
ORIGINAL RESEARCH
published: 31 July 2020

doi: 10.3389/fimmu.2020.01577

Frontiers in Immunology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 1577

Edited by:

Guochang Hu,

University of Illinois at Chicago,

United States

Reviewed by:

Bangshun He,

Nanjing Medical University, China

Lucas A. Salas,

Geisel School of Medicine,

United States

*Correspondence:

Héléne Toinét Cronjé

23520825@nwu.ac.za

Specialty section:

This article was submitted to

Inflammation,

a section of the journal

Frontiers in Immunology

Received: 25 February 2020

Accepted: 15 June 2020

Published: 31 July 2020

Citation:

Cronjé HT, Elliott HR,

Nienaber-Rousseau C, Green FR,

Schutte AE and Pieters M (2020)

Methylation vs. Protein Inflammatory

Biomarkers and Their Associations

With Cardiovascular Function.

Front. Immunol. 11:1577.

doi: 10.3389/fimmu.2020.01577

Methylation vs. Protein Inflammatory
Biomarkers and Their Associations
With Cardiovascular Function
Héléne Toinét Cronjé 1*, Hannah R. Elliott 2,3, Cornelie Nienaber-Rousseau 1,

Fiona R. Green 4, Aletta E. Schutte 5,6 and Marlien Pieters 1

1Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa, 2MRC Integrative Epidemiology Unit,

University of Bristol, Bristol, United Kingdom, 3 Population Health Sciences, Bristol Medical School, University of Bristol,

Bristol, United Kingdom, 4 Faculty of Health and Medical Sciences, Formerly School of Biosciences and Medicine, University

of Surrey, Guildford, United Kingdom, 5Hypertension in Africa Research Team, Medical Research Council Unit for

Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa, 6 School of Public Health and

Community Medicine, University of New South Wales, George Institute for Global Health, Sydney, NSW, Australia

DNA methylation data can be used to estimate proportions of leukocyte

subsets retrospectively, when directly measured cell counts are unavailable. The

methylation-derived neutrophil-to-lymphocyte and lymphocyte-to-monocyte ratios

(mdNLRs and mdLMRs) have proven to be particularly useful as indicators of systemic

inflammation. As with directly measured NLRs and LMRs, these methylation-derived

ratios have been used as prognostic markers for cancer, although little is known about

them in relation to other disorders with inflammatory components, such as cardiovascular

disease (CVD). Recently, methylation of five genomic cytosine-phosphate-guanine sites

(CpGs) was suggested as proxies for mdNLRs, potentially providing a cost-effective

alternative when whole-genome methylation data are not available. This study compares

seven methylation-derived inflammatory markers (mdNLR, mdLMR, and individual CpG

sites) with five conventionally used protein-based inflammatory markers (C-reactive

protein, interleukins 6 and 10, tumor-necrosis factor alpha, and interferon-gamma) and

a protein-based inflammation score, in their associations with cardiovascular function

(CVF) and risk. We found that markers of CVF were more strongly associated with

methylation-derived than protein-based markers. In addition, the protein-based and

methylation-derived inflammatory markers complemented rather than proxied one

another in their contribution to the variance in CVF. There were no strong correlations

between the methylation and protein markers either. Therefore, the methylation markers

could offer unique information on the inflammatory process and are not just surrogate

markers for inflammatory proteins. Although the five CpGs mirrored the mdNLR well

in their capacity as proxies, they contributed to CVF above and beyond the mdNLR,

suggesting possible added functional relevance. We conclude that methylation-derived

indicators of inflammation enable individuals with increased CVD risk to be identified
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without measurement of protein-based inflammatory markers. In addition, the five CpGs

investigated here could be useful surrogates for the NLR when the cost of array data

cannot be met. Used in tandem, methylation-derived and protein-based inflammatory

markers explain more variance than protein-based inflammatory markers alone.

Keywords: cell counts, epigenetics, epidemiology, inflammation, neutrophil-to-lymphocyte, lymphocyte-to-

monocyte

INTRODUCTION

Methylation-derived cell count ratios, particularly methylation-
derived neutrophil-to-lymphocyte and lymphocyte-to-monocyte
ratios (mdNLRs and mdLMRs), are increasingly being used as
robust alternatives to flow cytometry-based cell count ratios as
indicators of systemic inflammation (1–3). One key advantage
is that they can be derived from archived blood in cohorts
where cytometric measurements have not been performed (1,
4). Through unique methylation signatures, leukocyte subtypes
can be separated and quantified with comparative accuracy.
Validation analyses have reported an R2 estimate of at least 0.95
when methylation-derived estimates of leukocyte sub-types and
NLRs are regressed on those measured directly (1, 5).

Similar to cytometry-based ratios, mdNLRs and mdLMRs are
considered prognostic markers of overt inflammatory diseases
such as rheumatoid arthritis (3) and cancer (2, 6). However, little
is known about these methylation-derived ratios in relation to
less pronounced inflammatory diseases such as cardiovascular
disease (CVD). While directly measured cell counts have been
established as indicators of CVD severity, recurrence, and
prognosis (7–12), the use of cell counts, methylation-derived
or directly measured, in CVD risk prediction and disease
progression in the epidemiological setting is less well-known.
There is also no consensus on the reference ranges or thresholds
to be used when characterizing the NLR or MLR as healthy,
at risk, or pathological (13), with large ethnic diversity also
being reported (14–16). More recently, methylation levels of five
cytosine-phosphate-guanine sites (CpGs), namely cg25938803,
cg10456459, cg01591037, cg03621504, and cg00901982, have
been suggested as proxy markers for the mdNLR, because of their
robust associations with myeloid cell (neutrophil and monocyte)
differentiation (2, 4). If true, measurement of this small panel
of CpGs could render whole genome methylation measurement
unnecessary in cohorts with limited financial resources.

