. The international Union of
Immunological Societies (IUIS) has classified and described over
400 PIDD (12). There is an increasing number of PIDD due to an
updated definition and advancements in diagnostic technology.
The disease prevalence is reported to be as high as 127 in
100,000 (13, 14), and higher rates are expected in regions where
consanguinity is more common. In Hong Kong, as there is no

formal registry for PIDD, the Asian Primary Immunodeficiency
Network (APIN) was formed to collect data on PIDD with a
mission to improve care, education, and research (15, 16). Up

to January 2020, over 140 local and 750 overseas PIDD patients
referred via APIN have been diagnosed at the Department of
Pediatrics and Adolescent Medicine, Queen Mary Hospital, the
University of Hong Kong. Pediatric patients with PIDD are more
likely to have recurrent bacterial or fungal infections (17). Severe
forms of PIDD such as Severe Combined Immunodeficiency
(SCID) are highly fatal if diagnosis and treatment are delayed,
particularly after the onset of such infections.

Since 2015, newborn screening (NBS) using TREC levels
for the early identification of SCID has been implemented in
Israel, New Zealand, Norway, Taiwan, Switzerland, Germany,
Iceland, Italy and several regions in Canada, United States, and
Australia (18–20). Recently, Sweden, Spain, and Saudi Arabia
have evaluated the application of both TREC and KREC levels
for screening of SCID and agammaglobulinemia (6, 21, 22).
The reference intervals and cut-off values TREC and KREC
have been established for neonates. Studies have demonstrated
the impact of aging on thymopoiesis and bone marrow output
(23, 24). In order to interpret the TREC and KREC levels for
non-neonatal PIDD patients, it is necessary to establish local
and ethnic reference intervals in healthy individuals of different
age groups.

In this study, we measured the TREC and KREC levels of
healthy Chinese individuals in Hong Kong with essential age
groups of 0–18 years, as PIDD occurs in patients mainly in this
age range (16, 25). We also determined the reference intervals
for adults in age groups of 19–74 years for applications in thymic
and/or bone marrow output monitoring for post-HSCT patients.
The effects of age and gender on the KREC and TREC levels
were also analyzed. The analysis of TREC and KREC levels was
performed using a multiplex real-time PCR method and the
values were expressed in both copies per µL blood and copies
per 106 cells.

MATERIALS AND METHODS

Subjects
Archived DNA extracted from whole blood specimens from
479 healthy Chinese sibling donors aged 1 month−74 years
collected during 2011–2019 for work-up for related patients
requiring HSCT were used in this study. All healthy controls
underwent thorough clinical evaluations and were screened for a
normal blood cell count. Blood samples from 12 PIDD patients
with definitive diagnosis of SCID (n = 2), X-SCID (n = 3),
Agammaglobulinemia (n = 3), DiGeroge Syndrome (DGS,
n = 1), and Activated PI3K-Delta Syndrome (APDS, n = 1),
GATA2 deficiency (n = 1) and X-linked hyper-IgM syndrome
(HIGM, n = 1) were used as disease controls. Reference DBS
specimens were generous gifts from Dr. Francis Lee, Centers
for Disease Control and Prevention (CDC), US. This study was
carried out in accordance with the Declaration of Helsinki and
the ICH-GCP. The protocol was approved by the Institutional
Review Board of the University of Hong Kong/Hospital
Authority Hong Kong West Cluster (HKU/HA HKWC IRB
No. UW 18-185). The tests were performed at the Division of
Transplantation and Immunogenetics, Queen Mary Hospital,
Hong Kong.

DNA Extraction From Whole Blood
Specimens
Genomic DNA from EDTA whole blood samples was extracted
by a magnetic beads-based purification method using the TBG
EZbead blood DNA Extraction Kit (Texas BioGene Inc., Taiwan)
according to the manufacturer’s instructions. DNA extracted
from whole blood samples (300 µL) was eluted in 100 µL Tris-
EDTA buffer and stored at −70◦C. DNA purity was assessed
using spectrophotometer and all samples had OD260/280 ratio
between 1.7 and 2.0. DNA integrity was assessed by loading 50 ng
DNA in 1% agarose gel electrophoresis and no DNA degradation
was detected.

