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INTRODUCTION

The discovery that cancer cells are recognized and targeted by the immune system has recently
increased interest in cancer immunotherapies. Currently, the most widely used immunotherapy
is immune checkpoint blockade using monoclonal antibodies to block intrinsic downregulators
of immunity, which are often over-expressed in cancer. Although beneficial to some patients, the
majority do not respond to this treatment (1), highlighting the need for new, novel, strategies. One
new approach is T-cell therapy with genetically engineered T cells to generate an effective anti-
tumor immune response through ex vivomanipulation of the T-cell tumor-specificity. This can be
accomplished by gene transfer of T-cell receptors (TCRs) or chimeric antigen receptors (CARs) into
autologous T cells before reinfusing them into the patient. CAR T-cell therapy has shown excellent
results in the treatment of some B-cell malignancies, but the lack of suitable antigens presents a
challenge to transferring this therapy to other malignancies, including solid cancers (2). Here, we
review data on cancer/testis (CT) antigens as targets for CAR T-cell therapy and present a strategy
to upregulate CT antigen expression on tumor cells via epigenetic treatment to sensitize cancer cells
to CAR T-cell therapy (Figure 1).

CAR T-CELL THERAPY IN HEMATOLOGICAL AND SOLID
CANCERS

CAR T cells are T cells genetically engineered to express artificial receptors, called CARs, on
their cell surface, facilitating enhanced recognition of specific tumor antigens and thereby killing
of cancer cells (3). CARs are comprised of an extracellular antigen-recognition domain, often
derived from a monoclonal antibody, and an intracellular signal-transduction domain resembling
that on TCRs, containing CD3ζ and up to two costimulatory domains, such as CD28 or 4-1BB.
The extracellular domain provides specificity to the CAR and directs the T cell toward cancer
cells through recognition of antigens on the cell surface (4). TCRs recognize epitopes presented
by HLA-I molecules on the surface of tumor cells. Since antigen processing and presentation
are complex, the identification of epitopes for TCRs is laborious (5). CARs, unlike normal
TCRs, recognize antigens independent of HLA-antigen processing and presentation and thereby
circumvent the challenges with TCR epitope identification. Also, CARs can recognize tumor cells
with downregulated HLA expression or decreased protosomal processing, which are mechanisms
that contribute to antigen escape by TCR-mediated immunity (6). Correspondingly, suitable targets
for CARs need to be located on the cell surface for the receptor to recognize them, which makes
the potential target pool smaller compared to potential targets for TCRs (2, 7). Furthermore, the
HLA-unrestricted recognition of antigens by CARs makes available CAR constructs useful for
patients with all HLA subtypes and facilitates an off-the-shelf strategy (8). The safety profiles of
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FIGURE 1 | Epigenetic pre-treatment sensitizes cancer cells to cancer/testis antigen-directed CAR T-cell therapy. T cells from a patient are harvested through

leukapheresis. The T cells are activated and genetically modified to express chimeric antigen receptors (CARs) ex vivo before they are expanded and reinfused into the

patient. Pre-treatment of patients with epigenetic drugs, such as DNA methyltransferase (DNMT) inhibitors, increases cancer/testis (CT) antigen and HLA-I expression

on cancer cells, leading to enhanced recognition of cancer cells by CAR T cells. Both CAR T cells made from conventional antibodies and TCR mimic antibodies

(recognizing antigen peptides presented in complex with HLA-I) are available strategies.

TCR and CAR T-cell therapy are similar, but there may be
important differences. On-target/off-tumor toxicity is a risk of
both TCR and CAR T-cell therapy and occurs when the targeted
antigen is also present on healthy tissue, but CAR or affinity-
maturated TCR constructs may require lower levels of antigen
expression in target cells. Similarly, the risk for off-target/off-
tumor toxicities, where T cells with engineered receptors cross-
react with other antigens, is enhanced with CARs or affinity-
maturated TCRs or may result from the combination of native
and engineered TCR chains (9, 10).