Blood-based protein inflammatory markers, such as C-
reactive protein (CRP), interleukin-6 (IL-6), and tumor
necrosis factor alpha (TNF-α), are useful epidemiological
tools for quantifying inflammatory state and disease risk (17).
However, cell count ratios are considered superior to circulating
inflammatory markers in their ability to quantify systemic
inflammation (7, 18, 19). Cell count ratios provide a more
integrated view of systemic inflammation by reflecting the
relative contribution of the innate (neutrophils/monocytes as
indicators of general inflammation) and adaptive (lymphocytes
as an indicator of physiological stress) immune responses (19),
supporting their use in population-based research. Because
few cohorts have access to data on both cell counts and

protein-based inflammatory markers, we set out to determine
whether cell count ratios provide added benefit in characterizing
inflammatory status and CVD risk independent from protein-
based inflammatory markers in our cohort where both are
measured. The rapid advancement of epigenetic investigations in
CVD research, together with the increasing number of samples
with epigenetic data available, including increasing ethnic
diversity among available samples (20, 21), also motivate our
interest in exploring novel ways to mine for valuable additional
information from previously analyzed samples.

To this end, we investigated methylation-derived and protein-
based biomarkers of inflammation in relation to cardiovascular
function (CVF) in a cohort of black South African men.
We included seven methylation-derived (mdNLR, mdLMR,
and the five myeloid CpGs) and five high-sensitivity protein-
based [CRP, IL-6, IL-10, TNF-α, interferon [IFN]-γ] markers of
inflammation. In addition, we used a protein-based inflammation
score (22) to provide the combined effect of inflammatory
biomarkers. First, we compared how well the protein-based
and methylation-derived inflammatory markers reflected CVD
risk according to literature-based cut-offs. We also compared
the mdNLRs and mdLMRs reported in this sample population
to ratios reported in studies on healthy individuals from
different ethnicities. This is followed by an investigation of
the relationship between the methylation-derived and protein-
based inflammatory biomarkers in our study population, and
a comparison of their relative associations with CVF markers.
Lastly, we investigated whether a combination of methylation
and protein inflammatory biomarkers provided added benefit
in explaining CVF variance, or whether one proxies the other.
Cardiovascular function is represented by blood pressure (BP),
heart rate (HR), and arterial stiffness. In contrast to previous
work, we evaluated the methylation-derived biomarkers in a
population-based cohort as opposed to a case-control design, to
yield better understanding of the value these markers may have
in the general population.

METHODS

Study Population
This is a cross-sectional investigation of 120 self-identified
Batswana men who were enrolled in the North West province,
South African arm of the international Prospective Urban
and Rural Epidemiology study (PURE-SA-NW) in 2015 (23).
Individuals were randomly selected from 926 participants
residing in selected rural and urban regions, based on
the following criteria: male sex, testing negative for the
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human-immunodeficiency virus at the time of data collection,
and bio-sample availability. These criteria were incorporated to
minimize confounding by sex and CD4+ cell counts. The PURE-
SA-NW study received ethical approval from theHealth Research
Ethics Committee of the North-West University, South Africa
(NWU-00016–10-A1). Written informed consent was obtained
from participants prior to data collection.

DNA Methylation, Cell Counts, and Cell
Count Ratios
Genomic DNA isolated from peripheral whole blood was
bisulfite-converted prior to genome-wide methylation
quantification using the Illumina Infinium MethylationEPIC
BeadChip according to the manufacturer’s protocol (Illumina R©,
San Diego, CA, USA). Details regarding DNA extraction, quality
control, methylation quantification, data processing, and data
normalization have been reported previously (24). Sample cell
fractions were estimated using the IDOL optimized L-DMR
library for whole blood samples in the FlowSorted.Blood.EPIC
R software package (5). Neutrophil counts were divided by
lymphocytes (calculated as the sum of B-, CD4T, CD8T, and
natural killer cell counts), and lymphocytes by monocytes, to
obtain the respective mdNLRs and mdLMRs (1, 2).

Inflammatory Markers
Fasting blood samples were collected in ethylenediamine tetra
acetic acid tubes for the analysis of cytokines and in anti-
coagulant-free tubes for the quantification of CRP. Samples
were centrifuged within 30min of collection at 2,000 × g for

15min. The Cobas© Integra 400 (Roche© Clinical System,
Roche Diagnostics, Indianapolis, IN) was used to quantify
high-sensitivity CRP concentrations. High-sensitivity Q-PlexTM

planar-based multiplexed enzyme-linked immunosorbent assays
(Quansys Biosciences, Logan, UT) were performed to measure
IL-6, IL-10, TNF-α, and IFN-γ. An inflammation summary score
was calculated to amalgamate related inflammatory proteins as
suggested previously (22, 25). Data on CRP, IL-6, IL-10, TNF-
α, and IFN-γ were loge-transformed to improve distribution.
Thereafter data were converted to z-scores to account for the
difference in measurement units. The average of the z-scores is
reported here as the inflammatory score.

