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The interleukin (IL)-17 family includes six structure-related cytokines (A–F). To date,

majority of studies have focused on IL-17A. IL-17A plays a pivotal role in various infectious

diseases, inflammatory and autoimmune disorders, and cancer. Several recent studies

have indicated that IL-17A is a biomarker as well as a therapeutic target in sepsis. In the

current review, we summarize the biological functions of IL-17, including IL-17-mediated

responses and signal transduction pathways, with particular emphasis on clinical

relevance to sepsis.
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INTRODUCTION

The interleukin (IL)-17 family includes six structure-related cytokines (A–F; Figure 1). IL-17A, the
first discoveredmember of the IL-17 family, was cloned in 1993 and originally termed as cytotoxic T
lymphocyte antigen 8 (1). Unexpectedly, IL-17A shares sequence homology with an open reading
frame in Herpesvirus saimiri (1). IL-17-binding receptor (IL-17RA) was subsequently identified
in 1995 (2). Screens for homologous genes caused the discovery of other five highly conserved
homologous members of the IL-17 family (IL-17B to IL-17F) (3, 4). IL-17F shows high homology
with IL-17A, whereas IL-17E (also known as IL-25) shows only 16% sequence homology with IL-
17A (5, 6). Analogous to platelet-derived growth factor and nerve growth factor, these molecules
adopt a cysteine knot fold (3, 4). IL-17B and IL-17D have been shown to induce the secretion of
chemokines and proinflammatory cytokines, but their biological actions remain scarcely explored
(7–9). In contrast, the proinflammatory properties of IL-17A and IL-17F are well characterized
(5, 6). Additionally, the IL-17 receptor family includes five cytokine receptors (IL-17RA to IL-17RE)
characterized by a shared cytoplasmic motif named the SEF/IL-17R (SEFIR) (5).

IL-17A expression was first reported in T helper (Th) cells (10, 11). IL-17A is recognized
as a hallmark molecule of CD4+ T helper 17 (Th17) cells, which characteristically express the
transcription factor RAR-related orphan receptor γ (RORγt) (12). The development of Th17 cells,
including clonal expansion and phenotype stabilization of IL-17A production, is dependent on IL-
23 (13). Mechanistically, IL-23 expands the Th17 cell population by upregulating signal transducers
and activators of transcription (STAT)-triggered RORγt and subsequent promotion of IL-17A
release (14). Thus, IL-23 is recognized as a potent inducer of IL-17A. Recent studies suggest that
the so-called “IL-17/IL-23 axis” is a key element in inflammation and is involved in the immune
responses to fungal and bacterial infection and autoimmune diseases (12, 13).
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FIGURE 1 | Timeline of advances in the research on interleukin-17 cytokine.

IL-17A can be secreted by other cell subsets, such as γδT
cells, cytotoxic CD8+ T cells, innate tissue-specific cells, innate
lymphoid cells (ILCs), and myeloid cells (Figure 2) (14, 15).
IL-17A-mediated inflammation is required for host protection
and survival against infection (8, 9, 16). IL-17A can also
exacerbate fetal inflammatory responses, and has been implicated
in immunopathology. IL-17A levels are elevated in various
inflammatory conditions, including sepsis, pneumonia, systemic
lupus erythematosus, rheumatoid arthritis, allograft rejection,
and cancer (17, 18). Here we review the literature on IL-17-driven
inflammatory and immune cascades during the development
of sepsis.

IL-17 BIOLOGY

Structural Features of IL-17
The IL-17 family contains six isoforms of 20–30 kDa molecular
weight and is a group of secreted and glycosylated proteins.
All other members of the IL-17 family show 20–55% sequence
homology to IL-17A, with IL-17E exhibiting the lowest homology

Abbreviations: AMPs, antimicrobial peptides; APCs, antigen-presenting cells;

C/EBP, CCAAT/enhancer-binding protein; CCL, chemokine (C-C motif) ligand;

CXCL, C-X-C motif ligand; COX-2, cyclooxygenase-2; EBV, Epstein-Barr virus;

GM-CSF, granulocyte-macrophage colony-stimulating factor; G-CSF, granulocyte-

colony stimulating factor; HMGB1, high mobility group box-1 protein; IFN-

γ, interferon-γ; IL, interleukin; iNOS, inducible nitric oxide synthase; iNKT-2,

type 2 innate-like lymphoid cells; ILCs, innate lymphoid cells; I/R, ischemia and

reperfusion; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; NF-κB,

nuclear factor-kappa B; NKT, natural killer T cell; PI3K, phosphatidylinostitol 3-

kinase; PAMPs, pathogen-associated molecular patterns; RSV, respiratory syncytial

virus; RORγt, RAR-related orphan receptor γ; SEFIR, SEF/IL-17R; STAT, signal

transducers and activators of transcription; Th17, CD4+ T helper 17; TIR, Toll-IL-

1 receptor; TRIF, TIR-domain-containing adapter-inducing interferon-β; TRAF,

tumor necrosis factor receptor-associated factor; TNF-α, tumor necrosis factor-

α; Th2, type 2 T helper; TSLP, thymic stromal lymphopoietin; MyD88, myeloid

differentiation primary response gene 88.

with other family members (8, 9). IL-17A and IL-17F could
exist as heterodimers or homodimers and are co-expressed by
linked genes (19). Structurally, IL-17 family proteins have a
conserved C-terminus with four cysteine residues, which form
intramolecular disulfide bridges (20).