DNA Elution From Dried Blood Spot
Specimens
Dried blood spot (DBS) cards were stored in low-gas permeable
bags at −20◦C according to Clinical and Laboratory Standards
Institute (CLSI) guideline NBS06-A. DBS discs (2mm) were
punched and washed once in 100 µL Qiagen DNA elution buffer
with shaking at 1,500 rpm for 10min. The wash buffer was
removed and a fresh 40 µL DNA elution buffer was added and
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TABLE 1 | Primer and probe sequences of TREC, KREC, and β-actin.

Name Sequence (5′->3′)

TREC Forward TREC-Forward CACATCCCTTTCAACCATGCT

Reverse TREC-Reverse GCCAGCTGCAGGGTTTAGG

Probe TREC-FAM ACACCTCTGGTTTTTGTAAAGGTGCCCACT

KREC Forward KREC-Forward TCCCTTAGTGGCATTATTTGTATCACT

Reverse KREC-Reverse AGGAGCCAGCTCTTACCCTAGAGT

Probe KREC-HEX TCTGCACGGGCAGCAGGTTGG

β-actin Forward ACTB-Forward ATTTCCCTCTCAGGCATGGA

Reverse ACTB-Reverse CGTCACACTTCATGATGGAGTTG

Probe ACTB-Cy5 GTGGCATCCACGAAACTA

subsequently heated at 95◦C for 30min. The eluted DNA in
the supernatant was collected for TREC/KREC analysis and the
TREC results were compared with those measured using CDC
in-house assay. TREC/KREC analysis of 3 different spots on the
same DBS sample were performed.

Quantitative PCR Assay
Levels of TREC, KREC, and β-actin (internal control) were
simultaneously quantified in a 20-µL reaction volume containing
5 µL DNA, 4 µL LightCycler Multiplex DNAMaster Mix (Roche
Diagnostics, Germany), 500 nM primers (TREC primer, KREC
primer, and β-actin primer), and 125 nM probes (FAM-labeled
TREC probe, HEX-labeled KREC probe, and Cy5-labeled β-actin
probe; Integrated DNA Technologies, Singapore). The primer
and probe sequences are listed in Table 1, and their designs have
been previously described by Chan et al. and Sottini et al. (18, 26).
The PCR analysis was performed using the LC480 II Real-Time
PCR (RT-PCR) System (Roche Diagnostics, Germany) with
PCR conditions of 5min at 95◦C followed by 45 cycles of 5 s
at 95◦C and 1min at 60◦C. The TREC/KREC plasmids were
a generous gift from Dr. Sottini (26). The β-actin plasmid
coding the human β-actin DNA sequence was commercially
manufactured (Integrated DNA Technologies, Singapore).
Standard curves for the quantification of TREC, KREC, and
β-actin were obtained by using 10-fold serially diluted TREC,
KREC, and β-actin plasmids (1 × 106-1 × 10 copies/reaction).
The copies of TREC and KREC were calculated and expressed
as copies/µL blood or copies/106 nucleated cells as follow:

TREC or KREC copies/µL blood =
Copy number of TREC or KREC x Eluted volume

Blood volume for DNA extraction x 5 uL

TREC or KREC copies/106 cells =
Copy number of TREC or KREC

(Copy number of β − actin/2)
× 106

Statistical Analysis
Analysis of the data was performed using the Prism program
version 5.01. Data were expressed as median ± SD or
range and 5th–95th percentile for quantitative non-parametric
measures, and both number and percentage for categorized
data. Mann-Whitney U-test was used for comparisons between
two independent groups for non-parametric data. Spearman’s

TABLE 2 | Number of subjects in different age groups.

Age (years) Male (n) Female (n) Total

<1 5 4 9

1–4 32 25 57

5–8 37 30 67

9–12 25 34 59

13–18 51 51 102

19–30 20 18 38

31–40 19 24 43

41–50 16 15 31

51–60 16 15 31

>61 19 24 43

Total 240 (50%) 239 (50%) 479

correlation coefficient test was performed to assess the strength
of the relationship between studied parameters and age. A p-value
of less than 0.05 was considered significant.