Measures of Cardiovascular Function
Systolic and diastolic BP (SBP and DBP) and HR were measured
using the OMRON M6 device (Omron Healthcare, Kyoto,
Japan). Participants were seated in an upright position with
legs uncrossed. After participants had rested for 10min, the
correct cuff size was fitted on their right arms, whereafter
two measurements were recorded with a 5-min interval.
Data from the second measurement were used for analysis.
Pulse pressure (PP) was then calculated as the difference
between SBP and DBP. Large artery stiffness was investigated
using the current gold standard measurement, carotid-femoral
pulse wave velocity [cfPWV (26)], using the SphygmoCor
XCEL device (AtCorMedical Pty. Ltd., Sydney, Australia). The
transit-distance method was used to measure PWV along the
descending thoracoabdominal aorta. Two readings were taken

from each participant while supine. Data from the second reading
were used.

Cardiovascular Risk Factors (Co-variates)
Socio-demographic information and data on medicine use and
smoking habits, alcohol consumption, and physical activity
were collected by interview, using a standardized and validated
questionnaire (23). Current smoking and alcohol consumption
status were reported as current, former, or never, but has
been dichotomized here to never and ever (where ever denotes
formerly and currently). Participants also reported the frequency
and quantity of usage, age at the start of use, and previous
attempts at abstinence. Participants were asked by interviewers
to provide information on any prescribed or over-the-counter
medication they regularly make use of. Body mass index
(BMI) was calculated as weight (measured using an electronic
scale) per unit height (measured using a stadiometer) squared
(kg/m2). Waist circumference was measured using a steel tape
(Lufkin, Cooper Tools, Apex NC, USA), according to standard
anthropometric procedures. Physical activity is reported as a
continuous physical activity index measure determined using
data from a modified Baecke’s questionnaire validated for use in
South African adults (27).

Blood samples for the subsequent analyses were collected
and processed in the same manner as described above. Fasting
glucose, total cholesterol, triglycerides, and low- and high-
density lipoprotein cholesterol (LDL-C and HDL-C) were

quantified with the Cobas© Integra 400 (Roche© Clinical

System, Roche Diagnostics, Indianapolis, IN). The Cobas©

Integra 400 plus (Roche©, Basel, Switzerland) was used to
determine serum gamma-glutamyl transferase concentrations.
Glycated hemoglobin was quantified using the D-10 Hemoglobin

testing system from Bio-Rad© (#220-0101).

Statistical Analysis
Analyses were performed using version 3.5.0 of R statistical
software (28). Data distribution was evaluated using Shapiro-
Wilks tests and visual inspection of histograms and quantile-
quantile plots. As most of the data were not normally distributed,
we proceeded with non-parametric testing where appropriate.
Prior to linear modeling, all skewed data were loge-transformed.
A Bonferroni adjustment, based on the number of independent
comparisons, was used to account for multiple testing. Variables
were considered dependent when the coefficient of determination
(R2) between themwas>0.2. Based on these criteria, we regarded
the number of independent inflammatory markers tested here as
four ([1] methylation-derived markers, [2] CRP, [3] IL-6 and IL-
10, and [4] TNF-α and IFN-γ) and the CVF markers as three [[1]
BP markers, [2] HR, and [3] cfPWV].

Relationships among the biomarkers of inflammation were
assessed with partial Spearman correlations, controlling for age
and smoking status (Hmisc R package for quantification and
corrplot for visualization, Figure 1), because of the well-described
association of age and smoking status with methylation (29, 30).
The Bonferroni threshold for these correlations was p < 0.003
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FIGURE 1 | Heat map of the partial Spearman correlations among protein-based and methylation-derived biomarkers of inflammation. Numeric values indicate

Spearman’s rho values while controlling for age and smoking status. The presence of color indicates p < 0.003 (α = 0.05/16, calculated as 4 × 4 independent

inflammatory marker comparisons). The shades of color represent the strength and direction of the correlation. “Score” represents the average of the IL-6, IL-10,

TNA-α, IFN-γ, and CRP z-scores. CRP, C-reactive protein; IFN-γ, interferon-gamma; IL-6, interleukin-6; IL-10, interleukin-10; mdLMR, methylation-derived

lymphocyte-to-monocyte ratio; mdNLR, methylation-derived neutrophil-to-lymphocyte ratio; TNF-α, tumor necrosis factor-alpha.

(α = 0.05/16 tests, calculated as 4× 4 independent inflammatory
marker comparisons).

Next, the associations between individual inflammatory
biomarkers (protein-based and methylation-derived) and CVF,
and the variance in CVF explained by these inflammatory
markers, were investigated using linear multivariate regression
models adjusted for known cardiovascular risk markers (Table 2
and Supplementary Table 1). The Bonferroni threshold for these
models was set at p < 0.004 (α = 0.05/12 tests, calculated as 4
independent inflammatory× 3 independent CVF markers).