Production of IL-17
IL-17 can be produced by a broad spectrum of cell populations
(Figure 2), including Th17 cells, γδT cells, NKT cells, group 3
innate lymphoid cells (ILC3s), CD8+ (Tc17) cells, neutrophils,
microglia, and mast cells (10, 12, 15). IL-23 and RORγt are
indispensable for all IL-17-producing cell types (13).

Th17 cells were first identified in 2005 and were recognized
as the primary source of IL-17 (16). In addition to IL-17, Th17
cells also produce a variety of inflammatory cytokines including
granulocyte-macrophage colony-stimulating factor (GM-CSF),
IL-21, and IL-22 (16). Th17-induced responses are implicated in
host defense against infections, inflammatory and autoimmune
disorders, and tumorigenesis (21). Other major sources of IL-17
include myeloid cells (e.g., kidneys and lungs) and Paneth cells in
the intestinal crypts (8).

In response to stress proteins, pathogen-associated molecular
patterns (PAMPs), or microbial metabolites, antigen-presenting
cells (APCs) produce IL-23 and IL-1β to accelerate IL-17 release
(8). IL-17 levels are depended on the particular context, including
the pathogen and site and severity of infection (10, 12).

IL-17 Receptor and Its Signal Transduction
IL-17 cytokines bind to five cytokine receptors (IL-17RA to IL-
17RE, Figure 2) on target cells to drive their biological actions (2,
9). IL-17R is expressed in a variety of cell populations, including
keratinocytes, fibroblasts, mesothelial cells, epithelial cells, and
leukocytes (9). All these receptors share a SEFIR domain in
the intracellular domain and a fibronectin III-like region in
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FIGURE 2 | Cellular sources and receptors of interleukin-17. Interleukin (IL)-17 family includes isoforms A to F. IL-17 can be induced by a variety of cells including T

helper (Th) 17 cells, γδT cells, natural killer T (NKT) cells, group 3 innate lymphoid cells (ILC3s), CD8+ (Tc17) cells, neutrophils, microglia, mast cells, myeloid cells in the

lung and kidneys, and Paneth cells in the intestine. In addition, antigen-presenting cells (APCs) stimulate the production of IL-17in response to stress proteins,

pathogen-associated molecular patterns (PAMPs), or microbial metabolites. IL-17 receptor (IL-17R) family is composed of IL-17RA, IL-17RB, IL-17RC, IL-17RE, as

well as IL-17RA and C heterodimeric complex.

the extracellular region (10). IL-17RA is a shared receptor for
different IL-17 isoforms. IL-17 cytokines can trigger signals via
an IL-17RA/IL-17RC receptor complex. IL-17RB and IL-17RE
serve as the specific receptors for IL-17B and IL-17RA/IL-17RB
heterodimeric complex, respectively (9). IL-17A and IL-17F act
through the same IL-17RA/IL-17RC receptor complex.

Studies suggest that IL-17RD also drives IL-17-mediated
signaling, but the ligand of IL-17RD remains unknown (21).

IL-17A/IL-17C interacts with IL-17R to stimulate
inflammatory reactions via activation of mitogen-activated
protein kinase (MAPK), nuclear factor-kappa B (NF-κB),
CCAAT/enhancer-binding protein (C/EBP), Janus kinase
(JAK)/phosphatidylinostitol 3-kinase (PI3K), and JAK/STAT
signaling (Figure 3) (22–25). IL-17A can also signal through
Toll-IL-1 receptor (TIR)-domain-containing adapter-inducing
interferon-β (TRIF), myeloid differentiation primary response
gene 88 (MyD88), and the adaptor proteins (9, 21). Interestingly,
IL-17A does not induce IL-17R cascades in embryonic fibroblasts
of mice deficient in necrosis factor receptor-associated factor
(TRAF)-6, suggesting that TRAF-6 is essential for IL-17A/IL-17R
signaling (26). Furthermore, several studies have identified
NF-κB activator 1 (Act1) as a key adapter molecule for TRAF-6
recruitment in the induction of IL-17R signaling (27).

Functions of IL-17
IL-17A
IL-17A is the most studied member of the IL-17 family. IL-17A
interacts with several mediators [e.g., GM-CSF, interferon (IFN)-
γ, IL-22, IL-1β, tumor necrosis factor-α (TNF-α)] to exert its
proinflammatory effect (15).

In general, IL-17A-mediated downstream pathways induce
the production of inflammatory molecules, chemokines,
antimicrobial peptides (AMPs), and remodeling proteins
(Figure 4). IL-17A elicits crucial impacts on host defense,
cell trafficking, immune modulation, and tissue repair, with a

key role in the induction of innate immune defenses. IL-17A
stimulates non-hematopoietic cells (e.g., epithelial cells) and then
acts alone or synergistically with additional proinflammatory
mediators to promote chemokine production [e.g., chemokine
(C-C motif) ligand (CCL)-20, granulocyte-colony stimulating
factor (G-CSF), C-X-C motif ligand (CXCL)-1, CXCL-2, and
CXCL-8], thereby attracting myeloid cells to inflammatory
sites (28). IL-17A also stimulates the release of IL-2 from Th
cells, which in turn expands regulatory T cells (5). IL-17A also
promotes the secretion of AMPs (e.g., β-defensins, calgranulin,
S100A8, and lipocalin-2) from macrophages and neutrophils
in response to acute pathogen invasion (21). Moreover, IL-17A
may induce other AMPs and proteins, including inducible nitric
oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (29).

