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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the

genusBetacoronaviruswithin the familyCoronaviridae. It is an enveloped single-stranded

positive-sense RNA virus. Since December of 2019, a global expansion of the infection

has occurred with widespread dissemination of coronavirus disease 2019 (COVID-19).

COVID-19 often manifests as only mild cold-like symptomatology, but severe disease

with complications occurs in 15% of cases. Respiratory failure occurs in severe

disease that can be accompanied by a systemic inflammatory reaction characterized

by inflammatory cytokine release. In severe cases, fatality is caused by the rapid

development of severe lung injury characteristic of acute respiratory distress syndrome

(ARDS). Although ARDS is a complication of SARS-CoV-2 infection, it is not viral

replication or infection that causes tissue injury; rather, it is the result of dysregulated

hyperinflammation in response to viral infection. This pathology is characterized by

intense, rapid stimulation of the innate immune response that triggers activation of the

Nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome pathway and

release of its products including the proinflammatory cytokines IL-6 and IL-1β. Here we

review the literature that describes the pathogenesis of severe COVID-19 and NLRP3

activation and describe an important role in targeting this pathway for the treatment of

severe COVID-19.

Keywords: NLRP3 inflammasome, COVID-19, SARS-CoV-2, IL-1β, cytokine release syndrome (CRS), cytokine

storm, coronavirus, acute respiratory distress syndrome (ARDS)

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus
Betacoronavirus within the family Coronaviridae. It is an enveloped single-stranded positive-sense
RNA virus (1). In December of 2019, the first cases of an atypical viral pneumonia were reported in
Wuhan, China. Since that time, a global expansion of the infection has occurred with widespread
dissemination of coronavirus disease 2019 (COVID-19) (2, 3). For most, the infection is mild with
low-grade fever and cough, but 15% are associated with respiratory compromise. Severe cases
result in acute respiratory distress syndrome (ARDS) with systemic inflammation in which lung
injury is associated with release of inflammatory cytokines IL-6 and IL-1β (2, 4). The systemic
inflammatory syndrome is characterized by dysregulated proinflammatory cytokine cascades
triggered by an intense, rapid activation of the innate immune response. COVID-19 severity
is associated with increased proinflammatory cytokines and chemokines and IL-6, specifically,
is predictive of COVID-19 fatality (5). High levels of interleukin IL-1β and IL-6 were detected
in autopsy tissues from SARS-CoV patients (6) and single cell RNA-seq analysis of peripheral
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blood in COVID-19 patients show increased subsets of CD14+

IL-1β-producing monocytes (7). A clear mechanism is not
yet understood. The inflammatory basis underlying COVID-
19 fatality renders development of immunoregulatory agents
of paramount importance (8). There is significant literature
implicating the Nod-like receptor family, pyrin domain-
containing 3 (NLRP3) inflammasome, and cytokine release
syndrome or cytokine storm in this pathogenesis (9–12). The
NLRP3 inflammasome is an important cause of activation of the
innate immune system to recognize pathogens, including viral
infections (13, 14). SARS-CoV 3a protein activates the NLRP3
inflammasome in lipopolysaccharide-primed macrophages with
3a-mediated IL-1β secretion associated with K+ efflux and
mitochondrial reactive oxygen species (15).

Individuals at risk for this inflammatory syndrome include
those with hypertension, diabetes, cardiovascular disease,
respiratory disease, and cancer (16, 17). It is not clear why
individuals at risk include those with cardiovascular risk factors
but may relate to the virology of SARS-CoV-2 infection. SARS-
CoV uses the spike glycoprotein (S protein) on the surface of
the virion to mediate viral membrane fusion (18). The S protein
is a trimer that is cleaved into S1 and S2 subunits; S1 binds
directly to the peptidase domain of angiotensin-converting
enzyme 2 (ACE2) (19) to expose S2 to cleavage that enables
fusion and entry (20). The physiological function of ACE2 in
the cell is the maturation of angiotensin (Ang) which regulates
blood pressure through vasoconstriction. Clinical literature
based on the 2003 SARS-CoV epidemic suggested that the
virus caused ACE2 downregulation and that lung injury may
be improved by Angiotensive II Receptor Blocker (ARB)
treatment (21, 22). Further literature implicates ACE2 signaling
in NLRP3 activation in multiple settings. AngII can induce
NLRP3 inflammasome activation in renal tubular epithelial cells
(23), AngII induces pulmonary fibrosis which is attenuated by
ACE2 (24), and NLRP3 inflammasome activation drives Ang
II-induced vascular smooth muscle cell (VSMC) proliferation
and vascular remodeling and hypertension (25, 26).