Thereafter, a combination of methylation-derived
inflammatory markers (selected using backwards-stepwise
regression models) were investigated in similar linear
multivariate regression models (using the car and relaimpo
packages), this time adjusting for known cardiovascular risk
markers including inflammation, represented by the protein-
based inflammatory score (Table 3 and Supplementary Table 3).
The Bonferroni threshold was 0.02 (0.05/3, calculated as three

independent CVF markers × 1 independent inflammatory
marker). The relative contribution of inflammatory biomarkers
to the CVF variance was determined using the relaimpo package’s
lmg metric from the calc.relimp function (31). Chi-square tests
were used to compare linear models, before and after adding
methylation-derived biomarkers (Table 3).

To identify covariates, known cardiovascular risk markers
were entered in backward stepwise linear regression models
with CVF markers as outcome, to identify risk markers strongly
associated with CVF in this study population: age, dwelling place
(rural/urban), body composition (BMI and waist circumference),
level of education, physical activity, smoking status, self-reported
alcohol consumption status, and medicine use. In addition,
blood lipid levels (total cholesterol, LDL-C, HDL-C, and
triglycerides), markers of glucose metabolism (fasting glucose
and glycated hemoglobin), and gamma-glutamyl transferase
were tested. With the exception of dwelling place, smoking
and alcohol consumption status, and medicine use, all variables
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TABLE 1 | Descriptive characteristics of the study population according to their

CVD risk.

Clinical

characteristics

Median

(25%; 75%)

Increased CVD

risk cut-off

References Individuals at

increased risk

N* (%)

PROTEIN-BASED INFLAMMATORY MARKERS

CRP (mg/L) 3.00 (1.52; 7.90) >3.0 (17) 60/119 (50.4)

IFN-γ (pg/mL) 1.51 (0.76; 2.79)

IL-6 (pg/mL) 3.97 (2.10; 7.47) >1.5 (32) 104/118 (89.7)

IL-10 (pg/mL) 3.53 (2.88; 4.86)

TNF-α (pg/mL) 10.1 (7.68; 13.1)

METHYLATION-DERIVED CELL RATIO MARKERS

MdNLR 1.34 (0.90; 1.71) >1.8& (33) 26/120 (21.7)

MdLMR 4.30 (3.39; 4.88) <4.3& (34) 60/120 (50)

cg25938803 (β) 0.32 (0.26; 0.38)

cg10456459 (β) 0.38 (0.31; 0.47)

cg01591037 (β) 0.38 (0.32; 0.45)

cg03621504 (β) 0.25 (0.19; 0.34)

cg00901982 (β) 0.30 (0.21; 0.35)

MARKERS OF CARDIOVASCULAR FUNCTION

SBP (mmHg) 137 (122; 147) >140 (35) 50/120 (41.6)

DBP (mmHg) 83.0 (77.0; 94.0) >90 40/120 (33.3)

PP (mmHg) 49.0 (41.8; 60.3) ≥60 36/120 (30.0)

HR (bpm) 68.0 (58.0; 82.0) >80 31/120 (25.8)

cfPWV (m/s) 9.35 (8.30; 10.5) >10 47/111 (42.3)

CARDIOVASCULAR RISK MARKERS

BMI (kg/m2 ) 21.2 (18.7; 25.3) >25 (36) 37/117 (31.6)

LDL-C (mmol/L) 2.47 (1.77; 3.15) ≥2.60 (37) 51/120 (42.5)

HDL-C (mmol/L) 1.29 (0.99; 1.65) <1.00 31/120 (25.8)

*Expressed as number of participants at increased risk out of the number of participants

with data for the specific variable&Directly measured cell count ratio cut-off. DBP, diastolic

blood pressure; SBP, systolic blood pressure; PP, pulse pressure; CRP, C-reactive protein;

cfPWV, carotid-femoral pulse wave velocity; IFN-γ, interferon-gamma; IL-6, interleukin-6;

IL-10, interleukin-10; IQR, interquartile range; mdLMR, methylation-derived lymphocyte-

to-monocyte ratio; mdNLR, methylation-derived neutrophil-to-lymphocyte ratio; HR, heart

rate; TNF-α, tumor necrosis factor-alpha.

were investigated as continuous variables. Only risk markers
retained by the stepwise regression models were adjusted for in
subsequent models to avoid over fitting, given our limited sample
size. Based on these results, we made use of two main covariate
clusters in all regression analyses. First (hereafter referred to as
Model 1), we adjusted for age only. Second (hereafter referred
to as Model 2), we adjusted for age, smoking status, dwelling
place (rural/urban), BMI, LDL-C, HDL-C, andmedicine use (as a
binary variable, yes or no). When cfPWVwas the outcome, mean
arterial pressure was additionally adjusted for in both models. In
Table 3, inflammation, quantified using the inflammatory score,
was added to Model 2 and is referred to as Model 3.

RESULTS

The clinical characteristics of our cohort are provided in Table 1

and Supplementary Table 1.We report on 120 ostensibly healthy
men, aged between 45 and 88 years (x = 63). Sixty-nine of these

men resided in rural areas, 79 reported regular medication use,
and 64 classified themselves as ever smokers.

