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Novel methods in immunological research and microbiome evaluation have dramatically

changed several paradigms associated with the pathogenesis of allergic asthma (AAS).

Ovalbumin and house dust mite-induced AAS in germ-free or specific pathogen-free

mice are the two leading experimental platforms that significantly contribute to elucidate

the relationship between AAS and gut microbiota. Beyond the exacerbation of T

helper (Th) 2 responses, a complex network of immunological interaction driven by gut

microbiota could modulate the final effector phase. Regulatory T cells are abundant in

gastrointestinal mucosa and have been shown to be pivotal in AAS. The gut microbiota

could also influence the activity of other T cell subsets such as Th9, Th17, and

populations of effector/memory T lymphocytes. Furthermore, gut microbiota metabolites

drive the hematopoietic pattern of dendritic cells and ameliorate lung Th2 immunity

in AAS models. The administration of probiotics has shown conflicting results in AAS,

and limited evidence is available on the immunological pathways beyond their activity.

Moreover, the impact of early-life gut dysbiosis on AAS is well-known both experimentally

and clinically, but discrepancies are observed between preclinical and clinical settings.

Herein, our aim is to elucidate the most relevant preclinical and clinical scenarios to

enlighten the potential role of the gut microbiota in modulating T lymphocytes activity

in AAS.
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T CELL PLASTICITY AND GUT MICROBIOTA

During homeostatic periods, gut-microbiota and T-cells within the gut mucosa engaged profitable
crosstalk capable of shaping the systemic immune response of the individual. T-cell-receptors
are reactive to microbiota-derived antigens that are necessary for an adequate maturation
of the immune system and to ensure proper colonization of the gut lumen. Heterogeneous
microbiota-derived signals could drive the polarization of Th cells into four different categories:
while Th1 (1) and Th17 (2) dysregulation are relevant in inflammatory and autoimmune diseases,
GATA3+ Th2 responses (3) and T regulatory lymphocytes (Tregs) (4) are pivotal in allergic
responses. Some bacteria metabolites, such as short-chain fatty acids (SCFAs), could regulate the
tolerogenic effect of Tregs and they are directly sensed by G-protein-coupled-receptors (GPCRs)
(5). Alternatively, Tregs polarization could be promoted by an IL-10 dependent pathway from
microbiota-derived antigen presentation by dendritic cells (DCs) (6). Several other Th subsets
such as Th9 (7) and Tregs subtypes (8) are implicated in allergic responses while their relationship
with the gut microbiota is not entirely defined. Furthermore, the role of Th17 in AAS was heavily
investigated (9) and they are currently recognized as one of the crucial mediators of AAS.
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WHAT WE HAVE LEARNED FROM GUT
MICROBIOTA MANIPULATION IN MURINE
MODELS OF ALLERGIC ASTHMA

More than a decade ago, evidence in murine models rose in
support of the hygiene hypothesis, when Th2 response was
associated with a state of gut dysbiosis (10). Nowadays, the
paradigm has evolved, and the complex immunological network
beyond the gut-lung axis is under active research.

The Role of Clostridium spp Emphasize
Regulatory T-Cell Activity
A number of studies identified Clostridium spp as crucial
modulators of AAS. First, insights come from the investigation
on the impact of antibiotic therapies on T cell populations.
It was demonstrated that CD4+CD25+FoxP3+ Tregs are
slightly reduced when mice are treated with polymixin B
or vancomycin but not streptomycin withing the intestinal
wall, while lung Tregs frequencies are comparable among
vancomycin or streptomycin-treated animals or controls (11, 12).
Interestingly, the ovalbumin (OVA) challenge exacerbates AAS
in vancomycin-treated animals but not within the streptomycin
group (12). It is well-known that vancomycin preferentially
targets Clostridium spp. In order to further elucidate the role
of these strains in AAS, stool transfer experiments between
mice were conducted. Murine models colonized with fecal water
derived from mice supplemented with a mixture of Clostridium
strains have demonstrated a higher percentage of IL10+CTLA-
4highIKZF2− colonic Tregs when compared to controls while a
similar approach with Lactobacillus spp and Bacteroides spp failed
to show any significant variation (11). Of note, in this context,
Tregs does not express IKZF2, an essential transcription factor
that is necessary for the stabilization of their suppressive activity
in autoinflammatory models (13). A similar approach with fecal
material from human volunteers has demonstrated that clusters
of Clostridia IV/XIV and XVIII are able to increase the frequency
of IL10+ICOS+CTLA4+CD25+ Tregs in colon mucosa and they
are implicated in protection against OVA-induced Th2 colitis
(14). However, their relevance in AAS is under debate. One
of the significant limitations of these studies is represented
by the absence of a detailed functional characterization of T-
cells; for instance, IL-10 and CTLA-4 are essential for the
immunosuppressive activity of Tregs, while ICOS is crucial for
their effector activity rather than their induction (15) thus, the
contribution of different T effector/memory (Tem) populations
should be addressed.