COVID-19 INFECTION CLINICAL
SYNDROME

Individuals infected with SARS-CoV-2 can present with an array
of clinical severity from asymptomatic through severe disease
characterized by pneumonia requiring supplemental oxygen, and
progression to acute respiratory distress syndrome (ARDS) with
systemic inflammatory response syndrome (SIRS), shock and
multiorgan dysfunction, coagulopathy, and death (27). Early
symptoms can include shortness of breath, fever, and cough
with increasing reports of loss of taste and smell (4, 17, 28–30).
Individuals demonstrated to be at high risk of severe outcomes
include those with advanced age, hypertension, cardiovascular
disease, and diabetes mellitus (4, 29, 31, 32). Severe COVID-
19 is associated with increased serum inflammatory cytokine
levels including IL-1, IL-6, granulocyte-colony stimulating factor
(G-CSF), interferon-γ inducible protein 10 (IP-10), and tumor
necrosis factor-α (TNF-α) (5, 17, 33–36).

Overwhelming inflammatory cytokine secretion can result in
ARDS through massive recruitment of immune cells leading to
vascular leakage, fluid accumulation causing pulmonary edema,
and resulting hypoxemia (37–39). Reports of patients with severe
COVID-19 indicate that elevated levels of IL-1β and IL-6 are
associated with elevated immune exhaustion and reduced T cell
functional diversity (40). By contrast, individuals with COVID-
19 who experience more mild disease have lower levels of IL-6,
together with activated T lymphocytes and IgM SARS-CoV-2-
binding antibodies (41). These observations indicate that a robust
inflammatory cytokine response mediates severe disease while
low inflammatory cytokine responses may be associated with
an adaptive response that favors disease resolution. IL-1β is a
key regulator of many chronic inflammatory diseases (42–49).
Therefore, probing the role of IL-1β and its inhibition might lead
to reduced inflammatory signaling, thus reducing lung injury in
ARDS associated with severe COVID-19.

NLRP3 INFLAMMASOME BIOLOGY

The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein
3) inflammasome consists of a sensor (NLRP3), an adaptor (ASC;
also known as PYCARD), and an effector (caspase 1) (50). NLRP3
contains an amino-terminal pyrin domain (PYD), a central
NACHT domain (domain present in NAIP, CIITA, HET-E, and
TP1) and a carboxy-terminal leucine-rich repeat domain (LRR
domain). The NACHT domain mediates ATPase function that is
vital for NLRP3 self-association and function (51) and the LRR
domains autoregulate through folding back onto the NACHT
domain. ASC has two protein binding domains, an amino-
terminal PYD and a carboxy-terminal caspase recruitment
domain (CARD). NLRP3 can oligomerize between NACHT
domains upon stimulation which leads to ASC recruitment
through PYD–PYD interactions. The formation of multiple
ASC filaments is referred to as an ASC speck (52–54). The
assembled ASC complex can recruit caspase 1 to facilitate
cleavage and activation.

Activation of the inflammasome is highly regulated and
mediated by a two-step process in which first priming occurs
and then activation occurs. Priming allows for transcription
upregulation of the NLRP3 genes in response to recognition
of pathogen-associated molecular patterns (PAMPs), such
as lipopolysaccharides and viral RNA, or damage-associated
molecular patterns (DAMPs), such as ATP and reactive oxygen
species, through purine sensing receptors including P2RX7
(13, 14, 54–56). Engagement of PAMPS and/or DAMPS can
activate pattern recognition receptors (PRRs) such as Toll-
like receptors (TLRs) or nucleotide-binding oligomerization
domain-containing protein 2 (NOD2). This leads to activation
of nuclear factor-κB (NF-κB) activation and gene transcription
(57). Priming also shifts oxidative phosphorylation to glycolysis
in macrophages, resulting in stabilization of hypoxia-inducible
factor 1α (HIF1α) and increase in IL1B gene transcription (58).
Priming additionally induces post-translational modifications
of the NLRP3 inflammasome which include ubiquitylation,
phosphorylation, and sumoylation that stabilize the NLRP3
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inflammasome in an auto-suppressed inactive, signal-competent,
state (59).