IL-17A is critical for maintaining mucosal barrier integrity
and function by increasing tight junctions and inducing
acute phase proteins (8, 9). IL-17A helps to orchestrate
airway vascular remodeling through Th17 cell responses in
pulmonary inflammation (8). Similarly, IL-17A has been shown
to upregulate endothelial tissue factor and is involved in splenic
vein remodeling (30). Additionally, IL-17A plays a key role in
repair and remodeling of other tissues such as ventricular tissue
in myocardial infarction and bone resorption (31).

Roles of IL-17B Through IL-17F
IL-17B was originally identified as a proinflammatory mediator
that accelerates neutrophil recruitment andmigration (7). IL-17B
inhibits IL-25 signaling and attenuates mucosal inflammation
(5). IL-17B promotes the proliferation and survival of cancer
cells in animal models (7), and increased IL-17B levels are linked
to poor outcome in patients with several types of cancers (e.g.,
breast, lung, and pancreatic) (5).

IL-17C can be produced by several non-immune cells (e.g.,
epithelial cells, cutaneous neurons, and keratinocytes) and
provide host protection in the intestine, skin, and the nervous
system (5). For example, IL-17C released from epithelial cells
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FIGURE 3 | Interleukin-17A signaling transduction pathway. In general, all IL-17R members contain a shared and conserved cytoplasmic motif named a SEFIR/SEFEX

domain similar to the TIR region in IL-1 receptors and TLRs. Initially, IL-17R signaling triggers the recruitment of Act1, which includes a SEFIR domain and is required

for IL-17R-Act1 combination. Subsequently, Act1 can ubiquitinate TRAF6 and E3 ubiquitin ligase. Upon ligand binding, TRAF2/5, TRAF4, and TRAF6 can be engaged

by Act1 and stabilize mRNAs by activating RNA-binding proteins such as Arid5a, HuR, and DDX3X. IL-17A promotes the activities of AP1 and MAPK, as well as δ

transcription factors and C/EBPβ activation (CBAD). IL-17A also accelerates IκBα degradation and IKK activation, thereby inducing NF-κB signaling. NF-κB in turn

improves IL-17A-mediated proinflammatory and anti-microbial responses. IL-17A/NF-κB signal transduction can trigger a feedback loop that controls overactivation

of the NF-κB cascade. TRAF, TNF-receptor associated factor; SEFIR, similar expression of fibroblast growth factor and IL-17Rs; SEFEX, SEFIR extension; TLRs,

Toll-like receptors; C/EBPβ, CCAAT/enhancer-binding protein β; CBAD, C/EBPβ activation domain; AP1, activator protein 1; MAPK, mitogen-activated protein kinase;

NF-κB, nuclear factor κB; IKK, IκBα degradation and IκB kinase; JNK, Janus kinase; HuR, human antigen R.

maintains barrier integrity in an autocrine manner following
epithelial damage (8). Emerging evidence indicates that IL-17C is
sufficient to promote growth and survival of nerves and protect
peripheral neurons during reactivation of herpes simplex virus-
2 (6).

IL-17D is the least studied cytokine in the IL-17 family.
Similar to other isoforms, IL-17D triggers secretion of diverse
inflammatory cytokines such as GM-CSF, IL-6, and IL-8. Several
studies have shown markedly increased IL-17D in viral infection
and tumors (7).

Similar to IL-17A, IL-17E acts as a “mucosal barrier” molecule
that confers immunity against parasitic infections (8). Thymic
epithelial cells promote IL-17E production and host defenses

via T cell receptor development of type 2 innate-like lymphoid
cells (iNKT-2) (32). IL-17E is distinct from other member of
the IL-17 family. IL-17E drives stromal cells, type 2 T helper
(Th2) cells, epithelial cells, and ILC2s (5). It also accelerates
production of thymic stromal lymphopoietin (TSLP), IL-13, IL-
5, IL-4, and IL-13, and lowers the levels of IL-23, IL-6, and IL-1

(9). IL-17E is involved in the pathogenesis of parasitic and fungal
infections, allergy, and autoimmune disorders. For example, large
amounts of IL-17E are produced following infection with the
parasitic helminth Nippostrongylus or Aspergillus. Furthermore,
IL-17E-mediated responses depend on the airway epithelium,
mast cells, eosinophils, and Th2 cells, thereby contributing to the
immunopathogenesis of asthma (33).

IL-17F and IL-17A share similarities in receptors, signaling,
function, and cellular sources. Similar to IL-17A, IL-17F plays
a critical role in inflammatory responses and mucosal barrier
maintenance (4).

ROLES OF IL-17 IN THE DEVELOPMENT
OF SEPSIS

IL-17 in Host Defense During Sepsis
Sepsis is caused by improper inflammatory and immune
responses due to the inability of the host defenses to contain
infection (34). As a crucial part of host immunity, IL-17A
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FIGURE 4 | Summary of interleukin-17A functions. IL-17A-driven signaling drives several effector functions including chemokine induction, cell infiltration,

antimicrobial peptide (AMP) production, and tissue barrier function and remodeling. Firstly, IL-17A triggers production of chemokine (C-C motif) ligand (CCL)-20 and

granulocyte-colony stimulating factor (G-CSF), which act in synergy with other proinflammatory cytokines (e.g., TNF-α, IL-6, and IL-1) to induce neutrophil recruitment.