The Importance of Effector/Memory
T Cells Revealed by Bacteroides spp
Observations in AAS models enhance the role of Bacteroides
spp. Even if they are not a direct target of vancomycin, perinatal
treatment in mice reduces Bacteroides spp and relatively increases
Lactobacillus spp (16). Importantly, the effect of vancomycin on
AAS is evident only during early-life and not during adulthood,
identifying a specific “window of opportunity” (16). Mechanistic
studies on Bacteroides fragilis in AAS provide further insights

into the regulation of T cell response. In other settings, it
was shown that the polysaccharide A (PSA) is a non-protein
antigen presented by MHC-II (17) capable of activating CD4+

cells (18). The oral exposure to PSA protects murine models
against AAS trough a T-cell mediated pathway (19). PSA usually
elicits a FoxP3+ peripheral Tregs response in mice and FoxP3−

Tregs cells in humans (20). However, in mice primed with PSA
and sensitized to OVA, the PSA-responding population is not
composed of FoxP3+ Tregs but relies on IL-10 to exert its
protective effect (19). Thus, it seems that PSA could protect
against AAS through an IL-10 dependent mechanism, but the
source of IL-10 was unclear. The adoptive transfer approach
of PSA-responding CD4+ T lymphocytes between IL10−/− and
wild type animals allows the recognition that PSA-responding T
cells are a population of FoxP3−CD45RblowCD44+CD62L− Tem
that support the production of IL-10 by lung resident FoxP3+

Tregs (21). To date, it is not known if other gut-derived antigens
could act indirectly on lungs T response in a similar way.

Modulation of the Gut-Lung Axis Through
Antibiotics and Probiotics Impacts the
T-Cell Response
Mice treated with a combined intermittent antibiotic regimen
early after weaning and subsequently challenged with house dust
mite (HDM) show a significant reduction of the FoxP3+/CD4+

ratio in mediastinal lymph nodes (MLNs), that is proportional
to the Simpson diversity index variation of the fecal microbiome
(22). Therefore, a direct link between Tregs homeostasis and
gut microbiota in AAS exists, and a state of dysbiosis could
strongly influence the severity of Th2-mediated inflammation.
Among the limitations of this approach, the use of aggressive
and intensive antibiotic regimens is one of the most relevant
obstacles for translation into clinical practice. Although direct
evidence of its implication in AAS is currently lacking, other
works address the long-lasting immunomodulatory effects of
an early-life single macrolide course vs. a three pulses course
(23). In this context, intestinal CD4+IL17A+ T lymphocytes
are decreased while CD4+IFN-γ T cells are not affected,
and CD4+FoxP3+ Tregs percentage is only slightly increased
among treated animals (23). Of note, only slight differences
are noted in germ-free mice, and the degree of systemic
immune perturbance of a single macrolide pulse is relatively
modest, but it is strong enough to induce an imbalance
in local Th17 immunity, leading to long-lasting microbiome
alterations (23). It would be of great interest to explore T-
cell development in a similar model challenged with HDM
or OVA.

