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Sjögren’s syndrome (SS) is a chronic autoimmune disorder of the exocrine glands
mediated by lymphocytic infiltrates damaging the body tissues and affecting the life
quality of patients. Although traditional methods of diagnosis and treatment for SS are
effective, in the time of personalized medicine, new biomarkers, and novel approaches
are required for the detection and treatment of SS. Exosomes represent an emerging
field in the discovery of biomarkers and the management of SS. Exosomes, a subtype
of extracellular vesicles, are secreted by various cell types and can be found in most
bodily fluids. Exosomes are packed with cytokines and other proteins, bioactive lipids,
and nucleic acids (mRNA, circular RNA, non-coding RNA, tRNA, microRNA, genomic
DNA, and ssDNA), and transport such cargo between cells. Evidence has indicated
that exosomes may play roles in processes such as the modulation of the immune
response and activation of inflammation. Moreover, due to features such as stability,
low immunogenicity and toxicity, long half-life, and the capacity to penetrate the blood-
brain barrier, exosomes have also emerged as therapeutic tools for SS. In this review,
we summarize existing literature regarding the biogenesis, isolation, and function of
exosomes, specifically focusing on exosomes as novel biomarkers and their potential
therapeutic uses in SS.
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INTRODUCTION

Sjögren’s syndrome (SS) is a chronic autoimmune disorder of the exocrine glands. It is characterized
by lymphocytic infiltration in the salivary and lacrimal glands (LGs) resulting in oral and eye
dryness. Extraglandular manifestations such as musculoskeletal pain, fatigue, and systemic features
also develop in a significant percentage of patients. This exocrinopathy can occur alone (primary
Sjögren’s syndrome, pSS) or secondary to another autoimmune disease such as rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), and systemic sclerosis (SSc). The antinuclear antibody
(ANA) is the most frequently detected autoantibody in SS, while anti-Ro/SSA and anti-La/SSB
are the most specific prognostic markers (1–3). The prevalence of SS is 0.29–0.77% overall and
3–4% among the elderly. The ratio of male to female cases is 1:9, and the average age of onset
is over 50 years. 5% to 10% of the patients can develop non-Hodgkin’s lymphoma, the most
serious complication of SS, within 10 to 15 years of follow-up (4, 5). Despite extensive research
on the underlying cause of SS, the pathogenesis remains obscure. Multiple factors, including
the environment and the immune system, may contribute to the development of this disease.
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In the last decade, researchers have focused their attention
on the release of extracellular vesicles (EVs). These double
lipid bilayer-enclosed membranous vesicles are produced and
discharged from almost all cells and represent more than the
casual dispersal of cellular “dust” (6). Further, EVs deliver
complex chemical messages over long distances (7). Exosomes,
the most well-known and studied subtype of EVs, were first
described as nanoscale vesicles derived from various normal and
neoplastic cell lines in the 1980s (8, 9). These endosome-derived
nanovesicles have a characteristic cup-shaped morphology as
observed under electron microscopy, with a diameter of 30–
100 nm and a density between 1.13 g/ml and 1.19 g/ml.
They exist in numerous bodily fluids, including serum, saliva,
urine, cerebrospinal fluid, milk, and tears, under both normal
and pathological conditions (10, 11). Exosomes are packed
with various components and have the capacity of inducing
functional responses in recipient cells (12–15). Through the
transfer of bioactive molecules between cells, exosomes mediate
intercellular signaling and participate in various physiological
and pathological processes (16). The involvement of exosomes
in the development and treatment of autoimmune diseases has
also been extensively researched (17, 18). Lee et al. demonstrated
that circulating exosomes in patients with SLE could be associated
with disease activity and might therefore serve as biomarkers
of disease activity (19). Kimura et al. found that circulating
exosomes suppressed the induction of regulatory T cells via let-
7i-mediated blockade of the IGF1R/TGFBR1 pathway in multiple
sclerosis (20). Few reviews have investigated and summarized the
functions of exosomes in SS. In this review, we will focus on the
recent advances regarding exosomes in SS and their potential as
biomarkers and therapeutic tools.