After priming, NLRP3 inflammasome activation can occur
in response to an array of pathogens or endogenous DAMPs.
Multiple cellular signaling events can result in NLRP3 activation
at the membrane, including efflux of potassium (K+) or chloride
ions (Cl−), and flux of calcium ions (Ca2+) (60–70) as well
as other cellular functions including lysosomal disruption,
mitochondrial dysfunction, metabolic changes, and trans-Golgi
disassembly (50).

NLRP3 activation can lead to pyroptosis, an inflammatory
programmed cell death pathway that takes place in T
lymphocytes (71). This inflammatory cell death is activated
through gasdermin D (GSDMD) cleavage by caspase 1, 4, 5,
and/or 11 and results in a series of cellular events including
swelling of the cytoplasm, plasma membrane rupture, and
consolidation of the nucleus with release of cytoplasmic contents
into the extracellular space (72, 73). GSDMD contains an
amino-terminal cell death domain (GSDMDNterm) which is
exposed through caspase cleavage to bind phosphatidylinositol
phosphates and phosphatidylserine in the cell membrane,
inserting into the plasma membrane and forming a pore that
kills the cell from within (74, 75). Additionally, GSDMD
can mediate IL-1β and IL-18 secretion (76, 77) and this
occurs both through pathways dependent and independent of
NLRP3 signaling.

Cell death is an important cause of pathogenesis in viral
infections. HIV-1 infection is associated with programmed
cell death through pyroptosis in bystander cells (78–82) and
represents an important mechanism of NLRP3 inflammasome-
mediated immune cell depletion. Programmed cell death through
multiple mechanisms has been reported in coronavirus infections
as an important mechanism of viral pathogenesis (83–88).

THE NLRP3 INFLAMMASOME IN
CORONAVIRUS PATHOGENESIS

There are numerous studies that implicate the NLRP3
inflammasome and IL-1β in mediating inflammation during lung
injury and ARDS (39, 89, 90). Bronchoalveolar fluid and plasma
in patients with ARDS have elevated IL-1β levels compared to
healthy controls (91–94) and is associated with worse clinical
outcomes. In other coronavirus infections including MERS-
CoV and SARS-CoV, patients with ARDS had high levels of
IL-1β, IL-6, and IL-8 (6, 95–97). In other respiratory viral
infections such as influenza, high levels of IL-1β have been
detected in bronchoalveolar fluid and plasma from patients
with lung injury (91–94, 98–101). Furthermore, animal studies
in which mice deficient in components of the inflammasome
have reduced lung injury and enhanced survival with influenza
infection (45, 102). In pharmacologic studies in which IL-1β
or IL-1R was antagonized, influenza associated lung injury was
reduced (103, 104). Taken together, IL-1β appears to play a key
role in acute lung injury with respiratory viral infections and
pharmacologic targeting of this pathway represents an important
area of intervention.

Injury of type II alveolar epithelial cells expressing ACE2 leads
to NLRP3 inflammasome activation (14, 15, 105). The acute
immune response to SARS-CoV-2 infection is largely driven
by inflammatory alveolar and monocyte-derived macrophages
that are activated by PAMPs and DAMPs released by infected,
apoptotic pneumocytes (11, 106–108). TNF-α and IL-1β secreted
by alveolar macrophages initiate the acute proinflammatory
cascade immediately following infection. The secretion of
these cytokines induces cell death and damage, PAMP/DAMP
production, immune cell recruitment, and widespread NLRP3
activation, establishing a proinflammatory positive feedback
cascade (11, 106, 108–110). More recently, Blanco-Melo
et al. demonstrated that SARS-CoV-2 infection of primary
human bronchial epithelial cells resulted in expression of
multiple cytokines and chemokines including TNF-α, IL-6, and
IL-1β (111).

