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Malaria is caused by apicomplexan parasites of the genus Plasmodium. While infection

continues to pose a risk for the majority of the global population, the burden of disease

mainly resides in Sub-Saharan Africa. Although immunity develops against disease, this

requires years of persistent exposure and is not associated with protection against

infection. Repeat infections occur due to the parasite’s ability to disrupt or evade the

host immune responses. However, despite many years of study, the mechanisms of

this disruption remain unclear. Previous studies have demonstrated a parasite-induced

failure in dendritic cell (DCs) function affecting the generation of helper T cell responses.

These T cells fail to help B cell responses, reducing the production of antibodies that are

necessary to control malaria infection. This review focuses on our current understanding

of the effect of Plasmodium parasite on DC function, DC-T cell interaction, and T cell

activation. A better understanding of how parasites disrupt DC-T cell interactions will lead

to new targets and approaches to reinstate adaptive immune responses and enhance

parasite immunity.
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INTRODUCTION

Malaria is caused by the Plasmodium parasite, which affects majority of the world’s population.
Annually, the disease causes ∼228 million cases, resulting in 405,000 deaths. Africa accounts for
about 93% of the reported cases and 94% of reported mortality cases occurring in children under
the age of 5 (1). Residents in malaria endemic areas are susceptible to repeat malaria infection, with
each infection resulting in modification of the hosts immune system. As well as affecting the host
response to further infection (2), endemic malaria is also associated with weakened immunity to
bystander infections and vaccines (3). Malaria infection has been shown to alter the phenotype and
function of dendritic cells (4, 5) B cells (6, 7) and T cells (7–10) causing a disruption in the host
immune response.

PLASMODIUM LIFE CYCLE

Plasmodium has a complex life cycle that occurs in two hosts; the female Anopheles mosquito
(sexual reproductive stage) and a vertebrate host (asexual development stage). The latter
begins when an infectious female Anopheles mosquito probes the dermis of a mammalian
host as it takes a blood meal, releasing a highly motile form of the parasite, sporozoites,
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from its saliva (Figure 1A) (11, 12). Not all sporozoites manage
to reach the blood vessel and those that remain in the dermis are
either destroyed or drained into the lymphatics where the host’s
immune system eliminates them (13, 14). Those that manage
to enter the bloodstream circulate and enter the liver through a
process known as traversal, to gain access to a suitable hepatocyte
(15, 16). Once inside a suitable hepatocyte, the sporozoite forms
a parasitophorous vacuole (PV) and undergoes pre-erythrocytic
schizogony, forming merozoites that accumulate within the
parasitophorous vacuole and bud off the hepatocyte in structures
called merosomes, clearing the liver of parasites (Figure 1B). The
merosomes enter the bloodstream, releasing the encapsulated
merozoites to infect red blood cells (RBCs) (17–19).

In the blood, the free merozoites attach to, and subsequently
invade the RBC, initiating the erythrocytic stage of the parasite
life cycle. Once inside the RBC, the merozoite matures
in three morphologically distinct stages, namely the ring,
trophozoite, and schizont stages. During the maturation stages
the RBC undergoes a number of structural and functional
changes that alter the architecture of the RBC membrane
(Figure 1C) (20). Key amongst the structural changes is the
expression of Plasmodium falciparum erythrocyte membrane
protein 1 (PfEMP1), a vital parasite protein that is central
to P. falciparum pathogenesis (21–23). PfEMP1 is expressed
on the surface of parasite infected RBCs (iRBC) and enables
iRBCs to sequester and cytoadhere to vascular endothelium,
preventing their destruction in the spleen. Apart from the
structural changes that occur to the RBC, the parasite also
undergoes nuclear division producing merozoites that fill the
PV (the schizont stage). The merozoites egress from the
iRBC and invade other RBCs initiating another cycle for
parasite replication.

After rounds of schizogony, some P. falciparum trophozoites
commit to sexual development and form gametocytes. The
gametocytes undergo five stages of maturation while being
sequestered in the bone marrow. Only stage five gametocytes re-
enter circulation and are taken up by a mosquito during a blood
meal (24).

Interaction between DCs and Plasmodium parasite occurs at
various points during the life cycle of the parasite in a human host
(Figure 1). The parasite encounters DCs in the skin (Figure 1A)
(13, 25), the liver (Figure 1B) (26, 27), and the blood and spleen
(Figure 1C) (4). Tissue resident DCs in each of the sites can
phagocytose parasite components and initiate specific immune
responses to the parasite.