IL-17A regulates the release of various chemokines. For example, chemokine (C-X-C motif) ligand (CXCL)-1, CXCL-2, CXCL-5, and granulocyte-macrophage

colony-stimulating factor (GM-CSF) can improve neutrophil response. CCL7, CCL2, CXCL-9, CXCL-10, and CXCL-20 modulate the activities of monocytes and

dendritic cells (DCs). Secondly, IL-17A stimulate macrophages and neutrophils to produce AMPs including β-defensins, lipocalins, S100 proteins, lactoferrins, and

regenerating (REG) proteins, helping to kill bacteria. Thirdly, IL-17A signaling maintains tight junctions in mucosal tissues through formation of several acute phase

proteins. IL-17A also participates in remodeling of the airway vascular, splenic vein, central nervous system (CNS), and heart tissues.

confers powerful protective effects against infections caused
by bacteria, fungi, virus, and parasites (Figure 5); (Table 1)
(16, 17). Increased circulating levels of IL-17A are observed in
experimental and human sepsis (16, 17). A series of clinical
studies have demonstrated that high serum IL-17A levels are
associated with greater risk of sepsis, suggesting that this cytokine
might serve as a novel predictor of sepsis progression as well as
an attractive therapeutic target (34).

Bacterial Infection
It is widely accepted that bacterial infections predominantly
contribute to the development of sepsis (18). Interestingly,
IL-17A genetic variations influence the risk of gram-positive
infection and correlate with short-termmortality in patients with
severe sepsis (55). Studies suggest that IL-17A-mediated signaling
orchestrates inflammatory and immune cascades by inducing
proinflammatory mediators, thereby participating in preventing
bacteria during sepsis (21).

IL-17A levels are positively associated with tissue bacterial
loads in mice infected with Klebsiella pneumonia (62).
Physiological levels of IL-17A in type 3 innate lymphoid cells
(ILCs) accelerate G-GSF production and neutrophil recruitment,
protecting the host against sepsis (15). Experimental and human
sepsis involves impaired neutrophil recruitment and migration,
the extent of which is positively associated with disease severity
(63). IL-17A augments the migration and microbicidal activity
of neutrophils, as well as mobilization of T lymphocytes (64). IL-
17A improves neutrophil recruitment and bacterial eradication
via γδT cells in a murine model of sepsis (36).

Decreased levels of IL-17A are correlated with increased
risk of bacteremia (62). In IL-17R-deficient mice infected
with Klebsiella pneumoniae, levels of G-CSF, macrophage
inflammatory protein-2 (MIP-2), and chemokines were reduced,
contributing to decreased neutrophil infiltration and microbial
clearance (62). In agreement with this observation, IL-17A-
deficient mice are also more susceptible to infection by other
bacteria, including Bordetella pertussis, Citrobacter rodentium,
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FIGURE 5 | Protective and pathological roles of interleukin-17A in the pathogenesis of sepsis. IL-17A triggers various immune cells (e.g., neutrophils, lymphocytes,

macrophages, monocytes, and B cells) to boost innate, adaptive, and humoral responses with different actions. Meanwhile, IL-17A signaling exhibits a strong

protective effect against diverse infections (e.g., bacterial, fungal, viral, and parasitic infections) through promotion of host defenses and cytokine release. In addition,

IL-17A may induce pathologic immune responses and then impair organ functions, which result in pathological alterations such as acute lung injury (ALI)/acute

respiratory distress syndrome (ARDS), acute kidney injury (AKI), hepatic dysfunction, immune dysfunction, gut barrier dysfunction, and cardiomyocyte dysfunction.

Escherichia coli, and Staphylococcus aureus (65, 66). IL-17R-
deficient mice showed decreased neutrophil recruitment,
augmented infection spread, and exacerbated inflammatory
responses following cecal ligation and puncture (CLP) (48). IL-
17A also stimulates epithelial cells to trigger antimicrobial
responses against intracellular bacteria such as Listeria
monocytogenes, Mycobacterium bovis Bacillus-Calmette Guérin,
and Salmonella typhimurium (67–69).

Fungal Infection
Invasive fungal infection is increasingly frequent in septic
patients and correlates with a high risk of mortality (70).

Importantly, IL-17A exerts immunoprotective effects in
antifungal defense via induction of AMPs, chemokines,
and proinflammatory cytokines (71). Meanwhile, IL-17A is
sufficient to activate NK cells through release of GM-CSF,
thereby eliciting its fungicidal activity (72). IL-17R knockdown
increases susceptibility to fungal pathogens during systemic
candidiasis (70, 73). Notably, low IL-17A levels are related to
impaired host immunity in clinical observation (74). IL-17A
responses are required for controlling infection with fungal
pathogens, including Aspergillus fumigatus, Pneumocystis carinii,
Cryptococcus neoformans, and Candida albicans (73–78). On the
other hand, IL-17C induces lethal inflammation by exacerbating
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TABLE 1 | Summary of studies on the pathophysiological significances of IL-17 in sepsis.