This localized inflammatory cell death extends to the
vasculature, inducing the leakage, edema, and pneumonia
characteristic of COVID-19 (11, 108, 109). It is important
to note that the onset of this pathological immune response
is characterized not by systemic inflammation, but by a
hyperinflammatory microenvironment localized to the site of
tissue injury. As the inflammatory cascade progresses, IL-1β, and
TNF-α induce the secretion of additional NLRP3 cytokines such
as IL-6 which can subsequently be observed in the peripheral
blood due to the loss of vascular integrity (11, 107–110, 112,
113). The kinetics of the inflammatory response are essential
to effective clinical practice—circulating biomarkers such as
IL-6 may prove useful to predicting outcomes and informing
immunomodulatory treatment decisions (31, 33, 114–116).

The rapid decline of COVID-19 patients coincides with an
abrupt shift from the NLRP3 cytokine storm to a compensatory
immunosuppressive state (5, 107). This repair and recovery-
oriented phase is characterized by production of IL-10,
polarization of macrophages to the anti-inflammatory M2 state,
suppression of NLRP3, and recruitment of fibroblasts and
platelets. The accumulation of fibroblasts and M2 macrophages
in the lung initiates the deposition of collagen and construction
of the extracellular matrices that characterize ARDS fibrosis
(11, 108, 117). M2 macrophages and other markers of
this pro-fibrotic, anti-inflammatory environment have been
detected in the bronchioalveolar fluid of severe COVID-19
patients (117, 118).

Unique to SARS-CoV and SARS-CoV-2 is the
downmodulation of the ACE2 receptor. SARS-CoV entry
has been reported to be dependent on TNF-α converting
enzyme and coupled to the release of TNF-α from the cell
membrane (110). TNF-α, specifically, has been shown to act as
an alternative toll-like receptor (TLR) agonist that may increase
the sensitivity and longevity of NLRP3 activation (113, 119).
Downregulation of ACE2 is associated with both SARS-CoV
and SARS-CoV-2 disease severity (21, 120, 121); this contrasts
with a minimally symptomatic coronavirus strain, HCoV-NL63,
that utilizes but does not cleave or downmodulate the ACE2
receptor (122). The overproduction of TNF-α in COVID-19 may
preferentially activate the NLRP3 inflammasome relative to other
immunological pathways. These observations warrant further
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TABLE 1 | NLRP3 inflammasome-targeted therapeutics in development.

Development

stage

Drug name Company Mechanism of action Reference(s)

Preclinical N/A Ardan ImmunoPharma Small-molecule activators and inhibitors of the TMEM176B

ion channel, which is an inhibitor of the inflammasome

(132, 133)

N/A Genentech NLRP3 inhibitors acquired from Jecure Therapeutics (134)

N/A IFM Therapeutics Small-molecule inhibitors of the NLRP1, NLRP6, NLRP10,

and NLRC4 inflammasomes

(134)

N/A NodThera Small-molecule NLRP3 inhibitors expected to begin clinical

studies this year

(134)

IC 100 ZyVersa Therapeutics Antibody inhibitors of the inflammasome protein ASC (135)

Phase I N/A Bristol-Myers Squibb NLRP3 activators for cancer immunotherapy acquired from

IFM Therapeutics

(134)

CRID3 (CP-456, 773,

MCC950)

Pfizer Selective NLRP3 inhibitor (134, 136–138)

Inzomelid (also Somalix) Inflazome Small-molecule NLRP3 inhibitors (134, 139)

IFM-2427 Novartis Small-molecule NLRP3 inhibitors acquired from IFM

Therapeutics and developed in-house

(135)

Phase II Dapansutrile (OLT1177) Olatec Therapeutics Small-molecule NLRP3 inhibitors (140–143)

Canakinumab Novartis IL-1β-neutralizing antibody (144, 145)

Anakinra Sobi Recombinant IL-1 receptor antagonist (146, 147)

Rilonacept Regeneron Decoy receptor that binds IL-1β and IL-1α (147–149)

Gevokizumab XOMA Decreases the binding affinity of IL-1β for the IL-1 receptor (150–152)

investigation into the mechanisms by and extent to which TNF-α
acts as a significant modulator of severe COVID-19.