DENDRITIC CELLS

DCs are mononuclear phagocytic cells that are found in the
blood, lymphoid organs and all tissues. They are the most
effective professional antigen presenting cells in the body due
to their ability to capture, process and present antigen on either
major histocompatibility complex (MHC) class I or MCH class II
molecules and activate naive CD8 or CD4T cells (28, 29). DCs are
central in initiating and regulating adaptive immune responses
and act as a bridge between the innate and adaptive arms of the

immune system. DCs differentiate from hematopoietic stem cells
(HSC) (30) in the bonemarrow to immatureDCs, which circulate
in blood and home to various peripheral tissues. Immature
DCs recognize a range of danger signals such as pathogen-
associated molecular patterns (PAMPS) which are found on
pathogens and damage associated molecular patterns (DAMPS)
which are released by injured host cells (31), through a number
of pathogen recognition receptors (PRRs) (32, 33). Ligation
of PRRs initiates DC phagocytosis, resulting in ingestion of
the invading pathogen and initiation of DC maturation and
migration into the lymph node where they present antigens to
naive T cells (34). The maturation process results in increased
expression of MHC surface molecule coupled with pathogen
antigens and costimulatory molecules (CD80, CD86, and CD40),
which are key in proliferation and differentiation of naive
T cells into effector cells (35). DCs also secrete cytokines
and chemokine that attract other immune cells to sights of
infection/injury and influence the outcome of T and B cells
responses (36).

DCs are lineage negative cells [that is they are defined by the
exclusion of T cells (CD3), B Cells (CD19, CD20) natural killer
cells (CD56), monocytes (CD14, CD16) and progenitor cells
(CD34)] and express MHC class II (HLA-DR) and are broadly
classified into either plasmacytoid DCs (pDCs) or conventional
DCs (cDCs). In humans, pDCs are characterized by expression
of CD123, CD303 (BDCA-2) and CD304 (37) and are known
to produce large amounts of type I interferon in response to
viruses (38). This is enabled by the high expression levels of toll-
like receptor 7 (TLR7) and TLR9, which recognize nucleic acids
from viruses, bacteria, and dead cells (39, 40). cDCs specialize in
priming and presenting antigen to T cells. They can be further
classified into cDC1 and cDC2. cDC1 express BDCA-3/CD141,
CLEC9A, and XCR1 and have enhanced ability to cross present
antigen (41) to CD8T cells. cDC2 express BDCA-1/CD1c and
have a wide variety of pattern recognition receptors (PRR’s) and a
good capacity to stimulate naive CD4T cells but they have a poor
ability to cross-present antigens to CD8T cells compared with
cDC1 (37, 40).

DCs are central in any immune response as they sense
pathogens and initiate immune responses and are present
at various sites during the life cycle of the Plasmodium
parasite. As discussed later, the parasite’s numerous immune
evasion mechanisms interfere with DC function, thus altering
downstream immune effector functions and the course of
the disease.

T CELLS

T cells develop in the thymus from the common lymphoid
progenitors which originate from bone marrow derived
hematopoietic stem cells (42). After development and
maturation, naiveT cells exit the thymus and enter circulation
expressing either CD4 or CD8 and an antigen-recognizing T
cell receptor (TCR) on their surface. The naive T cells home
to secondary lymphoid organs (SLO) where they await a signal
from DCs to become activated.
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FIGURE 1 | The asexual life cycle of Plasmodium parasite begins when an infected mosquito injects highly motile sporozoites into the skin of the host. The

sporozorites enters the bloodstream and migrates to the liver, where it traverses multiple hepatocytes before infecting one. Inside the hepatocyte the sporozoite

undergoes pre-erythrocytic schizogony forming merozoites that accumulate and bud off the hepatocyte in structures called merosomes. Merosomes enter the

bloodstream and release merozoites which invade RBC, initiating the erythrocytic stage of asexual development. At this stage the parasite develops inside the RBC in

distinct forms namely the ring, trophozoite, and schizont form. The schizont, lyses releasing merozoites into the blood stream which reinvade RBCs starting a fresh

round of asexual development. After rounds of erythrocytic schizogony some of the asexual parasites develop into gametocytes and are taken up by a mosquito

during a blood meal. Dendritic cells can interact with sporozoites in the dermis (A), the liver (B) and the blood and spleen (C). The DCs at each site encounter the

parasite in its different forms (Figure was created using BioRender).