EXOSOMES

Exosome Biogenesis and Isolation
Methods
The generation of exosomes is initiated by invagination of
the plasma membrane to form endocytic vesicles. When these
newly formed endosomes mature, depressions in the endosomal
membrane take place, and intraluminal vesicles are produced.
Intraluminal vesicles are further transformed into multivesicular
bodies (MVBs) with a dynamic subcellular structure, also known
as late endosomes. MVBs then merge with the plasma membrane
and release the vesicles contained within, called exosomes.
Exosome biogenesis is complex and tightly regulated by multiple
factors. The endosomal sorting complex required for transport
(ESCRT) is the principal protein family governing the synthesis
of exosomes. Downregulation of ESCRT-0 and ESCRT-0 proteins
decrease exosome secretion. Conversely, depletion of ESCRT-I
proteins increase exosome production. Moreover, exosomes can
be generated without ESCRT proteins, and ESCRT-independent
machinery may contribute to the sorting of cargo into exosomes.
Lipids also play a crucial role in the biogenesis and transport of
exosomes. Several other proteins, including GTPase proteins and
lactadherin, are also involved in the biogenesis of exosomes (16,

21, 22). Nevertheless, mechanisms of exosome biogenesis and
secretion require further elucidation.

Exosomes are secreted into biological fluids which contain
other vesicle types such as microvesicles and apoptotic bodies.
It is therefore necessary to isolate exosomes from contaminating
material. The isolation of pure exosomes is essential for
understanding their mechanisms of action and potential
applications. Several methods have been adopted for the
isolation for exosomes: differential centrifugation, ExoQuickTM

extraction kits, sucrose density gradient ultracentrifugation, and
immunoaffinity sedimentation (21). These methods may have
certain limitations, such as low yield and purity. Microfluidics-
based technologies have recently become available for the
isolation, detection, and analysis of exosomes and do not have
the above-mentioned limitations (16).

Accurate evaluation of the physicochemical characteristics
of exosomes, such as size, shape, and density, is crucial
for exploring the biological interactions of these vesicles.
Western blotting, enzyme-linked immunosorbent assay (ELISA),
real-time quantitative polymerase chain reaction (RT-qPCR),
dynamic light scattering (DLS), fluorescence-based detection,
nanoparticle tracking analysis (NTA), atomic force microscopy
(AFM), and transmission electron microscopy (TEM) are
commonly used techniques for exosome characterization (23,
24). Western blotting and ELISA are used for the identification
of intra-vesicular or membrane protein markers (25), while
RT-qPCR is used for the detection of exosome-related RNA
(26). NTA, AFM, and TEM have been developed to determine
the size, density, morphology, and composition of exosomes
(27, 28). Recently, a new technique, tunable resistive pulse
sensing (TRPS), has been used to measure the size distribution
and concentration of exosomes (29). To discriminate between
exosomes from normal and pathological cells, considering their
inherent heterogeneity, we need to combine quantification
techniques. This will open up new avenues for exosome detection
and characterization.

Composition and Function of Exosomes
Exosomes have a lipid bilayer structure and are released
upon fusion of the MVB with the plasma membrane (30–32).
Exosomes contain various proteins (e.g., cytokines, GTPases,
Alix, TSG101, tetraspanins, heat shock proteins, and integrins),
lipids (e.g., phosphoglycerides, cholesterol), and nucleic acids
(e.g., mRNA, circular RNA, non-coding RNA, tRNA, microRNA,
genomic DNA, and ssDNA) (33–38). Due to their lipid bilayer,
genetic information and other transported components are
protected from degradation (31). Exosomes are secreted by
various immune cells [e.g., T cells, B cells, dendritic cells (DCs),
and macrophages] and non-immune cells (39). Once released,
exosomes can interact with specific recipient cells based on the
expression of adhesion molecules, such as phosphatidylserine
receptors, integrins, and glycans on the exosome surface (40, 41).
Thus, information can be transmitted to target cells via exosomes.

The existence of EVs had been reported as early as 1946
(42), and De Broe described the release of these “membrane
fragments” as a general characteristic of viable cells in 1977 (43).
In 1983, a major discovery by Harding and Johnstone revealed

Frontiers in Immunology | www.frontiersin.org 2 August 2020 | Volume 11 | Article 1509

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-01509 August 4, 2020 Time: 15:44 # 3