System Year Authors Clinical observations or conclusions References

Mice 2003 Tian et al. CD4+ T cells mediated abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism (35)

2007 Shibata et al. Resident Vδ1+ γδ T cells controlled early infiltration of neutrophils after Escherichia coli infection via IL-17

production

(36)

2008 Flierl et al. γδ T cell-derived IL-17 promoted high levels of proinflammatory mediators and bacteremia, increasing lethality (37)

2009 Freitas et al. IL-17 enhanced the microbicidal activity of migrating neutrophils in sepsis induced by cecal ligation and

puncture

(38)

2010 Kasten et al. IL-17 production by γδ T cells accelerated neutrophil recruitment in a sepsis model (39)

2012 Joshi et al. Immunization with Staphylococcus aureus iron regulated surface determinant B conferred protection via

Th17/IL-17 pathway

(40)

2012 Ogiku et al. IL-17A played a pivotal role in polymicrobial sepsis according to studies using IL-17 knockout mice (41)

2013 Bosmann et al. Plasma concentrations of IL-17, IL-17F, and the IL-17AF heterodimer were obviously increased in mice after

cecal ligation and puncture

(42)

2014 Shimura et al. IL-17, but not IL-17F or IL-25, was important to lipopolysaccharide-induced endotoxin shock; Myeloid cells

and eosinohils, but not Th17 cells, was a source of IL-17 during endotoxin shock.

(43)

2014 Jing et al. Recombinant IL-17 rescued impaired host defense in cxcl1−/− mice; CXCL1 was important for IL-17

production via Th17 differentiation

(44)

2014 Cauvi et al. Elevated expression of IL-23/IL-17 pathway-related mediators correlated with exacerbation of pulmonary

inflammation following polymicrobial sepsis

(45)

2015 Costa et al. Murine IL-17+Vγ4 T lymphocytes accumulated in the lungs and played a protective role in severe sepsis (46)

2015 Meng et al. Activation of TLR2 by disseminated Gram-positive bacteria induced sustained upregulation of IL-17A and IL-6 (47)

2016 Zhao et al. Mice that completely lacked IL-17 failed to accumulate and activate neutrophils. Lung inflammation was

attenuated in IL-17-deficient mice

(48)

2016 Cen et al. MFG-E8 downregulated IL-17 expression in sepsis by modulating STAT3 activation (49)

2016 Wynn et al. IL-18 administration in sepsis increased IL-17A production by murine intestinal γδ T cells as well as Ly6G+

myeloid cells, and blocking IL-17A reduced IL-18-potentiated mortality in both neonatal sepsis and

endotoxemia

(50)

2016 Luo et al. IL-17A knockout in mice protected against sepsis-associated acute kidney injury (51)

2017 Lv et al. IL-33 attenuated sepsis by inhibiting IL-17 receptor signaling through upregulation of SOCS3 (52)

2015 Szabo et al. Rapid and rigorous IL-17A production by a distinct subpopulation of effector memory T lymphocytes

constituted a novel mechanism of toxic shock syndrome immunopathology

(53)

Rats 2018 Han et al. The levels of IL-17A in plasma, lung, and liver gradually increased with time in a sepsis neonatal rat model (54)

Patients 2011 Makada et al. IL-17A genetic variation was associated with altered susceptibility to Gram-positive infection and mortality in

severe sepsis

(55)

2011 Palumbo et al. No significant associations were found between IL-6 and IL-17F genotypes and the related cytokine serum

levels in burn patients with sepsis

(56)

2015 Wu et al. Treatment of anti-IL-17 enhanced IL-10 production but decreased IL-12 secretion in stimulated peripheral

blood mononuclear cells of healthy controls and patients with severe sepsis

(57)

2015 Paraschos et al. Patients with multiple injuries showed defective TNF-α, IL-10, IL-17, and IFN-γ responses to a broad panel of

bacterial stimuli

(58)

2016 Maravistsa et al. IL-17 was the only cytokine produced in high quantities by peripheral blood mononuclear cells and CD4+

lymphocytes in patients with septic shock and acute kidney injury

(59)

2017 Preisser et al. Increased IL-17 was noted in patients with sepsis-induced acute respiratory distress syndrome; IL-17

antibody administration might relieve acute lung injury symptoms by affecting RORγt levels and modulating

the PI3K pathway.

(60)

2017 Ali et al. Elevated serum IL-17 increased the susceptibility for septic complications in polytrauma patients, and might

be a useful biomarker of such risk

(61)

secretion of proinflammatory cytokines, contributing to the
development of systemic fungal infection (78). These paradoxical
effects require further investigation.

Viral Infection
Sepsis often occurs in cases of immunosuppression, when
it manifests as an increased susceptibility to opportunistic
infections, especially by virus (18). Several studies have

shown that IL-17 promotes host immunity against influenza
infection (21). In mice challenged with influenza virus,
lack of IL-17 was associated with increased mortality (79).
Adoptive transfer of IL-17-producing cells protected mice
against a lethal dose of influenza virus (80). Also, IL-17A
participates in the immunopathogenesis of influenza A
(H1N1)-induced acute lung injury (80). Likely, IL-17A-
mediated response is correlated with disease severity following

Frontiers in Immunology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 1558

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ge et al. Interleukin-17 in Sepsis

infections by Epstein-Barr virus (EBV), herpes simplex virus
(HSV), respiratory syncytial virus (RSV), vaccinia virus,
and hepatitis virus (81, 82). Depletion of IL-17R mitigates
inflammation and decreases neutrophil influx, hindering
influenza infection (82). IL-17A neutralization could reduce viral
load and mortality during herpes simplex virus infection (82).
Protective or pathological roles of IL-17 during viral infections
remain controversial.