Since transient gut dysbiosis is relatively common in children
due to the widespread use of antibiotics (24), it is possible
that an early probiotic administration could recover this
state and drive the Th1/Th2 balance. Supplementation with
Lactobacillus Ramnosus or Bifidobacterium lactis is proven to
be an efficient AAS suppressor and a robust inductor of
FoxP3+ Tregs in MLNs of newborn OVA-sensitized mice (25).
Moreover, the proliferative response to probiotic administration
enhances the production of TGF-β secreting CD4+/CD3+ T
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lymphocytes (25), thereby contributing to the establishment
of a tolerogenic environment. Probiotic treatment has been
shown to be effective in protecting newborn mice against
AAS while it has been proven to be ineffective in adult
mice. Interestingly, both adult and newborn mice are able
to induce a CD4+FoxP3+ Treg response in the lungs after
probiotic administration, but when splenocytes from tolerant
wild-type mice were adoptively transferred into adult mice, only
newborn’s Tregs are able to control pulmonary inflammation
(26). Therefore, the generation of Tregs itself is not sufficient to
confer protection to AAS, but an intrinsic feature of neonatal
Tregs is necessary (26), and it would be of great interest for
future research.

Diet Modulation of T Cell Response Is Only
Partially Driven by Gut Microbiota
Alterations
Environmental factors play a crucial role in the development of
AAS, and specific maternal diets could be beneficial in preventing
the onset of AAS. Bacteria metabolize fermentable dietary fiber
into SCFAs, small soluble molecules that could trigger strong
immunomodulatory effects (27). SCFAs diet content is capable
of driving the gut microbiota composition, and this shift could
lead to significant protection against AAS (5). Interestingly,
vancomycin treatment in mice mainly delates bacteria capable of
producing SCFAs (28).

After a high-fiber diet, the gut microbiota is enriched with
Bacteoidaceae and Bifidobacteriaceae, while SCFAs, particularly
acetate and propionate, increased (5). However, SCFAs are
not detected in lung tissue after HDM challenges; thus,
they exert their action through an indirect mechanism (5).
Furthermore, butyrate enhances the extrathymic generation
of Tregs (29), but a high-fiber diet was not associated with
an increase in CD25+FoxP3+ Tregs (5). Therefore, other
mechanisms should underline this effect. Bone-marrow derived
DCs were investigated as possible metabolite-specific mediators.
It was demonstrated that butyrate significantly alters DCs
gene expression, reduces costimulatory molecules and impairs
CCL19-dependent DCs migration (28). On the other hand,
propionate acts via GPCRs in a context-dependent manner,
enhancing the hematopoietic activity of DCs precursors that
could impair Th2 activity in the lungs (Figure 1) (27). Therefore,
gut microbiota diet perturbations could indirectly affect the
Th2 response through the modulation of the hematopoietic
activity in the bone marrow through a metabolite-specific
pathway. In addition to this mechanism, SCFAs can establish
an anti-inflammatory activity by the direct interaction with
the histone deacetylase (HDAC) protein family (30). Of note,
HDAC proteins confer a permissive chromatin structure that
enhances the transcription of involved regions (27). Propionate,
but not acetate, could inhibit HDACs, enhancing the extrathymic
Treg generation promoted by butyrate (29). According to this
finding, dramatic protection against AAS after HDM exposure
in progeny was related to the downregulation of Nppa that
inhibits HDAC-9 and increases the acetylation rates of the
FoxP3 promoter (30). Furthermore, this action was reported

as independent from the microbiota shift observed in treated
mice (30).

Other T-cell subsets could be involved in SCFAs-mediated
protection against AAS. In newborn mice treated with a
commercially available mixture of probiotics, increased levels
in butyrate, but not other metabolites, are able to induce the
proliferation of Tregs and negatively modulate OVA-induced
AAS (31). Since Tregs are potent inhibitors of Th9 (32), their
capacity to reduce IL-9 expression and Th9 differentiation was
assessed. Butyrate-treated mice show lower frequencies of Th9
cells in the lungs, while no difference is observed for Th2 cells
(31). Moreover, adoptive transfer of Th9 or IL-9 administration
could revert the protective effect of butyrate, indicating that
the mechanisms are partially related to this Th subclass (31).
Lastly, while the link between obesity and non-allergic bronchial
hyperresponsiveness is widely accepted, a high-fat diet has little
effect in modulating Tregs responses by an impairment of DCs
activation in OVA-induced AAS (33). Therefore, diet could have
a significant role during early developmental stages, and it is
capable of shaping the T-cell effector phase through a variety
of mechanisms.