RESULTS

This study included 294 healthy pediatric sibling donors (150
males and 144 females; age range: 1 month−18 years; median
age: 9.9 years) and 185 adult donors (90 males and 95 females;
median age: 44.1 years). The number of males and females in
the different age groups are listed in Table 2. The TREC and
KREC levels were calculated as copies/µL blood and copies/106

cells. The medians and ranges of TREC and KREC levels of
male and female in different age groups were provided in the
Supplementary Tables 1, 2. Samples with TREC and KREC
levels below the detection limit (10 copies/reaction) were checked
for the presence of β-actin copies to confirm that the low levels
were not due to amplification errors and therefore amplification
failure can be ruled out.

TREC and KREC Levels Declined With
Increasing Age
The TREC and KREC levels were plotted against age of healthy
individuals to assess any overall correlations (Figures 1, 2). A

distinct pattern was observed in pediatric individuals (0–18
years) compared to adults (>18 years), thus the data was divided
into pediatric and adult age groups and analyzed separately.
The highest levels of TREC and KREC were observed in
those of early age. There was a significant inverse correlation
between TREC levels (both copies/µL blood and copies/106
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FIGURE 1 | Dot Plot showing TREC copies/µL blood (A) and TREC copies/106 cells (B) among the study age groups. Blue full circles represent healthy males and

red empty circles represent healthy females. A significant inverse correlation was observed between TREC levels and both pediatric and adult age groups (Pediatric:

r = −0.6488, p < 0.0001 for copies/µL and r = −0.5487, p < 0.0001 for copies/106 cells; Adult: r = −0.4924, p < 0.0001 for copies/µL and r = −0.6289, p <

0.0001 for copies/106 cells).

FIGURE 2 | Dot Plot showing KREC copies/µL blood (A) and TREC copies/106 cells (B) among the study age groups. Blue full circles represent healthy males and

red empty circles represent healthy females. A significant inverse correlation was observed between KREC levels and pediatric age groups (Pediatric: r = −0.6577, p

< 0.0001 for copies/µL and r = −0.6241, p < 0.0001 for copies/106 cells; Adult: r = 0.0903, p = 0.2216 for copies/µL and r = −0.0171, p = 0.8176 for

copies/106 cells).

cells) and age for both pediatric and adult groups. The

rate of decline in TREC level with age was greater in the
pediatric group and slowed down with age in the adult group.

A significant inverse correlation between KREC level (both
copies/µL blood and copies/106 cells) was also found in the

pediatric group, but not in the adult group. The KREC level
varied but was maintained at a stably low level in adult.

No difference in TREC level was observed between males
and females in all age groups. A significantly higher KREC

level (copies/µL blood) was detected in females than in males

after 9–12 years of age (Figure 3). In addition, a significant
positive correlation was observed between units in copies/µL
blood and units in copies/106 cells for both TREC and KREC
levels (Figure 4).

Reference Intervals of Healthy Individuals
for Different Age Group
To establish reference intervals for TREC and KREC levels in
the Hong Kong Chinese population, subjects were divided into
10 different age groups (5 groups for pediatric age and 5 groups
for adults) and reference intervals were expressed as median
and 5th–95th percentile range (Table 3). The lower threshold (5th

percentile) of reference ranges for TREC (copies/µL blood and
copies/106 cells) in pediatric age groups were 223 and 151,107
(<1 year), 74 and 66,845 (1–4 years), 53 and 58,281 (5–8 years),
30 and 38,206 (9–12 years), 21 and 27,173 (13–18 year); and in
adult groups were 12 and 20,831 (19–30 years), 10 and 8,436
(31–40 years), 7 and 6,644 (41–50 years), 0 and 0 (51–60 year),
and 0 and 0 (>61 years). The lower threshold (5th percentile)
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FIGURE 3 | Trend of TREC copies/µL blood (A) and KREC copies/µL blood (B) among the study age groups. Data is expressed as median ± range. Blue full circles

represent healthy males and red empty circles represent healthy females. A significant higher KREC level was observed for age groups after 9–12 years, except for

51–60 years. *p < 0.05, **p < 0.01, #p = 0.0510.