Table 1 also indicates, where available, literature-based cut-off
values for increased CVD risk, in the same unit as reported in
our cohort. Based on the CVF and cardiovascular risk markers
reported in Table 1, 25–50% of our study population was at
increased CVD risk. Regarding the protein-based inflammatory
markers, CRP reflected a similar risk (50%), while IL-6 cut-offs
categorized almost 90% of the study population as suffering from
low-grade inflammation (25, 38) and increased CVD risk. No
reference ranges for IL-10, TNA-α, or IFN-γ in terms of chronic
low-grade inflammation or CVD risk are established.

The methylation-derived cell ratios were in agreement
with the CVD risk portrayed by CRP and the CVF and
CVD risk markers (Table 1). The mdNLR and mdLMR,
respectively, classified 21% and 50% of the PURE-SA-NW
participants as having increased CVD risk. Nineteen participants
(16%) were classified as at higher CVD risk by both ratios.
Supplementary Figures 1, 2 depict the methylation-derived
cell count ratios observed in the PURE-SA-NW men (blue)
in relation to directly measured reference ranges published
for healthy individuals from several ethnic groups (green)
and cut-offs previously used to predict the odds of specific
CVD outcomes, or ranges from patients in case-control
studies (orange). On average, the PURE-SA-NW cohort had
comparatively lower mdNLRs than the NLR ranges reported in
other population-based cohorts. The PURE-SA-NW cohort also
exhibited only slight overlap with the patient groups reported. In
terms of the mdLMR (where a higher ratio is more favorable),
comparatively lower ratios were observed than those reported
in other population-based cohorts. The PURE-SA-NW mdLMR
range also spanned the LMRs of the three CVD patient cohorts.

Relationship Between Biomarkers of
Inflammation
Figure 1 depicts the relationship between the 13 investigated
indicators of inflammation, adjusted for age and smoking
status. Positive correlations were observed among the protein
biomarkers. The strongest correlations were between IL-6 and
IL-10 (r = 0.44, p = 9.9 × 10−7) and between TNF-α and
IFN-γ (r = 0.47, p = 1.1 × 10−7). All inflammatory proteins
also associated strongly with the inflammatory score (r > 0.55,
p < 1.6 × 10−10 for all). Comparatively stronger correlations
were observed among the methylation-derived biomarkers. The
negative CpG-mdNLR and positive CpG-mdLMR correlation
coefficients reflect the positive associations of these CpGs with
monocytes (r > 0.27, p < 0.004 in all instances) and lymphocytes
(r > 0.70, p < 1.0 × 10−18 for all), and the negative association
with neutrophils (r < −0.72, p < 2 × 10−20 in all instances).
No convincing evidence for protein-methylation correlations
was observed.

Association of Biomarkers of Inflammation
With Markers of Cardiovascular Function
Supplementary Table 2 reports the partial Spearman correlation
coefficients among the protein-based and methylation-derived
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TABLE 2 | Variance in cardiovascular function explained by individual inflammatory biomarkers.

Inflammatory biomarker Model CVF variance explained

by covariates

Inflammatory biomarker’s contribution

to the model

Variance explained by full model

(including the inflammatory

biomarker)

β (25%; 75%) P

HR (log bpm)

CRP 1 0% 0.04 (0.01; 0.07) 0.006 7%

2 9% 0.05 (0.02; 0.07) 0.001 19%

mdNLR 1 0% 0.11 (0.04; 0.18) 0.003 7%

2 9% 0.10 (0.02; 0.18) 0.01 15%

mdLMR 1 0% −0.19 (−0.32; −0.07) 0.003 8%

2 9% −0.18 (−0.30; −0.07) 0.005 16%

cg10456459 1 0% −0.20 (−0.32; −0.08) 0.002 8%

2 9% −0.17 (−0.29; −0.08) 0.008 15%

cg03621504 1 0% −0.12 (−0.21; −0.04) 0.004 7%

2 9% −0.11 (−0.19; −0.04) 0.02 14%

cfPWV (log m/s)

cg25938803 1 25% −0.20 (−0.31; −0.09) 3.8E−04 33%

2 36% −0.18 (−0.29; −0.09) 0.002 42%

cg03621504 1 25% −0.12 (−0.19; −0.04) 0.002 31%

2 36% −0.09 (−0.16; −0.04) 0.01 40%

All inflammatory and CVF biomarkers reported were loge-transformed prior to analysis. Regression coefficient interpretation should be that one per cent change in x (inflammatory marker)

will induce a regression coefficient (β) per cent change in y (CVF marker). Model 1: CVF marker ∼ (inflammatory biomarker) + age; Model 2: CVF marker ∼ (inflammatory biomarker)

+ age + smoking status + dwelling place + smoking status + BMI + LDL-C + HDL-C + medication use. When cfPWV was the outcome, mean arterial pressure was additionally

adjusted for. p ≤ 0.004 highlighted in bold. CRP: C-reactive protein; cfPWV: carotid-femoral pulse wave velocity; mdLMR: methylation-derived lymphocyte-to-monocyte ratio; mdNLR:

methylation-derived neutrophil-to-lymphocyte ratio; HR: heart rate.

TABLE 3 | The additive value of methylation-derived inflammatory biomarkers to known cardiovascular risk markers in relation to cardiovascular function.