Themajor breakthrough for CART-cell therapy camewith the
CD19-specific CAR targeting the cardinal B-cell antigen, CD19.
This therapy has shown excellent results in treating multiple
B-cell malignancies, e.g., Maude et al. reported 90% complete
remission in patients with relapsed or refractory ALL for up
to 2 years after treatment with autologous CD19 CAR T-cell
therapy (11–14). Despite the great success of the CD19 CAR,
relapses due to antigen loss still occur, and new targets are
needed to treat these patients (15, 16). New targets are also
needed for hematological cancers that do not express CD19.
The success of CAR T cells in treating hematological cancers
has led to this therapy receiving a large amount of attention
as a treatment for solid cancers, but so far, the clinical efficacy
is limited (17–19). Where target identification and antigen loss
are the major obstacles in CAR T-cell therapy of hematological
cancers, multiple factors contribute to the low clinical efficacy in
the treatment of solid cancers. CD19 is a linage B-cell antigen
also expressed on normal B cells in the early stages of B-cell
development. Targeting CD19, therefore, leads to B-cell aplasia,
which is clinically manageable. Targeting linage antigens on solid
tumors is not an option due to severe toxicities (2, 20). The ideal

target for CAR T-cell therapy should be ubiquitously expressed
on all tumor cells and be completely absent from healthy tissue
to avoid complications such as on-target/off-tumor toxicities, as
described above. However, these antigens have proven difficult
to find. Often, a heterogeneous expression pattern within the
tumor tissue and/or expression in healthy tissue limits the clinical
potential of the target (21). Tumor-specific antigens include
neoantigens, viral antigens, and CT antigens. CT antigens have
remained unrecognized as targets for CAR T-cell therapy so far,
but due to the restricted expression pattern toward tumor tissue
and especially the possibility of upregulating their expression
by epigenetic drugs, these antigens may represent promising
candidates for CAR T-cell therapy.

In solid cancers, the CAR T cells must overcome the tumor
microenvironment (TME) in order to reach the tumor cells.
Initially, there is the physical barrier of the stroma that may
prevent T cell entry into the tumor. Next, T cells that have
successfully entered the tumor may be functionally repressed by
immunosuppressive factors (like PD-L1 and CTLA-4), inhibitory
cytokines (e.g., TGFβ, IL-4, and IL-10) and inhibitory cells (e.g.,
regulatory T cells and tumor-associated macrophages) (22).

CANCER/TESTIS ANTIGENS AS TARGETS
FOR CAR T-CELL THERAPY

CT antigens are a unique set of antigens expressed in germ cells of
the testis and various malignancies of different histological origin
but not in healthy somatic tissues (23). Their cancer-restricted
expression pattern, along with their immunogenic properties,
make CT antigens ideal targets for immunotherapy (24, 25).
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Methylation of promoter-regions controlling CT antigen genes
is a well-known silencer of gene expression in healthy somatic
tissue (26). Malignant transformation is often associated with
global DNA hypomethylation, which leads to the induction of CT
antigen gene expression in some tumors. However, CT antigens
show a very heterogeneous expression pattern within tumors
(27), most likely reflecting epigenetic variation and plasticity
among tumor cells. This may give rise to immune-escape variants
in the form of tumor cells not expressing the antigen, creating
an obstacle when targeting CT antigens with immunotherapy.
Results from us and others show that treatment with epigenetic
drugs, such as DNA methyltransferase inhibitors (DNMTis),
specifically upregulates CT antigen expression within tumors,
thereby inducing a more ubiquitous expression pattern of the
antigens (28, 29). Therefore, epigenetic treatment can be used
to sensitize cancer cells for immunotherapy, such as CAR T-cell
therapy, and lead to increased elimination of cancer cells (30–
34). For instance, in an immunocompetent murine breast cancer
model, epigenetic priming of tumors combined with adoptive
transfer was demonstrated to control metastatic spread (35).