Parasitic Infection
Few studies have examined the potential role of IL-17A in host
defense against parasites (5). Studies suggest that Th17 cells,
the major source of IL-17A, could impair host defenses against
Echinococcus granulosus, Leishmania braziliensis, Toxoplasma
gondii, and Trypanosoma cruzi (83–87). In patients with
toxoplasmosis, CD8+ and CD4+ cells could limit parasitic
replication and invasion (86). High IL-17A levels are detectable
in peripheral blood mononuclear cells from patients with
Leishmaniasis (87). IL-17R deficiency leads to lower expression
of CXCL1 and CXCL2 in the liver and spleen as well as
less neutrophil recruitment in Trypanosoma cruzi-infected mice
(83). In the case of Leishmania infection, IL-17A blockade
reduces disease severity in a mouse model (88). IL-17A
antibody neutralization reduces inflammation and improves
survival in mice following Toxoplasma gondii challenge (86).
Collectively, available evidence supports a pathological role
for IL-17 in parasitic infections, but further work is needed
to explore whether this depends on the host, parasite, or
other factors.

In summary, IL-17 contributes to host protection against
diverse infectious organisms during sepsis while inducing
hyperinflammation with detrimental outcomes for the host
under certain conditions. Further investigation on the role of
IL-17 and the interplay with other immune factors needs to be
conducted in clinical settings.

IL-17 in Organ Dysfunction Resulted From
Sepsis
Studies have shown that overproduction of IL-17 could
exaggerate immune responses, which in turn may lead to
impaired organ function (89) (Figure 5). In line with these
observations, elevated levels of IL-17A have been detected in
plasma and tissues during sepsis associated with multiple organ
damage (37, 38, 54, 56–58, 61) (Table 1).

Acute Lung Injury or Acute Respiratory Distress

Syndrome
Acute lung injury (ALI) and acute respiratory distress syndrome
(ARDS) are early events in the course of sepsis (90). Neutrophil
infiltration plays an integral part in ARDS. IL-17R signaling
is proposed to regulate neutrophil trafficking into the lung to
maintain host immunity (9). The addition of recombinant IL-
17A into the airway causes the production of chemokines that
recruit inflammatory and immune cells (48). In contrast, IL-
17RA or IL-17A knockout decreases CXCL1 and G-CSF levels
in the bronchoalveolar lavage fluid of mice (62). In line with
this, hyperproduction of IL-17A is involved in uncontrolled

pulmonary inflammation in mice infected with Haemophilus
influenza (91). Interestingly, γδT lymphocytes (comprising the
Vγ4 T lymphocytes) accumulate in the lungs of septic mice (46).
Surprisingly, administration of anti-Vγ4 monoclonal antibody
increased the mortality induced by CLP in septic mice (13, 46).
In mice with lipopolysaccharide-induced ARDS, levels of IL-17A
were elevated in plasma, lung tissue lysate, and bronchoalveolar
lavage fluid (60). Consistently, patients with sepsis-induced
ARDS show persisting high levels of IL-17A, suggesting that
IL-17A is a biomarker to assess the severity and prognosis of
diseases (60). Moreover, activation of the IL-23/IL-17 signaling
produces harmful effects on sepsis-driven lung inflammation
(45). Specifically, IL-17A expression, known to be induced by IL-
23, is significantly increased in the lungs of septic mice induced
by CLP (45). Neutralization of IL-17A ameliorates ALI and
ARDS by modulating PI3K signaling and RORγt expression (60),
suggesting that IL-17 could be explored as a therapeutic target for
sepsis-associated ARDS.

Immune Dysfunction or Immunosuppression
Sepsis disrupts immune homeostasis (64). A study in septic
patients showed that inhibition of IL-17A by specific antibodies
could lead to immune depression by increasing IL-10 release and
decreasing IL-12 production from peripheral bloodmononuclear
cells (57).

A previous study reported that CD4+ T cells mediated abscess
formation in intra-abdominal sepsis in an IL-17A-dependent
manner (35). Similarly, IL-33, a potent immunoregulator, has
been shown to attenuate sepsis by suppressing IL-17A-mediated
signaling via upregulation of suppressor of cytokine signaling
(SOCS)-3 (52).

Toxic shock syndrome caused by Streptococcal and
Staphylococcal superantigens mimicks sepsis in clinical
presentation. It is characterized by overexpression of
proinflammatory cytokines and pathological immune responses
(53). Overproduction of IL-17A was observed in the early phase
of toxic shock syndrome; in contrast, anti-IL-17A antibodies
obviously reduced intestinal and hepatic impairment and
mortality rate (53).

Acute Kidney Injury
Acute kidney injury (AKI) is the hallmark and a risk factor of
sepsis; reversal of AKI correlates with lower risk of mortality (89).
Several experimental and clinical studies support the importance
of IL-17A secretion in AKI (51). Strikingly, IL-17A can function
as a chemokine that recruits neutrophils to the kidneys (55).