Regression model* Inflammatory biomarker Variance explained X2

p-value

β (25%; 75%) P Contribution to CVF variance&

SBP (log mmHg)

Model 3 14% 0.005

+mdNLR 0.11 (0; 0.23) 0.05 2.2% 22%

+cg03621504 0.21 (0.08; 0.35) 0.003 7.3%

cfPWV (log m/s)

Model 3 41% 0.008

+mdNLR −0.13 (−0.26; −0.003) 0.05 1.5% 48%

+ cg25938803 −0.24 (−0.43; −0.06) 0.01 4.7%

+ cg03621504 −0.11 (−0.24; 0.02) 0.10 1.6%

All inflammatory and CVF biomarkers reported were loge-transformed prior to analysis. Regression coefficient interpretation should be that one per cent change in x (inflammatory marker)

will induce a regression coefficient (β) per cent change in y (CVF marker). *Model 3: CVF marker ∼ age + smoking status + dwelling area + BMI + LDL-C + HDL-C + medicine use +

score (the average of the IL-6, IL-10, TNA-α, IFN-γ and CRP z-scores). When cfPWV was the outcome, mean arterial pressure was additionally adjusted for. & lmg metric providing a

decomposition of the model explained variance into non-negative contributions (31). X2 p value = Chi-square p value when the regression models with and without methylation-derived

inflammatory biomarkers are compared. SBP: systolic blood pressure; cfPWV: carotid-femoral pulse wave velocity; mdNLR: methylation-derived neutrophil-to-lymphocyte ratio. p≤ 0.02

highlighted in bold.

biomarkers of inflammation and markers of CVF, adjusted
for age. No evidence was observed for a linear relationship
between BP (SBP, DBP, and PP) and inflammatory markers

(protein-based and methylation-derived). Comparatively
stronger correlations were observed where HR and cfPWV were
concerned, particularly in relation to the methylation-derived
inflammatory biomarkers. The only Bonferroni significant
correlations observed (p ≤ 0.004) were between cg25938803 and

HR (r = −0.27, p = 0.003), cg25938803 and cfPWV (r = −0.29,
p= 0.002), and cg10456459 and HR (r =−0.30, p= 0.001).

Summary statistics of the linear regressionmodels quantifying
the relative contribution of the investigated inflammatory
biomarkers to the variance in CVFmarkers are shown in Table 2.
Only inflammatory biomarkers that contributed to these models
(either Model 1 or 2) at a Bonferroni-adjusted significance
threshold of p <0.004 are reported in Table 2. Test statistics
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for all 13 investigated inflammatory markers and the five CVF
markers (SBP, DBP, PP, HR, and cfPWV) are reported in
Supplementary Table 3.

Markers of CVF appeared to be more strongly associated
with methylation-derived inflammatory markers than with
protein-based biomarkers (Table 3, Supplementary Table 3).
Regarding relationships with HR, four methylation-derived
biomarkers reached Bonferroni cut-off, although the associations
were attenuated when additional covariates were added
to the model. The association between HR and CRP, on
the other hand, strengthened upon full adjustment (Model
2). Two CpGs, cg25938803 and cg03621504, associated
negatively with cfPWV. Both associations attenuated on
full adjustment with evidence remaining for the association
between cg25938803 and cfPWV. To specifically determine
the impact of medications impacting the cardiovascular
system we repeated our analysis and replaced total
medication use with CVD medication use (detailed in
Supplementary Table 1). No attenuation of associations
was observed upon doing so.

Additive Value of Methylation-Derived
Inflammatory Markers When Investigating
Cardiovascular Function
Next, we investigated whether the methylation-derived
inflammatory markers can increase the variance explained
in CVF when added to a model containing known CVD risk
markers, including inflammation. To this end, we included the
protein-based inflammatory score, as an amalgamated biomarker
of inflammation in the covariate list of Model 2 (referred to below
as Model 3). To identify which methylation-derived biomarkers
to investigate, we performed a backward stepwise regression
analysis for all CVF phenotypes. Age (and mean arterial pressure
when cfPWV was the outcome) and the seven methylation-
derived inflammatory biomarkers were added to these models
as independent variables. Only the markers retained by the
backward stepwise regression were included in further analyses
(Table 3). For all three BP-related markers, cg03621504 and
mdNLR were retained. For HR, cg25938803, cg10456459, and
cg01591037 were retained. For cfPWV, cg25938803, cg03621504,
and mdNLR were retained. The additive variance explained
was determined when the retained methylation markers were
added to a fully adjusted (Model 3) multivariate regression
analysis. Table 3 reports only the model for which the addition
of methylation biomarkers increased the explained variance
at a Bonferroni-adjusted threshold of p <0.02. Full summary
statistics are provided in Supplementary Table 4.

Myeloid CpGs, cg03621504, and cg25938803 were the only
methylation-derived markers that had strong evidence of
individual contribution to the variance in SBP and cfPWV,
respectively. The retained methylation-derived inflammatory
markers contributed an additional∼7% to the variance explained
in SBP and cfPWV, after age, smoking status, body composition,
blood lipids, socio-economic status (represented by urban/rural
status), medication use and inflammation (protein-based) had
been accounted for. For every ∼2% methylation increase in

cg03621504 a 10 mmHg change in the geometric mean of SBP
was observed. For cfPWV, an increase of 1 m/s in the geometric
mean resulted from a ∼3% methylation increase in cg25938803.
Again, findings remained robust upon replacing total medication
use with CVD medication use.