The SARS-CoV genome encodes 3 ion channel proteins: E,
open reading frame 3a (ORF3a), and ORF8a in which E and
ORF3a are required for both replication and virulence (87,
109, 123–126). In addition to the canonical NLRP3 activation
pathway by PAMPs and DAMPs, the E, 3a, and 8b proteins of
SARS-CoV function as NLRP3 agonists (84, 107, 109, 123, 127);
many of these sequences are conserved in SARS-CoV-2 and
likely play a role in inflammatory pathogenesis (107, 128). The
SARS-CoV E, 3a, and 8b proteins are all reported to induce
NLRP3 activation and IL-1β release in LPS-primed macrophage
models (15, 127). A wide variety of mechanisms have been
proposed for this NLRP3 agonism including E-, 3a-, and 8b-
induced viroporin activity, interferon antagonism, membrane-
bound organelle stress, reactive oxygen species production, and
direct binding to and regulation of inflammasome components
such as caspase 1, NLRP3, and NF-κB (15, 86, 107, 109, 112,
123, 127). There are multiple pathways by which SARS-CoV
triggers NLRP3 activation which have yet to be characterized
and are likely influenced by cell type and the extracellular
microenvironment (15, 84, 86, 88, 107).

Notably, the NLRP3-implicated ORFs 3a and 8 are the
primary sites driving genetic diversification of SARS-CoV-2.
ORF3a, specifically, is the only gene undergoing diversifying
mutations that are predicted to exhibit altered phenotypes (84,
113, 127, 129). Ongoing mutations in ORF8 are particularly
concerning, as a 29-nt deletion of the SARS-CoV genome is
suspected to have increased the pathogenicity of the virus during
the SARS-CoV epidemic by antagonizing interferon, increasing
viral titers, and agonizing NLRP3 (127, 130). The uniquely low

homology between SARS-CoV-2 and SARS-CoV ORFs 3a and 8
may play a role in the differences in virulence and pathogenesis
between these two related viral infections (107, 131). Defining the
inflammatory activities of these two proteins is therefore critical
to predictive monitoring and modeling of novel SARS-CoV-2
strain emergence.

Genetic variations in host inflammasome pathways may also
influence disease outcome. Mutations in the LRR domain of
bat NLRP3 mediate an overall dampened NLRP3 response
to agonists (85). In the context of coronavirus infections,
MERS-CoV does not induce clinical disease in bats despite
high viral titers; this appears to be mediated by NLRP3 (85).
Interestingly, SARS-CoV ORF8b is reported to activate NLRP3
via direct binding to the LRR domain, suggesting a mechanism
of coronavirus-induced NLRP3 activation and further indicating
therapeutic potential for NLRP3 immunomodulatory agents
(127). Defining these mechanisms should be a focus of SARS-
CoV-2 research so as to identify targeted therapeutics such as
those summarized in Table 1.

THE NLRP3 INFLAMMASOME IN
CYTOKINE RELEASE SYNDROMES

Cytokine release syndrome (CRS) is a systemic inflammatory
response that can be triggered by a number of stimuli including
drugs and infections (153, 154). The term was originally
coined in response to administration of anti-T-cell antibody
muromonab-CD3 (OKT3) to solid organ transplant patients
who experienced an idiosyncratic cytokine storm following
treatment (155, 156). A number of other drugs have stimulated
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FIGURE 1 | The NLRP3 inflammasome mediates lung inflammation in SARS-CoV-2 infection. SARS-CoV-2 is inhaled into the airway and mediates activation of the

P2RX7 receptor by release of extracellular ATP. P2RX7 signaling can lead to NLRP3 activation through direct or indirect activation in activated macrophages. Activation

of the NLRP3 inflammasome drives the secretion of IL-1β and IL-18 which can result in pyroptosis (programmed cell death). Activation of immune cell subsets, largely

through activated macrophages, results in a cascade of massive inflammatory cytokine activation including IL-6, TNF-α, IL-8, IL-10, IL-1RA, and CXCL10 that lead to

acute lung injury with acute respiratory distress syndrome, systemic inflammatory response syndrome (SIRS), shock and multiorgan dysfunction, and coagulopathy.

similar infusion reactions including antibody-based therapies
(157–164) and cancer therapeutics (165, 166). Other reported
stimuli for the development of CRS include haploidentical donor
stem cell transplantation, graft-vs.-host disease (167, 168), and
respiratory viral infections including influenza (11, 169). Most
recently, new classes of immunotherapeutic agents are used
in a variety of hematologic malignancies including bispecific
antibody constructs and chimeric antigen receptor (CAR) T
cell therapies.