CD8T CELLS

Naive CD8T Cells are activated by recognition of foreign or
neoantigens presented by MHC class I molecules on DCs
in the secondary lymphoid organs. Additional co-stimulatory
signals and cytokines from DCs and/or CD4T cells help
in differentiation and clonal expansion of the T cells (43–
46). The activated effector CD8T cells migrate from the
secondary lymphoid organs into circulation and identify their
target cells which express cognate antigens on the cell surface
bound to MHC class I. MHC class I is expressed on all
nucleated cells except red blood cells. The target cells are
killed by effector CD8T cells through cell contact dependent
cytolysis by releasing granzyme B and perforin (47–49). Perforin
creates pores on the plasma membrane of the target cell; the
pores allow granzyme B to enter the target cell and initiate
apoptosis resulting in killing of infected cells. After clearing

the invading pathogen, antigen specific effector CD8T cells
die off and a small number differentiate into memory CD8
T cells (45, 50).

Antigen specific CD8T cells have been observed in the
peripheral blood of residents from a malaria endemic area
(51) and after vaccination of malaria naive individuals with
irradiated sporozoites (52). In experimental mouse models of
malaria, CD8T cells specific for sporozoites antigens, liver stage
antigens, and blood stage antigens were observed when mice
were challenged with radiation attenuated sporozoites (53). It
is believed that the priming of CD8T cells against the pre-
erythrocytic stages of Plasmodium occurs in the skin draining
lymph nodes when sporozoites are injected into the skin by
an infected mosquito (14, 54). These CD8 may offer protection
against subsequent Plasmodium infections as incubation time in
the liver offers a short window of opportunity for the CD8T to
mount an effective response.
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CD4T CELLS

CD4T cells, on the other hand, recognize antigens presented by
MHC class II molecules, which are present on antigen presenting
cells such as B cells, macrophages, and dendritic cells. CD4T cells
generally provide help to B cells in the germinal center enabling
class switching and production of high-affinity antibodies (55).
They also aid in CD8T cell activation by licensing DCs (56–58)
or directly signaling CD8T cells via CD40 (59). They also secrete
cytokines such interferon gamma (IFNγ), C-X-C motif ligand
9 (CXCL9), CXCL10 (60) interleukin-2 (IL-2) (61–63), and IL-
21 (64) that are key in shaping immune responses. The diverse
range of CD4T cell functions are handled by distinct subsets
of cells. The cytokine milieu in the microenvironment during
CD4T cell activation dictates the specific cytokine signaling
networks and transcription factor activated for the differentiation
of naive CD4T cells into T cell subsets. The cytokines involved in
CD4T cell differentiation are produced by DCs and other innate
immune cells, driving the cells to differentiate into either T-helper
1 (Th1), T-helper 2 (Th2), T-helper 17 (Th17), follicular helper T
cell (Tfh), induced T-regulatory (iTreg), or the regulatory type 1
cells (Tr1).

Tfh cells have been a recent focus of interest in malaria
immunology. Tfh cells express C-X-C motif receptor 5 (CXCR5)
on their surface and are vital in the development of humoral
immunity (55). Differentiation of CD4T cells to Tfh is amultistep
step process that first begins with DC interacting with a naive
CD4T cells in the T cells zone (Figure 3). This interaction results
in the formation of pre-Tfh cells expressing CXCR5 that migrate
to the T-B cell border of the SLO (65). At the T-B cell border
and interfollicular zone, pre-Tfh interact with antigen specific B
cells to initiate the B cell dependent phase of Tfh differentiation,
which is characterized by upregulation of transcription factor B
cell lymphoma 6 (Bcl-6) (66) and commits the Tfh lineage. After
events at the T-B cell border, the Tfh migrates into the follicle
and interacts with B cells forming germinal centers, where B
cells undergo affinity maturation and heavy chain class switching,
resulting in the production of high-affinity antibodies with
enhanced effector functions (67). Tfh differentiation involves
a number of cytokines such as IL-6, IL-21 (68), IL-12 (69),
IL-27 (70), and TGF-β (71). These cytokines initiate signal
transducer and activator of transcription 1 (STAT1), STAT3
(72) and STAT4 (73). The STATs upregulate the transcription
factor B cell lymphoma 6 (Bcl-6), the master transcription
factor in Tfh differentiation. Apart from cytokines, other signals
required during differentiation of Tfh cells include the inducible
costimulator (ICOS)- inducible costimulatory ligand (ICOSL)
signaling (74, 75) and CD40-CD40L signaling.