FIGURE 4 | Dot Plot showing the correlations between copies/µL blood and copies/106 cells for TREC (A) and KREC (B) levels. Blue full circles represent healthy

pediatric individuals and red empty circles represent healthy adults. A significant positive correlation was observed between both units for TREC and KREC levels

(TREC level: r = 0.8319, p < 0.0001; KREC level: r = 0.7794, p < 0.0001).

of reference ranges for KREC (copies/µL blood and copies/106

cells) in pediatric age groups were 134 and 115,946 (<1 year), 31
and 35,491 (1–4 years), 21 and 29,471 (5–8 years), 16 and 25,425
(9–12 years), 8 and 11,684 (13–18 years); and in adult groups
were 1 and 3,063 (19–30 years), 2 and 6,098 (31–40 years), 4 and
7,363 (41–50 years), 3 and 5,566 (51–60 years) and 1 and 2,907
(>61 years).

Validation of Assay With Reference
DBS Specimens
DNA from the 21 reference DBS specimens were eluted and
tested using the TREC and KREC assays (Table 4). “Expected”
TREC levels of the reference samples measured using an in-
house RT-PCR TREC assay were provided by Dr. Francis Lee,
CDC, US. Beta-actin (internal control) was detected in all DBS
specimens except the negative control that was prepared from
leukocyte-depleted blood and served as a negative control. Out of
the 15 DBS specimens prepared from normal cord blood (within

TREC reference range), we detected positive TREC levels ranging
from 144 to 514 copies/µL blood. For the five SCID-like DBS
samples prepared from PBMC-depleted blood, TREC levels were
all below the detection limit. These results were in concordance
with the expected results, and the TREC levels measured using
our assay were highly correlated with thosemeasured by the CDC
(Supplementary Figure 1). On the other hand, there was no
reference KREC samples available, no comparison could be done.

Use of TREC and KREC Assays in
PIDD Patients
Blood samples from patients diagnosed with PIDD were tested
with the TREC and KREC assays and compared with their age-
matched reference intervals. The results and genetic diagnosis
of the patients are listed in Table 5. Patient P1 presented with
recurrent infections as well as low CD4+ T cell and CD19+ B cell
counts. The patient was diagnosed with compound heterozygous
mutations in RAG1 and both TREC and KREC levels were
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TABLE 3 | Reference intervals of TREC and KREC in different age groups.

Age group

(years)

n TREC (copies/µL) TREC (copies/106 cells) KREC (copies/µL) KREC (copies/106 cells)

Median ± SD 5th–95th

percentile

Median ± SD 5th–95th

percentile

Median ± SD 5th–95th

percentile

Median ± SD 5th–95th

percentile

<1 9 313 ± 363 223–1,355 304,896 ± 136,873 151,107–526,408 249 ± 219 134–713 217,210 ± 74,795 115,946–345,920

1–4 57 249 ± 170 74–656 213,155 ± 134,031 66,845–461,833 140 ± 116 31–470 114,289 ± 69,069 35,491–275,571

5–8 67 144 ± 83 53–284 151,838 ± 84,272 58,281–357,873 65 ± 47 21–171 69,186 ± 35,861 29,471–150,023

9–12 59 101 ± 73 30–279 125,197 ± 68,390 38,206–285,532 51 ± 46 16–186 64,424 ± 40,532 25,425–182,274

13–18 102 64 ± 50 21–209 86,770 ± 58,610 27,173–229,987 30 ± 28 8–107 36,610 ± 33,621 11,684–116,963

19–30 38 29 ± 22 12–99 38,543 ± 20,899 20,831–104,674 19 ± 20 1–70 21,262 ± 15,840 3,063–66,698

31–40 43 22 ± 23 10–96 29,356 ± 15,133 8,436–61,274 14 ± 28 2–77 18,056 ± 14,683 6,098–59,155

41–50 31 17 ± 13 7–57 20,996 ± 10,369 6,644–40,467 16 ± 29 4–114 22,835 ± 23,488 7,363–103,165

51–60 31 11 ± 10 0–37 12,706 ± 14,525 0–52,945 13 ± 13 3–45 17,933 ± 15,506 5,566–58,917

>61 43 11 ± 12 0–39 11,668 ± 11,130 0–35,331 22 ± 26 1–99 21,092 ± 18,671 2,907–53,655

TABLE 4 | Comparison of TREC results with reference DBS specimens.