DISCUSSION

In this study we report the value of methylation-derived
indicators of inflammation in relation to CVF, including BP
and large artery stiffness. Although the methylation-derived and
protein-based inflammatory markers did not demonstrate strong
associations with each other, both reflected a similar degree of
increased CVD risk. Methylation-derived markers appeared to
be more strongly associated with CVF than the protein-based
inflammatory markers tested. Furthermore, when exploring
models explaining variance in CVF, we found that methylation
biomarkers, particularly the myeloid CpGs, explained variance
in addition to variance already explained by known CVD
risk markers, including inflammation reflected by a protein-
based inflammatory score. This suggests that methylation-
derived inflammatory markers may complement protein-based
inflammatorymarkers in explaining CVFmarker variance, rather
than simply being a proxy thereof.

mdNLR and mdLMR in the PURE-SA-NW
Cohort
Although the evidence for appropriate cut-off values for
increased CVD rather than overt disease risk remains unclear,
a meta-analysis of 38 studies, investigating NLRs in relation
to stroke, acute coronary syndrome, coronary artery disease,
and a composite of these events (33), provides some guidelines.
According to these guidelines, 21% of the PURE-NW cohort
can be classified as at increased CVD risk. This is lower than
the risk percentage indicated by CRP and IL-6 concentrations,
but in agreement with the other CVF and CVD risk markers
investigated, albeit in the lowest range of risk prediction. When
comparing our CVD risk and mdNLRs with the individual
cohorts depicted in Supplementary Figure 1, some discrepancies
are, however, noted. Almost 60% of the PURE-SA-NW study
population can be classified as suffering from hypertension
(according to BPs and anti-hypertensive medication use), yet
more than 75% of the sample population hadNLRs (methylation-
derived) lower than directly measured NLRs reported in a
cohort with hypertension (39). It should be noted that, although
validated and widely used (5), the methylation-derived cell
deconvolution has been shown to underestimate neutrophil and
overestimate lymphocyte proportions, by −1.66 and 0.4–1.0%,
respectively (5). An average underestimation of the mdNLR vs.
directly measured NLR of 0.6 units has also been reported (1).
Consequently, such a 0.6-unit increase in mdNLR will shift our
study population’s median to just above the CVD risk cut-off
(33), resulting in a reclassification of∼50% of the cohort being at
increased risk, thereby aligning with the protein-based estimation
(Supplementary Figure 1). Regardless of a possible adjustment,
our data agrees with prior reports of more favorable NLRs in
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black populations (14), thanHispanic and white American ethnic
groups. For the first time a comparison has been drawn between
an African study population and European, Asian, and Chinese
cohorts (13, 15, 16). No notable differences were observed
between the black African study population reported on here and
data from European, Asian, or Chinese cohorts.

In agreement with the adjusted mdNLR, the mdLMR also
classified half of the PURE-SA-NW population as being at
increased risk of CVD. Contrary to the mdNLR, no adjustment
is required when comparing the mdLMR with directly measured
ratios (5). On average, the PURE-SA-NW study population
had lower mdLMRs than the LMRs previously reported for
Asian, Chinese, and Western Indian cohorts (15, 16, 40).
An overlap in the reference ranges of these four ethnic
groups that were compared was, however, clearly visible
(Supplementary Figure 2). These ranges, furthermore, spanned
the LMRs reported in patients with coronary artery disease,
coronary lesions, and chronic stable angina (34, 40, 41). It is
noteworthy that, altogether, the studies that investigate LMR in
the context of CVD represent fewer than N = 1 000 individuals
of whom only N = 162 are controls (34). The limited evidence,
together with the observation that the LMRs reported in four
ostensibly healthy cohorts spanned, by a wide margin, the LMRs
reported for CVD patients, highlights the need for more research
on the LMR and its accuracy in risk prediction, because recent
evidence suggested that the LMR might, in some instances, be
more useful in CVD risk prediction than the NLR (34).

Inflammation as a Contributor to
Cardiovascular Risk
The central finding of this study is that, although current
research relies heavily on protein-based inflammatory markers
for CVD risk estimation (17, 25), methylation-derived
inflammatory markers appear not only to be more strongly
associated with CVF than protein-based markers but also
independently so. Collectively, more variance was explained
using a combination of methylation and protein markers, than
the conventional protein markers on their own, suggesting that
the methylation biomarkers could offer unique information on
the inflammatory process and are not just surrogate markers for
inflammatory proteins.

Prior evidence has shown a multitude of possible mechanisms
through which individual leukocyte sub-types, proxied for
in this study by methylation-derived cell count markers,
may directly contribute to CVD (reviewed by 7, 34, 45).
Neutrophils, for example, secrete inflammatory mediators and
proteolytic enzymes related to vascular wall degeneration (7, 33).
Macrophages (matured monocytes) contribute to cardiovascular
risk mainly through its secretion of cytokines and reactive
oxidative species once infiltrated to atherosclerotic plaque (34).
On the other hand, regulatory T-cells (a lymphocyte sub-type) is
a known role player in the development of hypertension through
its role in the renin–angiotensin system (39).