The Hidden World: Fungi and Viruses
Fungal dysbiosis was recently recognized as one of the foremost
promoters of AAS in experimental models, but the mechanisms
are only partially understood. Fluconazole can exacerbate AAS
in mice and increase IL-4+CD4+ and IL-13+CD4+ T-cells
(34). In another study, Wallemia mellicola colonizes the
intestine efficiently after depletion of resident microbiota by
wide-spectrum antibiotics and promotes the accumulation of
IL-13+CD4+ T-cells in MLNs and AAS exacerbations (35).
Therefore, the induction of Th2 responses seems to be cardinal
during mycobiota dysbiosis. However, C. albicans spp. were able
to increase AAS susceptibility through RORδT+ T-cells (36)
and recent findings in mice treated with fluconazole and then
“recovered” with oral gavage of three dysbiotic fungal species
demonstrate that AAS susceptibility is mediated by a mixed
GATA3+ and RORδT+ T-cell response (37). Therefore, both
Th2 and Th17 are involved in AAS during mycobiota dysbiosis,
but further studies are needed to enlighten the mechanisms and
possible therapeutic opportunities. Of note, Th17 are induced
under the presence of both IL-6 and TGF-β while the absence
of IL-6 promotes the differentiation into Tregs (4). To our
knowledge, there is a lack of evidence on mechanisms that could
link intestinal viruses and T lymphocytes response in AAS; it
would be of great interest to address this topic in the near future.

WHAT HAVE WE LEARNED FROM BIRTH
COHORTS AND OTHER
EPIDEMIOLOGICAL OR CLINICAL
EVIDENCE?

Alterations within the gut microenvironment are linked to AAS
in children (38). Several studies suggest a negative correlation
between farming lifestyle during early life and the risk of AAS
(39, 40) while others identify a specific role for farm-milk
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FIGURE 1 | Overview of gut microbiota and T cell modulation in allergic asthma. Early-life perturbations, such as broad-spectrum antibiotics, diet, and probiotics, are

essential in determining the risk of allergic asthma. Antigens derived from the gut microbiota stimulate the proliferation of DCs, and they could trigger both Th2 or

Tregs responses under the influence of IL-4 or TGF-β+IL-10, respectively. PSA of Bacteroides fragilis stimulates the expansion of a FoxP3− Tem population that

regulates lung immunity through the induction of FoxP3+ Tregs. SCFAs modulate T cell response, both priming naïve T cells and upregulating the FoxP3 promoter in

lung Tregs. SCFAs influence the hematopoietic pattern in a context-dependent way. In AAS, they increase the production of DCs and monocytes progenitors with the

generation of pre-DCs and inflammatory Mo Ly6C+. During AAS inflammation, after their homing to the lungs, they express reduced levels of CD40 (CD40low DCs and

CD40low Mo, respectively), impairing the action of Th2eff. Among SCFAs, butyrate could promote the induction of pulmonary Tregs trough HDCAs leading to the

inhibition of Th9 activity and ameliorating AAS. Fungal dysbiosis could trigger both a Th2 and a Th17 response, thereby increasing the susceptibility to AAS. Note that

under the influence of TGF-β+IL-6 T cells are polarized to Th17 while in the absence of IL-6 Tregs are induced. It is not known if intestinal viruses could have a direct

effect on T-cell response in AAS. AAS, allergic asthma; DCs, dendritic cells; IL, interleukin; Mo, monocytes; PSA, polysaccharide antigen; SCFAs, small chain fatty

acids; Tem, T effector memory; TGF-β, tumor growth-factor β; Th, T helper cell; Th2eff, T helper 2 effector; Treg, T regulatory cell.

consumption (41). Since “correlation does not imply causation,”
evidence on the underlying immune mechanisms is needed.

T Regulatory Populations: Tricks or Treat?
Recent findings show that the neonatal gut microbiota is different
among children concerning AAS risk, and prove a different
propensity to induce specific T cell responses. The analysis of gut
microbiota of the WHEAL cohort, in which neonates and infants
are clustered for AAS risk, demonstrates that neonates at higher
risk exhibit a delayed diversification of the gut microbiota and a
relative difference in the composition with fewer Lactobacillus,
Bifidobacterium, Akkermisia and Faecalicaterium and more
Candida spp (42). Sterile fecal water from these subjects
impairs in vitro Tregs differentiation, while a reduction of
CD4+CD25+FoxP3+ Tregs and an increase in IL-4+CD4+ T
cells is observed (42).