In response to these stimuli, patients experience robust
cytokine-mediated response that is associated with fever,
hypotension and hypoxemia. The syndrome can be mild and
resolve spontaneously or can progress to persistent high-grade
fevers, vasodilatory shock with hemodynamic instability,
severe hypoxemia requiring mechanical ventilation. This can
be associated with end-organ damage including liver injury,
cardiac ischemia, clotting dysfunction, kidney dysfunction,

and hemophagocytic lymphohistiocytosis/macrophage
activation syndrome (HLH/MAS) (154). The timing of onset is
unpredictable, between 1 day to 2 months after exposure (170).

In SARS-CoV-2 infection, a cytokine storm occurs that has
similar features to CRS as described above. Individuals with
severe COVID-19 with cytokine storm have elevated systemic
inflammatory biomarkers including C-reactive protein, D-dimer,
ferritin (3, 115, 171–173). Patients experience a dysfunctional
immune response characterized by high levels of plasma
cytokines including IL-6, TNF-α, IL-8, IL-10, IL-1RA, and
CXCL10 (4, 117). IL-6 levels increase over time higher in those
who die of the infection compared to those who survive (27). The
stimulation of inflammatory cytokines, largely through activated
macrophages, leads to acute lung injury, acute respiratory distress
syndrome, systemic inflammatory response syndrome (SIRS),
shock and multiorgan dysfunction, and coagulopathy (117). This
is described in Figure 1.
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Individuals with severe COVID-19 have developed a
coagulopathy which is associated with reduced platelet count,
increased levels of fibrin degradation productions (D-dimer),
and increased microthrombi in lungs, brain, kidney, and
extremities (174–176). The NLRP3 inflammasome may play a
key role in mediating this coagulopathy. Activated macrophages
undergoing NLRP3 inflammasome activation release tissue
factor which initiates coagulation (177, 178), regulation of
platelet integrins (179, 180), and through hypoxia-inducible
factor 1-alpha (HIF-1α) (181). Whether NLRP3 inflammasome
activation as a mediator of coagulopathy is an area of great
interest for future investigation.

NLRP3-TARGETED THERAPEUTICS

Experimental therapeutics assessed in vitro and in vivo
have provided further insight into the role of NLRP3 in
mediating SARS-CoV pathogenicity. In bone marrow-derived
macrophages, a mitochondrial antioxidant reduced IL-1β
secretion induced by SARS-CoV 3a and E proteins (15).
In SARS-CoV-infected mice, the NF-κB antagonists CAPE,
resveratrol, Bay11-7082, and parthenolide improved survival
and reduced proinflammatory cytokine levels in the lungs
(182). Depletion of inflammatory macrophages also mitigated
SARS-CoV-associated inflammatory lung pathology in mice
without impacting viral load (108). These reports elucidate
molecular and clinical inflammatory phenotypes that appear to
parallel those seen in COVID-19 and should be used to inform
novel therapeutic development and pathogenesis studies.

Cross-regulation between type I interferon (IFN-I) and
the NLRP3 inflammasome is implicated in the abrupt
proinflammatory response to immunosuppressive switch
characteristic of SARS and COVID-19 ARDS through an
undefined mechanism (5, 107). Early IFN-I administration may
therapeutically regulate NLRP3 and has been shown to abrogate
clinical symptomatology in SARS-CoV-infected macaques (112)
and mice (108). Dual corticosteroid-IFN-I treatment appeared to
improve outcomes in a small-cohort SARS-CoV trial (183, 184).
The therapeutic impact observed in mice, macaques, and
humans in each setting occurred despite unchanged viral loads
(108, 112, 183, 184).