The implication of these findings is that using a single
protein marker (typically CRP, IL-6, or TNF-α in CVD-related
investigations) to adjust for “inflammation” might not capture

all the variance of the true inflammatory effect. The superiority
of cell counts lies in their ability to reflect information about both
the innate and complementary inflammatory processes. Adding
to this advantage is the ability to provide methylation-derived cell
count estimates retrospectively, from any well-preserved whole-
blood or leukocyte samples where DNA is available, thus enabling
the reinvestigation of large sample sets already collected.

CpGs as an mdNLR Proxy
One previous study identified (4) and another replicated (2) the
use of the five investigated CpGs as surrogates for the mdNLR in
cancer case-control studies in American populations. Here, we
evaluated their potential use in black South African men with
low-grade inflammation associated with CVD risk. All five CpGs
strongly associated with the mdNLR, confirming their robust
associations with myeloid cell differentiation in a population-
based study of a different ethnic group than previously reported.
For arterial stiffness, cg25938803 was the most important
contributor, even after the mdNLR and cg03621504 had been
accounted for. Similarly, for SBP, cg03621504 contributed
considerably (7.3%) to the explained variance, also after protein-
based inflammatory markers and the mdNLR were added
to the model. Apart from its strong associations with HR
and arterial stiffness, cg03621504 was the only inflammatory
biomarker with evidence of a possible association with BP,
contributing 3–4% to the variance in all instances, at p < 0.05
(Supplementary Tables 3, 4). It is, therefore, possible that this
CpG represents a novel marker of CVD risk.

Our observation that the myeloid CpGs contributed to CVF
variance regardless of the prior inclusion of the mdNLR suggests
that these CpGs may associate with CVF independently of cell-
counts. This argument is strengthened by the fact that although
the five CpGs were equally reflective of the mdNLR, associations
with CVF markers differed in strength. Population-specific
variance may contribute to the different patterns of association.
Indeed, we found that two of the investigated CpGs, cg01591037
and cg00901982, are associated with cis single nucleotide
polymorphisms (SNPs, rs76297553 and rs6546566, respectively)
that are both methylation quantitative trait loci (mQTLs) for
these CpGs and are expression QTLs for local genes (42, 43).
Population differences in the minor allele frequencies of these
SNPs (0.3% and 26% in African Americans compared to 6% and
30% in Europeans for rs76297553 and rs6546566, respectively)
have been reported by the 1000 Genomes project (44).

Strengths and Limitations
A limitation of this study is that we only investigated men, so
we are unable to generalize our findings to women. Secondly,
although methylation-derived cell ratios are accurate reflections
of directly measured ratios, the lack of available literature
on methylation-derived cut-offs for CVD risk and outcomes
hindered direct comparison with directly measured ratios,
particularly in the case of NLR. As a result of our limited
sample size and the stringent statistical approach followed, there
may be some true positive findings not emphasized here. For
this reason, we reported all our results in the supplementary
material so that our findings may be replicated in larger
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cohorts. Lastly, although we were able to provide evidence for
the independent contribution of the myeloid CpGs to CVF
variance and CVD risk, we were not able to further investigate
these mechanisms.

The limitations mentioned above are met with various
strengths. We were able to layer evidence from five inflammatory
proteins frequently investigated in the context of CVD, with
cytological data, whereas previous studies mostly had access
to one or the other (3, 33, 45). This is particularly rare
in an ostensibly healthy cohort. This is also the first time
methylation-derived cell ratio estimates and the myeloid CpGs
has been investigated in a Sub-Saharan African study population,
which addresses the need for more ethnic representation
and reference sets, particularly in epigenetic epidemiology
(14, 15, 46). The lack of data on covariates known to
affect cell count ratios, some even in a population-specific
manner (14), such as adiposity, smoking, and medication
use, has hindered previous investigations of population-specific
reference ranges. We addressed this by investigating a richly
phenotyped study population in whom we were able to
identify and evaluate many, previously unstudied, potential
confounding factors.

CONCLUSION

The methylation-derived cell ratio estimates observed in this
South African study population were comparable to previously
investigated ostensibly healthy ethnic groups. The CVD risk
reflected by these ratios was in accordance with that of
CRP and several CVF and CVD risk markers. Five CpGs
previously suggested as surrogates for the mdNLR in cancer
patients were similarly highly associated with mdNLR in
our cohort, regardless of the absence of overt inflammation.
However, the contribution of these CpGs to CVF was
independent from their effect on myeloid differentiation
and robust to adjustment for known CVD risk factors,
illustrating their potential functional relevance, apart from
their role in myeloid differentiation. We demonstrate that
population-specific genetic variance may contribute to these
CpG-CVF associations even when comparable CpG-mdNLR
relationships are observed. Methylation-derived and protein-
based inflammatory biomarkers explain independent portions
of CVF variance; the best characterization of CVF variance is
obtained when methylation biomarkers, particularly the myeloid
CpGs, are included in models containing known CVD risk
markers, including protein-based inflammatory markers. Cell
count data are highly valuable when the aim is to characterize
inflammation, particularly when DNA is available, allowing
the reinvestigation of existing cohort data and potentially
circumventing the need for new data collection. The widely
used Infinium HumanMethylation 450K and EPIC BeadChip
arrays include the myeloid CpGs reported here and methods to
derive cell counts have been rigorously validated for these assays.
Consequently, many large epigenetic epidemiology cohorts are
already in possession of the necessary data to investigate cell
count-related immunomodulation.
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