Huang et al. Exosomes in Sjögren’s Syndrome

that transferrin receptors were associated small 50 nm-sized
vesicles. Through endocytosis and recycling, these vesicles were
released from maturing blood reticulocytes into the extracellular
space. The term “exosome” was coined by Rose Johnstone to
describe these EVs (16). In 1996, researchers found that Epstein-
Barr (EB) virus-transformed B lymphocytes had the capacity of
releasing exosomes, inducing major histocompatibility complex
(MHC) class II-restricted T-cell responses (44). In the early
days of EV research, exosomes were simply considered as
cellular waste disposal units. In more recent years, however,
exosomes have been intensively researched and have been shown
to act as mediators of immune stimulation and modulation
(45). Exosomes regulate multiple immune processes, including
antigen presentation, T-cell activation and polarization, and
immune suppression (46, 47). Immune cell-derived exosomes
have been studied extensively. For example, MHC-I and MHC-
II molecule-carrying exosomes derived from antigen-presenting
cells stimulate CD8 + and CD4 + T cells, respectively (48).
Further, exosomes secreted from macrophages infected with
bacteria had pro-inflammatory effects on naïve macrophages,
promoting the maturation of DCs (49). It should be noted
that the release of exosomes by DCs and B lymphocytes is
increased after cognate T cell interactions, indicating that the
secretion of exosomes by immune cells could be regulated by
the cellular environment (50, 51). Exosomes secreted by non-
immune cells, such as mesenchymal stem cells (MSC) and tumor
cells, have also gained attention. MSC-derived exosomes are
capable of enhancing the differentiation of immunosuppressive
cells and inhibiting the proliferation of natural killer (NK) cells
and T cells (52). Recent research has reported that exosomes
from bone marrow-derived mesenchymal stem cells (BMSC)
regulate the polarization of macrophages in rat models (53).
In addition, exosomes derived from tumor cells can inhibit
the activation of T cells via programmed death-ligand 1 (PD-
L1) (54). Among exosome-associated bioactive components,
microRNAs (miRNAs) not only modulate gene expression in
immune cells, but also have immunological functions (55, 56).
Okoye et al. suggest that miRNA-containing exosomes secreted
from primary regulatory T cells suppress Th1 cell responses
(57). Ismail et al. found that macrophage-derived exosomal miR-
223 induced the differentiation of recipient monocytes (58).
Another study showed that miR-223 promoted the invasion of
breast cancer cells via the Mef2c-β-catenin pathway (59). Other
functions of exosomes have also been investigated, including
regulation of the incorporation of neurons and glial cells in
the central nervous system (60, 61) and thrombosis in the
cardiovascular system (62–64). A previous review summarized
the involvement of exosomes in: (1) protection against viruses
and bacteria; (2) regulation of tumor immunity; (3) mediation of
immune suppression by tumor cells (65). In general, the function
of exosomes depends on the status of host cells and tissue. Studies
have shown that exosomes play significant roles in angiogenesis,
antigen presentation, apoptosis, coagulation, inflammation, and
intercellular communication through the transfer of bioactive
molecules such as RNA and proteins. Further, exosomes are
involved in both normal and pathological processes, including
cancer, infections, and autoimmune diseases.

Exosome carrying specific molecules of interest could act
as potential biomarkers. Exosomal biomarkers can be divided
into three groups: tumor-derived exosomes, exosomal surface
proteins, and exosomal nucleic acids (66), and these indicators
can provide insightful information for the early diagnosis of
cancer and other diseases. For example, exosomes containing
proteoglycan glypican-1 (GP1) may be potential biomarkers for
pancreatic cancer (67). Exosomes loaded with CD81 have a
potential role in the diagnosis of hepatitis C and the evaluation
of treatment responses (68). Exosomes carrying a specific kind
of phosphorylated amyloid peptides are promising biomarkers
for Alzheimer’s disease (69). Some unique characteristics of
exosomes have attracted the interest of researchers, including
their stability under long-term storage, low immunogenicity
and toxicity, their ability to protect encapsulated components,
and their capacity for penetration of the blood-brain barrier
(BBB) (70–73). Thus, exosomes could potentially be used as
nanocarriers for various nucleic acids, proteins, and small
molecular drugs (74). Some antineoplastic agents, such as
doxorubicin and paclitaxel, could be encapsulated and delivered
via exosomes to treat brain tumors (75, 76). Tian et al.
revealed that curcumin-carrying engineered exosomes induced
the suppression of the inflammatory response and cellular
apoptosis in lesion regions of ischemic brains (77).