Reference results Total

Normal

(TREC +ve)

SCID-like

(TREC –ve)

Unsatisfactory

sample

(reference gene

out of range)

M
e
a
s
u
re
d
re
s
u
lt
s

TREC +ve

ACTB +ve

15 0 0 15

TREC –ve

ACTB +ve

0 5 0 5

TREC –ve

ACTB –ve

0 0 1 1

Total 15 5 1 21

very low or undetectable. Patient P2 has a history of severe
chest infection, profound T cell lymphopenia and borderline
low B cell count. The patient was diagnosed with compound
heterozygous mutations in IL7RA and Diffuse Large B cell
Lymphoma (DLBCL). The patient had much lower TREC and
KREC levels than the age-matched reference intervals. Patients
P3, P4, and P5 were classical T−B+NK+ X-linked SCID patients
with IL2RG defects. They all had undetectable TREC which
was in agreement with their low T cell counts. Patient P5
had lower KREC level which could be explained by the low
B cell count. Patient P6 was diagnosed with partial DGS, and
had low TREC and normal KREC levels compared with the
corresponding age group. Patient P7 was diagnosed with APDS,
and had both lower TREC and KREC levels compared with
the age-matched reference interval which were in concordance
with the low T and B cells counts. Patients P8 and P9 were
both diagnosed with XLA and had defects in BTK gene. Patient
P10 had agammaglobulinemia phenotype with unknown genetic
cause as found by Whole Exome Sequencing while patient P11
was diagnosed with GATA2 deficiency. Patients P8, P9, P10, and
P11 were T+B− PIDD and they all had normal TREC but very

low KREC levels. Patient P12 was diagnosed with HIGM and
the TREC and KREC levels were normal which were consistent
with normal T and B cell counts. The 5th percentile lower
thresholds of TREC and KREC were able to detect severe and
mild abnormalities in the thymic function and B cell neogenesis
in these patients.

DISCUSSION

To the best of our knowledge, this is the first and largest study to
determine TREC and KREC reference levels in healthy Chinese
pediatric and adult individuals. A total of 479 healthy individuals
were divided into 10 different age groups for calculating the
age-specific reference intervals, with the lower threshold defined
as the 5th percentile. The pediatrics age ranges were selected
with reference to previous studies (26, 27). We also determined
the reference intervals for adults in age groups between 19
and 74 years for the potential applications in thymic and/or
bone marrow output monitoring for post-HSCT patients and
HIV patients.

We and other groups have observed a significant inverse
correlation of TREC levels with increasing age (28–31). A greater
downward trend was observed in the pediatric group than in
adults, which is in agreement with other studies (28, 32). We
detected the highest TREC and KREC levels in infants <1 year
old (33, 34), which may be explained by the continual thymic
development in the first year of life (35, 36). We found the TREC
levels decreased with age, which is suggested to be related to
thymic involution (37), and lower TREC and KREC levels result
from dilution during homeostatic replication of T or B memory
cells or antigen-induced proliferation (9, 38). In contrast to the
steady decline of TREC levels in the adult age group, KREC
levels remained at a relatively stable level indicating sustainable
B cell neogenesis throughout life, which was in agreement with
the findings reported previously (26, 39). The rapid decline of
TREC and KREC levels in pediatrics emphasized the importance
of establishing the age-specific reference intervals for PIDD
diagnosis as the patients occurred mainly in this age range
(16, 25).
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TABLE 5 | Results of TREC and KREC levels in patients with primary immunodeficiency diseases.