The analysis of peripheral blood cells in PASTURE
and EFRAIM children cohorts display an increase in

CD4+CD25+FoxP3+ Tregs at 4.5 years (43) and a subsequent
reduction at 6 years of age (44). Farm-milk is associated
with a protective effect on AAS at 4.5 years of age, and this
protection is partially dependent on Tregs. Beyond the number,
the demethylation pattern of the FoxP3 promoter increases
in farm-milk children but not in children with farm-exposure
only (43). However, the longitudinal assessment of this cohort
at 6 years of age finds no differences in functional assays nor
Tregs frequencies among high or low farm milk intake groups,
but an increased expansion of Tregs after LPS stimulation was
demonstrated in children affected by AAS (44). Together, these
studies support the hypothesis that the number of Tregs in
peripheral blood is not a hallmark of tolerogenic responses.

The Impact of Antibiotics: A Difficult
Assessment in “Real-Life”
Some studies address the role of early antimicrobials
administration and AAS. Early exposure to beta-lactams or
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macrolides has a differential impact on the development of the
microbial community in children (45). Infants who are exposed
to antibiotics early in life are more prone to develop AAS in
a variety of cohort studies, but it is difficult to extract some
conclusions on the shaping action on T cell response. Since oral
intake is one of the most common routes of administration, it is
rational to hypothesize a connection between antibiotics induced
gut-dysbiosis and a Th2 polarized response. However, to our
knowledge, no clustered analysis is available to date and evidence
that link antibiotics induced gut dysbiosis and T cell response in
AAS are currently lacking in these clinical scenarios.

Effects of Preventive Probiotics
Administration on T-Cell in Children
Interestingly, Lactobacillus spp is a constituent of genitourinary
microflora and is an essential element of the microbiota in
vaginally delivered-infants (46). Several shreds of evidence
remark the role of delivery mode in determining the AAS risk in
children, but other studies find no differences between elective
cesarean and vaginal delivery (47). Lactobacillus is one of the
strains depleted in high-risk toddlers; thus, it is hypothesized
that supplementation could prevent the onset of AAS in children
through a persistent modification of the microbiota. Since the
therapeutic window is probably confined within the first year
of life, the longitudinal comparison of stool samples collected
from infants at high risk of AAS, treated, respectively, with
Lactobacillus rhamnosus GG or placebo for 6 months was
performed (48). While children at high risk show a distinct
meconium microbiota and an impaired gut diversification, the
treatment with Lactobacillus rhamnosus is able to restore this
alteration at 6 months of life, but this effect is lost at 1 year of age
(48).Moreover, sterile fecal water from infants at high risk treated
with Lactobacillus rhamnosus at 6 months, but not at 12 months,
promotes CD4+CD25+FoxP3+ T regs expansion and IL-10

production in DC/T-cell assays (48). Therefore, Lactobacillus
rhamnosus GG could promote a tolerogenic environment, but it
does not persist. Of note, a randomized, double-blind controlled
trial of Lactobacillus rhamnosus supplementation during the first
six months of life failed to show any significant difference in
AAS at 5 years of age (49). Significant limitations of these studies
include the intrinsic difficulty in controlling confounding factors
and the heterogeneous definitions of atopy risk and AAS. A
deeper immunological characterization in infants treated with
probiotics in relation to the risk of AAS is needed.

CONCLUSIONS

The complex interactions between the gut microbiota and the
T-cell response in AAS are only partially uncovered. Further
pathways should be outlined such as the relationship with
lungs resident memory T cells (50), the induction of differential
response in effector or central memory Th2 (51) or if an immune
shift similar to those observed during immunotherapy (52) could
be achieved by microbiome manipulation. Clinical trials are
difficult and sometimes tainted by several confounding factors
and rarely emphasize aspects related to the T cell responses.
Moreover, when perinatal interventions are considered, the result
should be clustered into pre, post, and combinatory ones in order
to understand the priming effect of the delivery mode (49). The
clarification of the mechanisms beyond the gut-lung axis strongly
encourages further efforts to explore the potential therapeutic
roles of microbiota-based primary prevention of AAS during
early infancy.
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