CD4 Tfh cells are essential for promoting antibody response
that aid in resolving malaria infection (76, 77). In malaria
infected humans and mice, Tfh cells adopt a Th1 like phenotype
that expresses Tbet+ PD-1+, CXCR5+, CXCR3+, and secretes
IFNγ (77, 78). This Tfh phenotype does not provide adequate
help to B cells resulting in suboptimal antibody responses.
Dysfunctional DCs that are induced by malaria may play a role in
initiating this Th1-like phenotype that skews humoral response
(Figures 2D,E).

THE IMPACT OF PLASMODIUM ON DC-T
CELL INTERACTIONS

Activation of T cells requires interaction with DCs, which
provide three key signals (Figure 2). Signal 1 occurs when T
cells recognize cognate peptide antigen presented on either MHC
I or MHC II on the surface of DCs via their T cell receptor
(TCR). MHC-TCR interactions trigger activation of the T cells
and initiates downwards signaling through immunoreceptor
tyrosine-based activation motifs (ITAMs) (79). Besides TCR-
antigen-MHC complex, a second signal, the costimulatory
signal, is required to initiate and sustain T cell activation and
proliferation. Co-inhibitory molecules (immune checkpoints)
also form part of the second signal, but they downregulate
immune responses (Figure 2B) (80, 81). Key costimulatory
molecules involved in T cell activation include CD28 (binds to
CD80/86 on DCs), ICOS (binds to ICOSL on DC), OX40 (binds
to OX40L on DCs), and CD40L (binds to CD40 on DCs), are
key in T cell activation, differentiation and survival (Figure 2A).
These costimulatory signals work in synergy with the TCR-
antigen-MHC complex to enhance the activation of T cells. Co-
inhibitory molecules such as cytotoxic T-lymphocyte-associated
protein 4 [(CTLA-4), competes for binding to CD80/86 with
CD28 on DC], and programmed cell death-1 [(PD-1), binds
to PD-1L] work to suppress the activation signal from TCR-
antigen-MHC complex (Figure 2B). Once the T cell has received
TCR-antigen-MHC complex signaling together with adequate
co-stimulation, it receives a third signal in the form of cytokines
that are secreted by DCs. As mentioned above, cytokines are
important in deciding the fate of CD4T cell differentiation
toward a particular subset. Subsets of CD4T cells include Th1
type (CD4T cells exposed to the cytokine IL-12), Th2 (IL-4), Th-
17 (IL-6, IL-23), Tfh (IL6, IL21), and iTreg (TGF-β) (Figure 2).

Tfh differentiation is a multistep process that requires signal
1 in the form of antigen presented on MHC II by DCs
(Figure 3). This interaction occurs at the T cell zone and
involves the costimulatory molecules CD80, CD86, and inducible
costimulatory ligand (ICOSL) on DC that interact with CD28
and ICOS to generate signal 2 in T cells. The CD28-CD80/86
interaction results in the upregulation of ICOS on T cells that
interacts with ICOSL on DCs. The cytokine (signal 3) produced
by DCs that helps in the initial process of Tfh differentiation
is IL-12 (82). A combination of CD28-mediated signaling on T
cells and IL-12 is adequate to upregulate the expression of Bcl-
6, IL-12 also induces IL-21 production in T cells, which acts
in an autocrine manner to ensure growth and survival of pre-
Tfh. Bcl6 expression upregulates CXCR5 expression allowing the
pre-Tfh cells to migrate to the T cell-B cell zone (83). At this
zone, the Tfh cell interacts with B via ICOS-ICOSL committing
the cell to the Tfh lineage and further upregulating CXCR5 and
SAP (67). The CXCR5 and SAP expressing Tfh cells then move
into the B cell follicle and form stable, long-lasting interactions
with B cells forming germinal center where Tfh cells aid in
class switching and generation of long-lived plasma cells that
secrete high-affinity antibodies. Germinal center Tfh cells are also
involved in the formation of long-lived plasma cells and memory
B cells (84, 85).
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FIGURE 2 | T cell activation or deactivation requires three signals from DCs. (A) T cell activation requires signal 1 in the form of TCR interacting with antigen-MHC