Patient Age Diagnosis Genetic diagnosis TREC

(copies/µL)

TREC

(copies/106

cells)

KREC

(copies/µL)

KREC

(copies/106

cells)

Lymphocytes subset

(cells/µL)

IgG/A/M

(mg/dL)

P1 <1 y SCID RAG1

(c.322C>T & c.2095C>T)

<LOD L <LOD L 1 L 2,101 L CD3: 1,474, CD4: 531,

CD8: 962; CD19: 226

IgG: 1,990,

IgA: 33, IgM: 374

P2 <1 y SCID;

DLBCL

IL7RA

(c.221+2T>A & c.361dupA)

<LOD L <LOD L 2 L 3,946 L CD3: 81, CD4: 7,

CD8: 66; CD19: 700

IgG: 1,008,

IgA:123, IgM: 181

P3 <1 y X-SCID IL2RG

(c.694G>C)

<LOD L <LOD L 136 187,993 CD3: 292, CD4: 31,

CD8: 141, CD19: 910

IgG: 755,

IgA: <7, IgM: 11

P4 <1 y X-SCID IL2RG

(c.996C>T)

<LOD L <LOD L 142 61,424 L Not available Not available

P5 <1 y X-SCID IL2RG

(c.723T>G)

<LOD L <LOD L 43 L 26,158 L CD3: 175, CD4: 33,

CD8: 136; CD19: 240

IgG: 326,

IgA: <7, IgM: <5

P6 <1 y DiGeorge Syndrome 22q11.21 deletion 58 L 33,296 L 138 79,781 L CD3: 1,850, CD4: 1,200,

CD8: 537; CD19: 892

IgG: 761,

IgA: <10, IgM: <20

P7 5–8 y APDS PIK3CD

(c.3061G>A)

37 L 51,175 L 14 L 19,414 L CD3: 1,594, CD4: 831,

CD8: 706; CD19: 98

IgG: 2,658,

IgA: 77, IgM: 914

P8 1–4 y XLA BTK

(c.1723G>C)

141 61,379 L <LOD L <LOD L CD3: 2,212, CD4: 1,241,

CD8: 674; CD19: 15

IgG: 336,

IgA: <7, IgM: 18

P9 13–18 y XLA BTK

(c.1535T>C)

87 76,075 1 L 791 L CD3: 2,399, CD4: 927,

CD8: 1,381; CD19: 8

IgG: <75,

IgA: <10, IgM: 20

P10 <1 y Agamma-globulinemia Unknown 295 88,500 L <LOD L <LOD L CD3: 7,845, CD4: 3,437,

CD8: 5,116; CD19: 13

IgG: 726,

IgA: <7, IgM: 27

P11 13–18 y GATA2 deficiency;

Monosomy 7

GATA2

(c.726_729del)

52 74,876 <LOD L <LOD L CD3: 1,169, CD4: 525,

CD8: 599; CD19: 33

IgG: 766,

IgA: 58, IgM: 106

P12 5–8 y HIGM CD40LG

(c.761G>T)

175 83,734 109 51,992 CD3: 3,560, CD4: 1,995,

CD8: 957; CD19: 767

IgG: 298,

IgA: 61, IgM: 185

SCID, Severe Combined Immunodeficiency; DLBCL, Diffuse large B-cell lymphoma; X-SCID, X-linked SCID; XLA, X-linked Agammaglobulinemia; APDS, Activated PI3K-Delta Syndrome (APDS); HIGM, X-linked immunodeficiency with

hyper-IgM syndrome; LOD, Limit of Detection; L, Below reference interval.
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Our findings showed no significant differences in TREC levels
between females and males, regardless of age, which echoed
some studies that also found no differences between genders
(32, 40, 41). However, several studies observed a higher TREC
level in female adolescents and a slower decline of TREC levels
in adult females compared to males (26, 28, 42), and Rechavi
et al. reported a higher TREC level in female neonates than in
male neonates (43). Interestingly, we observed a significantly
higher level of KREC in females than males after 9–12 years
(except for the 51–60 year age group), indicating a slower
decline in KREC levels. This may be explained by the substantial
immunomodulatory role of sex hormones on immune responses
(44, 45). However, differences in the genetic backgrounds of
ethnic groups may contribute to the contradictory findings. A
larger sample size of infant healthy controls (<1 year) is needed
to elucidate differences in TREC and KREC levels taking into
account these factors. Moreover, TREC levels are maintained
at very low levels or even undetectable in older age due to
physiological decline of thymic function in the fifth and sixth
decades of life, which might suggest that this assay is not suitable
for adults over 50 years.