Both IL-6R and IL-1 receptor blocking agents have been
used for the treatment of CRS (185, 186). Tocilizumab, an
IL-6R blocking antibody has been used to treat severe CRS
(187, 188) in the setting of CAR-T cell therapy and in the
setting of SARS-CoV-2 infection (5). Similarly, the IL-1 receptor
antagonist anakinra improves CAR-T cell therapy CRS outcomes
and also significantly increases survival of SARS-CoV-infected
mice with hyperactive NLRP3 inflammasomes (186, 189, 190).
In a retrospective cohort analysis, intravenous administration of
high-dose anakinra increased survival and clinical improvement
in COVID-19 patients with ARDS (191). Evidence from CAR-T-
induced CRS suggests parallels to the COVID-19 inflammatory
response that would suggest that targeting IL-1β would reduce
the inflammatory signaling that mediates lung injury, ARDS,
and mortality. Table 1 shows a list of agents in various stages of
development that target the NLRP3 inflammasome.

Therapeutics targeting IL-1β and the NLRP3 inflammasome
pathway have similarly been employed and efficacious in
the context of cardiovascular disease. The NLRP3 inhibitors
arglabin and MCC950 reduced IL-1β plasma levels and
decreased atherosclerotic lesion size (48, 192). IL-1β neutralizing
antibodies and anakinra showed reduced cardiac hypertrophy
and myocardial dysfunction post-MI (193–195). The CANTOS
trial randomized patients with past MI and elevated hsCRP to
receive canakinumab, a monoclonal antibody targeting IL-1β and
found a 15% reduction in major CV events (144).

CONCLUSIONS

In sum, COVID-19 causes an array of disease manifestations,
the most severe of which is mediated by a massive inflammatory
response that appears to occur through stimulation of the NLRP3
inflammasome. Direct data linking the NLRP3 inflammasome
and SARS-CoV-2 infection are limited given the recent onset
of this new pathogen and its global impact. The pathogenesis
of this infection and cytokine storm, mirrors many of those
features observed in cardiovascular disease, HIV-1 pathogenesis,
and SARS-CoV. For this reason, it is of value to contextualize
what is already known about the NLRP3 as a mediator of
inflammatory signaling to inform future studies of pathogenesis
and therapeutic development given the urgent need for
drug discovery.

Significant evidence supports the role of IL-1β and NLRP3-
dependent inflammasome activation in the pathogenesis of acute
lung injury. An abundance of literature supports targeting
this pathway in the development of therapeutic strategies. In
consideration of direct acting anti-viral agents, viral load appears
non- or minimally consequential in determining SARS-CoV
and SARS-CoV-2 disease outcomes. When tested in the context
of SARS-CoV infection, treatments targeting NLRP3 pathway
components including NF-κB, inflammatory macrophages, and
IFN-I all demonstrated significant efficacy despite unchanged
viral titers their respective human, murine, macaque, and/or
in vitro models (5, 35, 106, 107, 196). In COVID-19 clinical
trials, hydroxychloroquine demonstrated antiviral activity (197,
198), yet without demonstrated clinical benefit (199–201). The
known role of NLRP3 in hyperinflammatory ARDS and CRS,
documented NLRP3 involvement in MERS-CoV and SARS-
CoV severity, and apparent efficacy of anti-NLRP3 therapeutics
in SARS-CoV and SARS-CoV-2 clinical trials and animal
models strongly indicate that NLRP3 is a central mediator
of severe COVID-19. The potential central role of NLRP3 in
severe COVID-19 necessitates investigation into the therapeutic
targeting of the NLRP3 inflammasome.

Timing of therapy is critical as once individuals develop
ARDS, the chances of improved outcomes with therapy are
severely reduced. Targeted therapy for individuals with moderate
disease before the development of respiratory failure will be
critical. There is an urgent need to develop therapeutics that
improve patient outcomes in severe COVID-19. Therefore,
targeting this pathway through existing available therapeutic
options would represent an important and viable approach to
reducing SARS-CoV-2-induced inflammatory cytokine signaling
and immediately improve patient outcomes.
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