complex which is key in innating downward signaling through ITAMs. Interaction of co-stimulatory molecules (interaction of CD40-CD40L, and CD80/86-CD28) form

part of signal 2 as they work in tandem with TCR-antigen-MHC complex to enhance TCR signaling and initiate T cell proliferation. Signal 3 comes from DCs in the

form of cytokines, and in CD4T cells it is key in dictating which subset it will differentiate into. (B) Co-inhibitory molecules also form part of the second signal but unlike

co-stimulatory molecules they inhibit TCR signaling, thus dampening immune responses. Interaction of PD-1 with PD-L1 inhibits T cell activation, while CTLA4

competes for binding with CD28 to CD80/86 and successful binding of CTLA4 to CD80/86 nullifies CD28-CD80/86 activation signal. Malaria has been shown to

induce expression of PD-1, LAG3 and CTLA-4 on CD4T cells, and this inhibits the activation signal from DCs (Figure was created using BioRender).

P. FALCIPARUM IMMUNE EVASION AND
SUPPRESSION OF IMMUNITY

P. falciparum is equipped with multiple mechanisms which it
uses to evade the host’s immune system. These mechanisms
include antigenic variation of surface antigens (VSA) expressed
on iRBCs such as PfEMP1 which is encoded by the var genes
(21), sub-telomeric variable open reading frame (STEVOR)
encoded by the stevor genes (86, 87) and repetitive interspersed
repeats (RIFIN) encoded by the rif genes (88, 89). Antigenic
variation of VSAs normally occurs when the parasite is
under intense immune pressure from the host in order
to avoid recognition by various immune cells (90, 91).
The expression of different VSAs on iRBCs allows the
parasite to establish new infections (92). VSAs are key
in sequestration and cytoadherence of maturing parasites
(trophozoite and schizonts) and rosetting (93, 94). Merozoite
surface protein (MSP) polymorphism (95–97) and complement
evasion by surface proteins PfMSP3.1 (98), Pf92 (99), and

PfGAP50 (100) expressed on merozoites and gametes are other
mechanisms used by the parasite to escape elimination by the
immune system.

Apart from immune evasion, ongoing Plasmodium infections
have been shown to reduce immunogenicity of vaccines in
children. Antibody responses to Salmonella typhi and tetanus
vaccines were greatly reduced in malaria infected children
compared to healthy control and children with other acute
illnesses (3). Adults with previous exposure to P. falciparum,
showed no response to malaria antigen, regardless of disease
severity, and reduced response to non-specific antigens (2).
Infection of influenza-immune mice with P. chabaudi resulted
in a decrease in influenza specific antibodies and plasma cells
resulting in a loss of protective immunity against influenza
(101), which recovered several weeks after parasite clearance.
This indicates that malaria infections somehow suppress immune
function by interfering with the development of adaptive
immunity. Ongoing malaria infection reduces immunogenicity
to heterologous vaccines and malaria derived antigens. The
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FIGURE 3 | Tfh development and function. (A) Tfh differentiation begins when an activated DC primes a naïve CD4T cells. Interaction between ICOS on CD4 and

ICOS-L on DCs results in upregulation of Bcl-6 and CXCR5 on CD4T cells. IL-12 and IL-6, help maintain expression of Bcl-6, and IL-12 induces upregulation of IL-21

which is essential for survival of the pre-Tfh cell. Initial CD4T cell activation also results in upregulation of PD-1. The Bcl-6+CXCR5+ PD-1+ pre–Tfh cell then migrates

to the T cell–B cell border. At the same time, antigen-activated B cells upregulate CCR7 and migrates from the B cell follicle to the T cell–B cell border. (B) At the T

cell–B cell border, the pre-Tfh cell engages with the B cell. Interaction between antigen-MHC on B cells with TCR on pre-Tfh, and ICOSL (B cell) with ICOS (pre-Tfh

cell), fully commits the cell to Tfh lineage. This results in upregulation and maintenance of Bcl-6, SAP, and CXCR5, while downregulating CCR7 on T cells. (C) The Tfh

and B cells move deeper into the B cell follicle forming GCs. Tfh cells in the GCs promotes B-cell maturation, class switching and affinity maturation via the cytokines,

IL-21 and IL-4, and the molecules, CD40L and PD-1. Both Tfh and GC B-cell are necessary for generation of B-cell memory and long-lived plasma cells. (D,E)

Plasmodium-induces polarization of T follicular helper (Tfh) cells to Th1 like phenotytpe that expresses Tbet PD-1, CXCR5, CXCR3 and contributes to the inefficient

acquisition of humoral immunity to malaria. Malaria infection in mice and humans induces secretion of Th1-polarizing cytokine that drive the activation of Th1-like Tfh

cells that exhibit impaired B cell helper function, thus contributing to germinal center dysfunction and suboptimal antibody responses (Figure was created using

BioRender).

exact mechanism used to induce this suppression is yet to
be uncovered.