The diagnosis of PIDD is usually delayed until presentation of
clinical symptoms, such as recurrent infections. The conventional
tests for diagnosis of PIDD include total lymphocyte count,
lymphocyte subset, immunoglobulin measurement, functional
assays, and genetic analysis. The latter two remain the most
important tests and are critical for diagnosis. TREC and KREC
analysis is a fast, cost-effective and sensitive tool to for SCID
screening and PIDD diagnosis, especially as only a small sample
volume is needed for DNA extraction which minimizes harm
to young age infants. It may not be feasible to perform all
the conventional tests if sufficient blood is not available. The
protocols of TREC and KREC assay varies in laboratories, and
the genetic difference in populations may also contribute to
the variation of cut-off in NBS programs in different countries.
Therefore, the age- and ethnicity-matched TREC and KREC
reference intervals reported in this study are crucial for the
diagnosis of PIDD in young children and adolescents in the
local population. Nevertheless, PIDD is a rare disease with
around 140 cases diagnosed in Hong Kong in the past 30
years (46–48). Implementation of TREC (and KREC) based
NBS program with local cut-off can greatly facilitate the early
identification of severe PIDD patients. A quicker diagnosis
allows earlier genotype-specific treatments (e.g., HSCT) prior to
life-threatening infections, which offers a better outcome and
improves the quality of life (49–51). This will also significantly
reduce the costs of delayed diagnosis and treatment of related
morbidities (52–54). We have shown a good correlation between
the TREC results using our established assay with the CDC in-
house method, indicating this assay is potentially applicable for
the NBS program for severe PIDD.

Our TREC and KREC assay was able to correctly identify the
11 selected PIDD patients with aberrant T and/or B cell counts.
The findings for SCID (RAG1 and IL2RG), XLA and GATA2
deficiency are in agreement with previous reports (55–59).
Typical defect in IL7RA results in a phenotype of T−B+NK+.
However, the patient P2 in this study has concomitant EBV

associated DLBCL. This might explain the low KREC level even
the patient had a CD19 count of 600/µL and the circulating
B cells might be dominated by the monoclonal expansion of
cancer cells. Borte et al. also reported that patients with IL7RA
defects could have variable KREC levels with the lowest level
at ∼10 copies/µL (55). Recent pilot KREC NBS studies and
our study have demonstrated the feasibility in detecting XLA
and agammaglobulinemia (6, 60, 61). The identification of DGS
has been challenging as the phenotypes vary from “partial” to
“complete” reduction of thymus. Fronkova et al. reported that
DGS patients had significantly lower TREC levels compared
with controls, whereas TREC and KREC levels in most patients
were within normal ranges (62). In our study, we detected
a low TREC level and normal KREC level in a partial DGS
patient compared with their age-matched 5th percentile reference
interval. Gul et al. and Liao et al. also found their DGS patients
had TREC levels below the 5th percentile and <90 copies,
respectively (63, 64). Moreover, our assay was able to detect
APDS caused by gain of function in PIK3CD which is a common
variable immunodeficiency (CVID) with low TREC and KREC
levels (65). As expected, HIGM patient with CD40LG defect
has TREC and KREC levels within normal ranges (55). The
application of 5th percentile for TREC and KREC levels as the
lower cut-off allows the detection of milder forms of T and
B cells lymphopenia in PIDD diagnosis. Therefore, TREC and
KREC assay is a valuable tool to facilitate the diagnosis of PIDD,
in combination with other laboratory tests, such as lymphocyte
subset and immunoglobulin measurement.