There are various studues investigating exosomes in
autoimmune diseases, among which studies of rheumatoid
arthritis (RA) have been the most thorough. With regard to
pathogenesis, in the synovium of RA patients, synoviocyte-
derived exosomes, which contain citrullinated autoantigens, may
promote synovitis and cartilage damage (78, 79). In contrast,
exosomes from neutrophils that have infiltrated into inflamed
joints are protective factors for chondrocytes (80). From the
perspective of treatment, BMSC-secreted exosomal miR-192-5p
can delay inflammation in RA (81). Mesenchymal cell–derived
miRNA-150-5p–containing exosomes and MSCs-derived
miRNA-124a-overexpressing exosomes are also expected to be
involved in potential therapeutic strategies for RA patients (82,
83). Information about the role of exosomes in the pathogenesis
or their possible use for treatment of other autoimmune diseases
has been scarce in comparison to RA. It has been suggested
that exosomes from inflamed intestinal cells and renal tissue
have pathogenic roles in ulcerative colitis and lupus nephritis,
respectively (84, 85). Lu et al. showed that BMSC-derived
exosomes carrying miR-223-3p attenuated autoimmune hepatitis
in a mouse model (86). Neutrophil-produced exosomes from
systemic sclerosis patients have the ability to inhibit the
proliferation and migration of endothelial cells (87).

EXOSOMES IN SJÖGREN’S SYNDROME

Role of Exosomes in the Pathogenesis of
SS and as Potential Biomarkers
In 2005, Kapsogeorgou et al. reported that salivary gland
epithelial cell (SGEC) lines from SS patients secreted significant
amounts of exosomal vesicles, similar to those from non-SS
subjects. These SGEC-derived exosomes contained detectable
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TABLE 1 | A selective overview of studies reporting exosomes in Sjögren’s syndrome.

Articles Origin of exosomes Exosome components Role in pathology As a biomarker Potent therapeutic effect

(88) SGECs +

(89) B cells ebv-miR-BART13-3p +

(90) T cells miR-142-3p +

(93) SGECs, lacrimal gland cells +

(94) SGECs miRNAs +

(95) SGECs miRNAs +

(96) DCs +

(97) DCs +

(98) MSCs +

(100) Placenta tissue miRNAs of C19MC +

(87) human umbilical cord MSCs +

SGECs, salivary gland epithelial cells; DCs, dendritic cells; MSCs, mesenchymal stem cells; miRNA, microRNA; C19MC, chromosome 19 microRNA cluste.

amounts of epithelial-specific cytoskeletal proteins, as well as
anti-Ro/SSA, anti-La/SSB, and Sm ribonucleoproteins. Although
secretion was not restricted to SS-derived cells, this was
the first time that SS-specific autoantigens were detected
in exosomes, indicating that exosomes may participate in
the presentation of intracellular autoantigens to autoreactive
lymphocytes, as part of the development of SS (88). Another
study showed that a functional EB virus miRNA, ebv-miR-
BART13, can be transferred from B cells to SGECs, affecting
salivary secretion (89). More recently, Cortes-Troncoso et al.
suggested that T cell-derived exosomes containing miR-142-
3p may be a pathogenic trigger of SS. When transferred into
SGECs, miR-142-3p-carrying exosomes can affect intracellular
Ca2+ signaling and decrease cyclic adenosine monophosphate
(cAMP) production, thereby leading to glandular cell dysfunction
(90). At present, studies of exosomes in SS mainly concentrate
on tears and saliva (Table 1), as such fluid samples can
easily be obtained using a simple, non-invasive, and safe
method. Because SS is a disease affecting multiple organ
systems, investigation of exosomes in other tissues and organs
is still required.

The international consensus criteria for SS includes ocular
symptoms, oral symptoms, objective evidence of dry eyes
and salivary gland involvement, as well as laboratory test
abnormalities (91). The presence of ANA has some merit
for the detection of SS, but 31.7% of healthy individuals
may also be positive for ANA (92). Rheumatoid factor
(RF) is not specific to SS, as it is also upregulated in other
autoimmune diseases, especially RA. Anti-Ro/SSA antibodies
have good specificity and can be found in two-thirds of SS
patients, often at the same time as anti-La/SSB antibodies (91).
However, sometimes during the early stage of the disease,
patient symptoms are not typical, and even the serological
examination is not positive. Therefore, a more accurate
diagnostic method is required. Aqrawi et al. isolated EVs
(including exosomes and microvesicles) from saliva and tear
fluids of patients with SS and utilized liquid chromatography-
mass spectrometry (LC-MS) for the detection of potential
biomarkers (93). Michael et al. were the first to isolate
exosomal miRNAs from the parotid saliva of SS patients,

proposing that the miRNA content of salivary exosomes
could provide markers for the diagnosis of various salivary
gland diseases, such as SS (94). Similarly, Alevizos et al.
showed that salivary gland miRNA expression patterns
precisely distinguished SS patients from control subjects,
suggestive of the potential of miRNA for the detection
of inflammation or salivary gland dysfunction in SS (95).
Despite these promising findings, there is not enough evidence
for the use of exosomes or exosomal miRNAs as reliable
markers for SS. Future experiments may refute some of
the current findings. Moreover, the use of exosomes for
evaluating SS disease activity and prognosis has not yet been
investigated in studies (Figure 1). Thus, further research
is required to confirm the potential roles of exosomes
or exosomal miRNAs as robust, specific, and sensitive
biomarkers for SS.