CT antigen expression is known to be mainly intracellular,
which excludes many of the antigens as CAR targets, but CT
antigens with a surface localization have been identified (36–
38). A recent study scrutinized 3,700 different genes predicted
to encode proteins located on the surface of human cells and
found 22 genes with restricted expression in testis (36), many
of which were upregulated in multiple hematological and solid
malignancies. These genes represent highly promising targets
for CAR T-cell therapy, and further investigations should be
performed to elucidate the inducibility of the antigens with
DNMTis, identify surface epitopes, and explore options for CAR-
targeting. Other, more well-described, CT antigens have been
tested as potential CAR targets. MAGE-A1 was investigated as a
possible target in the treatment of lung adenocarcinoma (LUAD)
after immunostaining revealed a surface epitope of the antigen
(37). A MAGE-A1-specific CAR showed cytotoxic activity both
in vitro and in vivo, where it was able to infiltrate MAGE-
A1-positive tumors and specifically target and inhibit LUAD
xenograft growth in nude mice. Further studies are ongoing
to evaluate the potential of MAGE-A1-specific CAR T cells
in the treatment of LUAD. Because MAGE-A1 is expressed in
multiple other cancers and can be upregulated by treatment with
epigenetic modulators, MAGE-A1-specific CARs could present
an attractive option for the treatment of these diseases (31, 39–
41). PRAME is another well-described CT antigen that has
been tested as a target in several immunotherapeutic strategies.
Because PRAME was previously recognized as an intracellular
protein, and therefore non-targetable by traditional antibodies
or CARs, a TCR mimic antibody with the same specificity as a
TCR was developed (42). This molecule specifically recognized
a PRAME peptide presented in complex with HLA-A2 and
provided proof-of-concept that such antibodies can recognize
and generate an immune response against intracellular antigens
that are otherwise only targetable with engineered TCRs. TCR
mimic antibodies can be engineered into alternative formats,
such as CARs or bispecific T-cell engagers (BiTEs), which may

mediate effective T-cell responses against tumor cells in an HLA-
restricted manner. Such strategies were pursued for the NY-ESO-
1 CT antigen, demonstrating that HLA-A2/NY-ESO-1 peptide-
specific CARs could mediate tumor recognition, which opens up
an exciting potential for broadening the repertoire of CAR T-
cell targets (43, 44). Recently, a computational transmembrane
analysis predicted an extracellular region of the PRAME protein
that could be specifically targeted by a conventional PRAME-
specific antibody on multiple solid and hematological cancer cell
lines in vitro and in vivo, thereby presenting new opportunities
for additional CAR strategies targeting this protein (38). These
results, and the fact that PRAME is overexpressed in many
malignancies, indicate that PRAME is a promising target for
CAR T-cell therapy (45, 46). Other CT antigens with a proposed
surface localization include CT83, SP17, SLCO6A1, and PLAC1
(47–50). SP17 is overexpressed in multiple cancer types (48, 51–
56), and expression is upregulated by DNMTis (57). SP17 is
highly immunogenic (58), but SP17 expression in human ciliated
cells of various normal tissues brings into question its suitability
as an immunotherapeutic target (51, 59, 60). Nonetheless, SP17
vaccination of humans has been shown to be well-tolerated, with
no side-effects regarding expression in normal cells (61). Further
investigations must be performed to elucidate the potential of
targeting SP17 by immunotherapy. CT83 is also expressed in
multiple cancers, such as breast, gastric, and lung cancers, and
the expression can be upregulated by DNMTis (62–67). CT83
as a target for TCR-based therapies has shown promising results
(64, 68), but the potential of the antigen as a target for CAR T-
cell therapy remains unexplored. Similarly, CAR T-cell therapy
or alternative antibody therapy has not been pursued for SLO6A1
and PLAC1 despite interesting potential.

CARs with alternative antigen-binding domains are also being
investigated to overcome the challenges with target identification.
Although not a CT antigen in a strict sense, the IL13-type
receptor IL13RA2 is mainly expressed in testis among healthy
tissues (69). This receptor recognizes IL13 with higher affinity
than the ubiquitously expressed IL13RA1 (69, 70). IL13RA2
is often overexpressed in glioblastoma multiforme (GBM),
and expression is correlated with poor patient outcome. New
treatment strategies for GBM are much needed, and therefore
IL13RA2 is being investigated as a new therapeutic target (71).
CARs with antigen-binding domains composed of IL13 mutants,
with increased affinity for IL13RA2 and lowered affinity for
IL13RA1, have been developed. Preclinical studies investigating
these CARs (69, 70, 72), show anti-tumor efficacy and low
on-target/off-tumor toxicity after intracranial delivery, due to
the abscence of IL13RA2 expression in normal brain tissue.
Clinical studies (NCT00730613, NCT01082926, NCT02208362)
confirm these promising results and only show manageable side-
effects. For example, complete remission was observed in a single
patient with recurrent GBM for 7.5 months after several rounds
of intracranial delivery of a second-generation IL13RA2 CAR
(73). IL13RA2 is also expressed by different immune cells, and
IL13RA2 expression in these cells is correlated with immune
inhibition. Eradication of cells expressing IL13RA2 by CAR T
cells can therefore also increase anti-tumor immunity (69).
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DISCUSSION