IL-17A is associated with elevated levels of proinflammatory
cytokines and accelerated tubular epithelial apoptosis in AKI
(51). IL-17A is upregulated in animal models of acute
tubular injury and cisplatin-induced AKI (59). In Th17 cells
stimulated by heat-killed C. albicans, IL-17A levels significantly
increased in patients with AKI after sepsis compared with
healthy counterparts (92). In one study, Th17 cell activation
was higher in patients who died from AKI following sepsis
than in survivors, and the extent of activation correlated
with AKI-associated inflammation (93). IL-17A knockdown
can mitigate interstitial neutrophil infiltration and tubular

Frontiers in Immunology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 1558

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ge et al. Interleukin-17 in Sepsis

impairment (51, 59). The intracellular receptor RORγt is
required for IL-17A production, and RORγt deficiency protects
against cisplatin-induced nephrotoxicity (92). IL-17A induces
neutrophil migration through CXCL5, a chemokine known to
be associated with higher risk of renal damage. Interestingly,
high IL-17C expression has been noted in kidney epithelial cells
following fungal infection (6), whereas lack of IL-17C inmice was
associated with lower renal damage and improved survival (78).
Altogether, the evidence supports that IL-17-induced responses
potentiate AKI in septic patients.

Gut Barrier Dysfunction
Intestinal mucosa dysfunction remains a challenge in the
management of sepsis (64). Sepsis-induced gut barrier
dysfunction includes disrupted mucosal integrity, increased
permeability of the epithelial lining, impairment of gut-blood
barrier, and bacterial translocation (90).

IL-17A is important in maintaining the integrity of epithelial
barriers (8). IL-17A-mediated pathological responses disrupt
intestinal epithelial barrier function, increase gut permeability,
and cause translocation of gut bacteria by inhibiting proliferation
of enterocytes and inducing their apoptosis (8, 9). Disseminated
gram-positive bacteria can upregulate IL-17A by activating
Toll-like receptor (TLR)-2 on T cells and dendritic cells
(47). Neutralizing IL-17 in septic mouse models protects gut
barrier integrity, reduces systemic inflammation and bacterial
dissemination, and lowers mortality (41).

Cardiomyocyte Dysfunction
Cardiomyocyte dysfunction is a complication that contributes to
high mortality in sepsis patients (90). The molecular mechanisms
underlying sepsis-induced cardiomyopathy are not well defined,
but may involve a combination of endothelial disturbance,
autonomic nervous system alterations, dysfunction of calcium
regulation, oxidative and mitochondrial stress, extensive
inflammation, and myocardial ischemia and reperfusion (I/R)

injury (90). Up to now, no efficient treatment for sepsis-induced
cardiomyopathy exists.

IL-17A levels are greatly increased in post-myocardial I/R
injury, inflammation, and apoptotic responses (94). IL-17A
accelerates the release of chemokines and proinflammatory
mediators from fibroblasts, endothelial cells, leukocytes, and
neutrophils (95). In viral myocarditis, neutralizing IL-17A with
a monoclonal antibody attenuates myocardium inflammation,
clinical symptoms, and disease progression (96). Knockdown
of IL-17A in mice greatly mitigates cardiac disturbance as
well as myocardial I/R injury and remodeling (97). Anti-
IL-17A antibodies downregulate CCL3, CXCL1, and IL-6 in
cardiomyocytes of mice with sepsis induced by CLP, suggesting
that IL-17A contributes to sepsis-induced cardiomyopathy (96).
Interestingly, high mobility group box-1 protein (HMGB1),
a crucial late biomarker of lethal systemic inflammation in
sepsis, stimulates IL-17A release during myocardial I/R injury
(98). Conversely, HMGB1 inhibition remarkably lowers IL-17A
levels and attenuates myocardial I/R injury (98). Therefore,
the HMGB1/IL-17A axis may play a key role in myocardial
dysfunction resulted from sepsis.

Other Sepsis-Related Complications
Hepatic dysfunction is a prominent feature of sepsis with crucial
implications for survival, since it contributes to sepsis-induced
multiple organ failure (89). IL-17 from γδ T cells protects
the host from Listeria monocytogenes infection by augmenting
bacterial clearance through the liver (67). Absence of IL-17A or
γδ T cells in mice is associated with greater bacterial load and
inflammatory lesions in the liver (67). However, another study
showed that IL-22, but not IL-17A, could protect hepatocytes
from acute liver inflammation (99). The precise role of IL-17
in sepsis-induced hepatic damage remains unclear and requires
deeper investigation.

The stress response following sepsis involves production of
glucocorticoids and catecholamines (90). Both glucocorticoids

TABLE 2 | Summary of studies on potential applications of IL-17 targeting in sepsis.