The suppression of immune function seen inmalaria infection
could be attributed to DC/iRBC interaction which alter the
maturation state and function of DC in both humans (4, 102, 103)

and mice (8, 104). DCs exposed to iRBC in vitro and in vivo have
reduced expression of MHC on the surface and are unable to
form stable interactions with CD4 helper T cells (104). The DCs

also downregulate key costimulatory molecules, such as CD86,
CD80, CD40, and secrete IL-10 (105), providing a suppressive
environment for CD4T cell development. This hampers their
ability to activate naive CD4T cells and a failure to generate
Tfh cells that are critical in the formation of germinal center
and generation of protective antibodies against malaria infection

(77, 104). In contrast, other in vitro studies have shown that DCs
exposed to iRBC successfully activate T cells, but induce their
polarization toward a Th1 phenotype that inhibits commitment
to Tfh cell linage, thus affecting humoral responses (103, 106).

WHAT HAPPENS TO DCS DURING A
PLASMODIUM INFECTION?

During the Plasmodium parasite life cycle, different forms of
the parasite interact with resident DCs in various organs as
it establishes infection. Sporozoites from infectious mosquitoes
that are injected into the dermis interact with resident DCs
in the skin (107). The sporozoites reach the liver interact with
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Kupffer cells, hepatocyte, and liver sinusoidal endothelial cells
and resident DCs in the liver (108). The blood stage of the
parasite interacts with DCs in the blood (4) and spleen (109–111).

DC INTERACTION WITH PLASMODIUM

SPOROZOITES IN THE SKIN AND LIVER

The skin is the first point sporozoites encounter DC as they
are inoculated by infected mosquitoes (Figure 1A). Studies
conducted in mice have shown that only a small percentage
of inoculated sporozoites leave the site of injection as most
end up trapped in the dermis or enter the lymphatic system
rather than the blood vessel (13). Other sporozoites infect
keratinocytes, hair follicles, and develop into exoerythrocytic
forms of the parasite (112). Sporozoites that are trapped in the
dermis are phagocytosed by resident DCs which migrate to the
skin-draining lymph node and can prime CD4 (113, 114) and
CD8 (14) T cell responses. The immune response toward the
sporozoite stage of the parasite may protect against subsequent
challenges from infected mosquitoes (113).

The sporozoites that mange to enter blood circulation
move to the liver and must traverse the sinusoidal barrier to
access hepatocytes (Figure 1B) (115). The liver environment is
tolerogenic due to the presence of IL-10 and TGF-β which are
secreted by Kupffer cells (KC) and liver sinusoidal endothelial
cells (LSEC) (116). These cytokines reduce expression levels of
MHC class II and costimulatory molecules on the surface of liver
resident DCs compared to resident DCs in lymphoid organs and
those circulating in the blood (117) thus reducing their capability
to activate T cells (118, 119). The tolerogenic environment of the
liver could play a role in sporozoite immune evasion as DCs and
other immune cells in the liver act to suppress adaptive immune
responses which would lead to the elimination of sporozoites
(116, 120).

Apart from DCs, the liver has other potential APCs that can
present antigens to the adaptive immune system; this includes
Kupffer cells (KC), liver sinusoidal endothelial cells (LSEC), and
hepatocytes. LSECs are scavenger cells that express MHC class I
and II molecules, low levels of CD86, and the adhesion molecules
ICAM-1, VCAM-1, and dendritic cell specific intercellular
adhesion molecule3-grabbing non-integrin (DC-SIGN). In mice,
these cells have the ability to cross present antigens in the liver
and activate CD8T cells, but the T cells are generally tolerized
due to the secretion of IL10 and PGE2 by LSECs (121, 122). KCs
are resident tissue macrophages found in the liver that express
MHC class I and class II molecules, ICAM-1, CD86, CD80, and
can activate naive CD4 and CD8T cells in vitro (123, 124). The
role of KC as anAPC is controversial as in vitro experiments show
that they inhibit T cell activation by secreting IL-10 (125), but
activation of KCs via TLR3 increased the expression ofMHC class
II and their APC function (126). Kuniyasu et al. (127) showed
that the liver had the ability to retain adoptively transferred T
cells. The T cells proliferated and expanded in the liver, but the
expansion was followed by apoptosis, which was initiated by KCs
(127). It was later shown that KCs induce T cell apoptosis via the
FAS-FAS-L signaling pathway (128).