To date, the most common immunotherapy is immune
checkpoint blockade, which unleashes the activity of T cells by
blocking the immune checkpoint molecules PD-1 and CTLA-
4 (74). The clinical response to immune checkpoint blockade
is generally most significant in patients with tumors that carry
a high mutational burden, such as melanoma and non-small-
cell lung cancer, but even in these cancer types, the response
varies among patients (75). CAR T-cell therapy is an attractive
option for non-responders to immune checkpoint blockade and
for patients with less immunogenic tumors, such as breast,
pancreatic, and some hematological cancers such as AML and
ALL (2, 76). However, common obstacles to CAR T-cell therapy
must be overcome to ensure an effective clinical response,
including the identification of appropriate CAR targets. CT
antigens show a restricted expression pattern toward testis and
tumor cells, and combining CT antigen-specific CAR T cells
with epigenetic therapy, such as DNMTis, can diminish the
heterogeneous expression of these antigens within tumors. One
might speculate that epigenetic modulators also induce CT
antigen expression in healthy tissue to cause serious side effects,
but the induction by DNMTis seems to be tumor-specific (29).
This may be due to differences in chromatin organization and
epigenetic control of gene expression, leaving cancer cells more
susceptible to epigenetic enhancement of CT antigen expression
than normal cells, but the subject needs further clarification.
The safety of combining epigenetic enhancement of antigen
presentation with adoptive transfer was further validated in a
murine model, where no adverse effects were reported (35).

Even after upregulation of antigen expression by epigenetic
modulators, antigen-escape variants, in the form of antigen-
negative cells, may be present in tumors. Also, antigen escape
can occur as a consequence of the highly selective pressure
from mono-specific CAR T cells. Thus, targeting multiple
antigens simultaneously may be required for complete responses.
Different strategies to achieve this are now being investigated,
e.g., pooled uni-specific CAR T cells, bi-specific CAR T cells,
and tandem CAR T cells, and are showing promising results in
decreasing antigen escape by tumor cells and increasing anti-
tumor efficacy (77–80); for example, CAR T-cell therapy using
a tandem CAR redirected against both IL13RA2 and HER2 was
able to mitigate antigen escape in a murine glioblastoma model
compared to uni-specific CARs (81).

Another obstacle to CAR T-cell therapy in regard to solid
tumors is the observed low T-cell trafficking to tumor tissue and
the hostile TME surrounding the tumor cells. It is now clear
that, apart from upregulating CT antigens, DNMTis upregulate
a series of immune pathways that augment tumor recognition

and elimination by T cells, such as interferon signaling pathways,
cytokine and chemokine signaling, inflammation, and genes in
the antigen presentation and processing machinery (82–84).
DNMTis cause hypomethylation of repeat elements of DNA,
leading to increased activation of these regions and increased
expression of endogenous retroviral dsRNA in the cytosol. The
increased amount of dsRNA in the cytosol triggers a dsRNA
sensing pathway as a viral defense mechanism, causing increased
release of proinflammatory cytokines and interferons. These
molecules act on cells in the nearby environments, leading to
inhibition of cellular proliferation and release of chemokines,
such as CXCL9/10, that attract cytotoxic T cells to the TME
(85, 86). The molecules also have an effect on immune cells in
the TME, initiating an innate immune response and increased
anti-tumor immunity. Thus, DNMTis may change the hostile
TME toward a more T-cell supportive state, which can augment
the effect of immunotherapy when used in combination. A side-
effect of DNMTis, observed in tumors, is increased expression
of PD-L1 and CTLA-4 due to decreased methylation of adjacent
promotor regions (87, 88). This increased expression provides the
rationale for triple combination therapy of CT antigen-specific
CAR T cells, epigenetic drugs, and immune checkpoint blockade.

In conclusion, epigenetic treatment can augment the clinical
efficacy of CT antigen-specific CAR T-cell therapy by increasing
surface CT antigen expression and diminishing the inhibitory
state of the TME, and the therapeutic benefits of combining the
two should be pursued through preclinical and clinical testing.
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