Years Authors Potential applications References

2003 Tian et al. Administration of a neutralizing antibody specific for IL-17A prevented abscess formation during bacterial challenge in mice (35)

2007 Shibata et al. In vivo blockade of IL-17A significantly reduced neutrophil infiltration and impaired bacterial clearance in mice (36)

2008 Flierl et al. Neutralization of IL-17A in vivo reduced levels of systemic proinflammatory cytokines and chemokines, and bacteremia in mice (37)

2012 Joshi et al. Neutralizing IL-17A in vivo significantly increased mortality in iron regulated surface determinant B immunized mice (40)

2014 Jin et al. Recombinant IL-17A rescued impaired host defense in cxcl1−/− mice; CXCL1 was important for IL-17A production via Th17

differentiation

(44)

2015 Wu et al. Treatment with anti-IL-17A enhanced IL-10 production but decreased IL-12 secretion from stimulated peripheral blood

mononuclear cells of healthy controls and patients with severe sepsis

(57)

2015 Meng et al. IL-17A neutralization protected barrier integrity and improves survival of septic mice (47)

2016 Wynn et al. Blocking IL-17A reduced IL-18-potentiated mortality to both neonatal sepsis and endotoxemia (50)

2016 Luo et al. IL-17A knockout in mice could protect against sepsis-associated acute kidney injury (51)

2017 Lv et al. IL-33 attenuated sepsis by inhibiting IL-17 receptor signaling through upregulation of SOCS3 in mice (29)

2017 Szabo et al. Rapid and rigorous IL-17A production by a distinct subpopulation of effector memory T lymphocytes constituted a novel

mechanism of toxic shock syndrome immunopathology in mice

(53)

2017 Ding et al. Increased IL-17A was observed in patients with sepsis-induced acute respiratory distress syndrome; IL-17 antibody

administration could relieve acute lung injury symptoms by affecting RORγt level and the PI3K pathway

(60)
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and catecholamines inhibit the expression and production of
IL-17A in lipopolysaccharide-stimulated peritoneal macrophages
(90). They also block c-Jun-N-terminal kinase, preventing IL-
17A secretion (42).

Taken together, excessive IL-17A production disrupts immune
homeostasis and contributes to the development and progression
of sepsis. Nevertheless, the exact contribution of IL-17 to sepsis-
induced dysfunction of the liver and other organs needs to be
further explored.

Administration of Exogenous IL-17 or
Targeting IL-17 in Sepsis
IL-17A is an important link between the innate and adaptive
immune processes (43, 49). IL-17A-deficient mice are more
susceptible to sepsis than wild-type controls (37), and IL-17A
blockade impairs peritoneal eradication of E. coli, indicating
that IL-17A might prevent sepsis in certain settings (63).
Consistent with this idea, IL-17A administration restores
impaired immunity in CXCL1-knockout mice (44). In animals
infected with K. pneumoniae, treatment with IL-17A promoted
bacterial clearance and neutrophil recruitment by enhancing
the production of G-CSF, IL-1β, TNF-α, and CXCL-2 (36).
Likewise, IL-17A administration improved anti-bacterial
immunity following challenge with group B Streptococcus and
Streptococcus pneumoniae in mice (34). Neutralization of IL-17A
promoted resistance to intra-abdominal abscess formation in
mice challenged with Bacteroides fragilis or abscess-inducing
zwitterionic polysaccharides (35). Neutralizing IL-17A with
antibodies could also reduce the mortality of mice immunized
with S. aureus iron regulated surface determinant B after bacterial
challenge (40). Thus, IL-17A plays a pivotal role in prevention of
infection progression and related infectious complications.

In agreement with the findings described above, inhibition
of IL-17/IL-23 significantly improved survival (from 40 to
100%) in a mouse model of endotoxic shock (39). Likely, anti-
IL-17A antibody reduces systemic levels of proinflammatory
cytokines/chemokines and bacteremia, improving the survival
rate (50). E. coli infection results in high levels of IL-17, and
blockade of IL-17 attenuates neutrophil infiltration and improves
bacterial clearance (63).

In a recent study, anti-IL-17 antibody mitigated the pathology
and the mortality rate of mice infected with Pseudomonas
aeruginosa (100). In a colitis mouse model, IL-17 neutralization
attenuated immunopathology and bacteremia (5). In a neonatal
sepsis mice model, treatment with IL-17A-neutralizing antibody
mitigated IL-18-related disease deterioration (57). Targeting
IL-17A enhanced IL-10 production in peripheral blood

mononuclear cells following sepsis (57). This evidence supports
the possibility of reducing sepsis mortality through antibody-
mediated blockade of IL-17R or IL-17A (Table 2). Anti-IL-17A
antibodies ixekizumab and secukinumab are currently being
investigated in clinical trials in septic patients (8, 9).

SUMMARY AND PERSPECTIVES

IL-17A can regulate host defenses against invading pathogens by
producing chemokines, AMPs, and proinflammatory cytokines.
In this way, IL-17A forms part of the alarm signal by
sentry-like immune cells to stimulate host defenses. On
one hand, IL-17A interacts with various mediators (e.g.,
TNF-α, IL-1, IL-6) to induce tissue-infiltrating neutrophils
to eliminate the invading pathogens. On the other hand,
IL-17A may interact with other proinflammatory cytokines
to drive exaggerated immune response, and contribute to
the development of inflammatory and autoimmune diseases.
There is burgeoning evidence that IL-17A participates in
the pathophysiology of sepsis, with respect to regulation of
inflammatory and immune responses. Consistently, elevated
level of IL-17A is apparently related with disease severity in
sepsis, suggesting a potential biomarker of prognosis in the
clinical setting.

Moreover, developing IL-17A as a therapeutic target must
consider the fact that IL-17A might be either protective or
pathogenic, depending on the specific circumstances. Future
work will be needed to deeply explore the pathophysiological
mechanisms by IL-17A interfere with divergent immune
responses during sepsis. In addition, studies are warranted to
evaluate the other forms (IL-17B-IL-17F) in clinical settings.
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