Exosomes as Therapeutic Tools for SS
The management of SS is long-term and complex. Saliva
substitutes and artificial tears could be used to relieve
symptoms. Non-steroidal anti-inflammatory drugs (NSAIDs),
hydroxychloroquine, and corticosteroids are effective for the
treatment of SS. Other powerful immunosuppressants, such
as methotrexate, mycophenolate mofetil, and biological agents,
are also required (91). However, long-term use of these
drugs can cause a number of adverse effects. Fortunately,
exosomes have been intensively studied for their potential use
in autoimmune diseases. Kim et al. suggested that injection
of exosomes secreted from DCs treated with interleukin-
10 (IL-10) inhibited the onset of collagen-induced arthritis
in a mouse model and reduced the severity of arthritis
(96). Exosomes derived from indoleamine-expressing DCs
had immunosuppressive and anti-inflammatory effects in an
arthritis model (97). Bai et al. reported that exosomes from
MSCs efficiently attenuated autoimmune uveitis in a murine
model (98).

A study by Li et al. has demonstrated that administered
exosomes derived from human umbilical cord MSCs efficiently
eased ophthalmitis in a model of human SS (99). Bullerdiek
et al. reported that analogs of chromosome 19 miRNA cluster
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FIGURE 1 | Exosomes as biomarkers and therapeutic tools in Sjögren’s syndrome.

(C19MC)-derived miRNAs could be applied in clinical practice
for autoimmune conditions such as SS (100). Ocular involvement
is one of the main manifestations of SS. The most commonly
used treatment for eye disease is topical instillation of eye drops.
However, there are some limitations, including quick clearance
and low biological activity. Due to their highly desired qualities
as drug delivery vehicles, exosomes can be used for the delivery
peptides or synthetic drugs for eye disease (101, 102). MSC-
exos carrying miRNA-126 could reduce hyperglycemia-induced
retinal inflammation by inhibiting the high-mobility group box
1 signaling pathway (103). Exosome-carried adeno-associated
virus type 2 showed high efficiency in retinal transduction
(104). Therefore, MSC-exos may presumably provide a curative
option for SS-associated dry eyes. While, exosomes have shown

promising results for potential therapeutic applications, most
of these therapeutic effects have only been observed in the
experimental stage, and there is a long way to go before reaching
large-scale clinical application.

CONCLUSION AND PERSPECTIVES

For decades, researchers have been struggling to develop
superior diagnostic and treatment methods for patients with SS.
Accumulating evidence has indicated that exosomes may play an
important role in the pathophysiology of autoimmune disorders.
In this review, we have summarized exosome-mediated effects
mediated in SS, the potential of exosomes as biomarkers, as well
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as their potential therapeutic uses. Nevertheless, gaps remain
in the understanding of exosome biogenesis and action. The
fundamental mechanisms of exosomes utilized as biomarkers and
therapeutic nanocarriers in SS and other autoimmune diseases
are not fully understood. In the future, the use of exosomes for
SS and other autoimmune diseases will face several challenges
that will require further detailed exploration. First, methods
for the detection, separation, and purification of exosomes and
exosomal miRNA are relatively cumbersome and complicated
at present. Thus, there is a need for simplified, cost-effective,
and reproducible techniques. Moreover, appropriate production
and storage methods for exosomes are critical for preserving
their biological activity and are thus essential for obtaining high-
quality exosomes. Existing methods are more or less insufficient
in obtaining and preserving high yields of purified exosomes.
In addition, it is important to establish robust ways to evaluate
the effects of exosomal treatment in vivo. Despite challenges in
the use of exosomes, these vesicles have shown great potential
within the biomedical field. As technology advances, the above-
mentioned limitations will be resolved, and exosomes may be

utilized for novel and advanced therapies. Altogether, both basic
and applied research on exosomes in SS is still at an early stage,
requiring further investigation.
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