Since the first use of TREC level in determining thymic output
by Douek et al., the units of measurement for TREC level have
varied, including TREC/µg DNA of T cells, TREC/CD45RA+ T
cell, TREC/105 CD4+ T cells, TREC/106 PBMCs, and TREC/mL
or µL of blood (19, 28, 66). In this study, we measured the
TREC, KREC, and β-actin (internal control) copy number using
a multiplex RT-PCR assay and presented the TREC and KREC
levels using two methods. We first aligned the formula used for
theNBS program and expressed the levels in copies/µL blood (18,
19, 67). The TREC and KREC levels were then normalized with
β-actin to calculate the levels in copies/106 cells (26). We showed
a high correlation between the two units for both TREC and
KREC levels. These calculation approaches avoided the need for
flow cytometry to estimate the numbers of T cells or differential
WBC counts, as the values may not be always available. The
TREC and KREC levels in copies/µL of blood is suggested to
be a better estimation of new lymphocyte maturation regardless
of homeostatic cell replication (67). However, patients with
lymphopenia due to immunosuppressive treatments may show
“false positives” of low TREC and KREC copies per blood volume
(6). In addition, patients with high T cells lymphoproliferation
or monoclonal B cells proliferation may produce low TREC or
KREC levels due to dilution in maturing cells (68). The TREC
and KREC levels in copies/106 cells were normalized with the cell
number in blood, which provides a more accurate evaluation of
T and B cell function in such cases. However, elevated neutrophil
numbers (e.g., during infection) may lead to under-estimation of
TREC and KREC levels when using copies/106 cells. Therefore,
TREC and KREC levels measured in both units should be
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interpreted with care and other clinical information should be
reviewed. Quantification of TREC levels can reflect the thymic
output, as it is present in new and recent maturing lymphocytes,
but low levels of TREC can still remain in some long-lived naïve
cells, which can lead to over-estimation in the results (5, 69, 70).

Multiple methods have been applied for the quantitative
measurement of TREC and/or KREC including RT-PCR,
which is one of the most commonly used and cost-effective
technologies (55). The introduction of KRECmeasurement offers
an additional tool for detecting B cell lymphopenia. On the
other hand, multiplex TREC, KREC and internal control in a
single reaction using RT-PCR eliminates the variability associated
with pipetting errors and allows accurate evaluation of TREC
and KREC levels in a cost-effective manner (71). Pilot NBS
study using TREC and KREC has also demonstrated improved
diagnostic rates for severe PIDD (6, 60). Recent developments
have also included the detection of exon 7 of SMN1 in a
single reaction for the diagnostic testing of Spinal Muscular
Atrophy (72–74). The use of digital PCR technology offers
even better limits of detection and higher precision, which is
particularly useful for samples with low copy numbers to help
reduce the false positive rate (75–77). However, the drawback
is the higher instrument costs (91, 93). Measurement of donor
cell engraftment using chimerism analysis is a standard tool to
determine immunity reconstitution (61). The TREC and KREC
assay has been applied in post-HSCT monitoring of functional
reconstitution of T and B cells (78, 79). The results obtained in
this study could serve as age-matched reference intervals for the
comparison of adult patients. Further study with more clinical
samples for such applications is ongoing.

The findings in this study need to be interpreted with
the following caveats. First, the number of archived samples
for healthy infants (<1 year) was limited, which constitutes
the major drawback of this study. This may be overcome by
recruitment of more healthy subjects. This study also lacked adult
PIDD samples for the evaluation of reference intervals in certain
adult age groups. An international quality assurance program
is available only for TREC measurements, thus an equivalent
program for KRECmeasurements is warranted for standardizing
assay performance across different laboratories (80).

CONCLUSION

To the best of our knowledge, we are first to report reference
intervals of TREC and KREC levels from the largest sample
size of healthy individuals in a Chinese population. Our study
demonstrated that TREC and KREC levels decline with age,
which is an important factor for the accurate measurement
of TREC and KREC levels. This study generated age-matched
reference values that allow us to interpret and compare
results in samples of children, adolescents, and adults with
suspected compromised immunity. The quantification of TREC
and KREC levels simultaneously obtained by RT-PCR can be
easily introduced into routine laboratory practice and is highly

informative. PIDD including SCID, X-SCID, XLA, partial DGS,
GATA2 deficiency, and APDS were successfully diagnosed using
this assay. This assay is fast and cost-effective and the established
age-specific reference intervals can be applied as a diagnostic tool
for PIDD.
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