Hepatocytes express MHC class I and ICAM-1 in their steady
state and during inflammation they have been shown to express
MHC class II CD40L, CD80 and CD86 and are capable of
activating CD8T cells (129). Their role in generation of malaria
liver immunity has been controversial with different studies
using mouse models drawing different conclusions of their role
in the generation of pre-erythrocytic immunity. Intrasplenic
injection of parasite infected hepatocytes in mice resulted in
T cell mediated immunity against P. yoelii and P. berghei
infections (26), thus showing that hepatocytes are capable of
activating T cells. Another study demonstrated that parasite
infected hepatocytes undergo apoptosis, thus providing liver DCs
with a source of Plasmodium antigens for initiating the adaptive
immune response (130). This idea has been challenged and it
has been suggested that DCs could obtain Plasmodium antigens
directly from viable infected hepatocytes. This is supported by the
fact that DCs have the ability to acquire antigens from other live
cells and cross present to CD8T cells (131).

Chakravarty et al. (14) showed that cross presentation of
Plasmodium antigens by DCs was key in CD8T cells activation
and this occurred in the skin draining lymph node, not in the
liver, and the activated T cells recirculated to the liver (14).
Indicating that DCs in the skin that encounter sporozoite play
a crucial role in generating T cell mediated liver immunity.
Recently Kurup et al. (27) showed that during amalaria infection,
a subset of monocyte derived CD11c+ APC infiltrate the liver
after hepatocyte infection by Plasmodium parasite and acquire
Plasmodium antigens. The monocyte derived CD11c+ APC
present the antigens to naive CD8T cells in the liver draining
lymph node, priming them and initiating T cell mediated
immunity against Plasmodium infection (27).

While there are still some gaps into how the generation of
liver immunity against Plasmodium infection is acquired, it is
clear that APCs, especially DCs, play a central role. Hepatocytes
may play a part in the generation of liver immunity by providing
parasite antigens to DCs but the exact mechanism of this is yet
to be uncovered. A better understanding of DC and hepatocyte
involvement in the generation of liver immunity is required and
also the roles played by KCs and LSECs. The use of humanized
mice might provide an opportunity to further investigate skin
and liver immunity against P. falciparum (132, 133).

DC INTERACTION WITH PLASMODIUM

DURING THE BLOOD STAGE OF MALARIA

The blood stage of the malaria parasite life cycle provides
several opportunities for DC in the blood and spleen to
interact with infected RBC (Figure 1C). This stage requires
remodeling of the RBC to enable the parasite to survive (134)
and results in the expression of parasite antigens on the RBC
surface. These antigens, in particular PfEMP, play a key role
in immune evasion and vascular sequestration/cytoadherence
to avoid splenic clearance (21, 135). It has been suggested that
PfEMP1 may be involved in modulation of DC function via
interaction with CD36 (4, 136).
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Maturation of iRBCs (schizont stage) results in lysis of the
iRBCs, releasing merozoites into circulation and the contents of
the PV such as the parasites digestive vacuole which contains
hemozoin and waste products. The free merozoites have a short
window to invade new RBCs (137) and those that fail to invade
remain in circulation where they are phagocytosed by immune
cells or cleared in the spleen. Parasite waste products and
hemozoin do interact with DCs but their overall effect on DC
function is contradictory. The effect of hemozoin on DCs has
yielded varying results with some studies showing that hemozoin
is capable of activating DCs (138) while others showed that DC
maturation and function was inhibited by hemozoin (8, 139). The
varying results could be due to the different methods that were
used to generate hemozoin with contamination by parasite DNA
being a potential confounding factor (140).

Overall, the blood stage has an abundance of parasite antigens
that DCs can use to mount an immune response. However
various immune evasionmechanisms, such as antigenic variation
of VSAs (141, 142) and sequestration of mature schizont and
trophozoites in blood capillaries (143) thus avoiding splenic
clearance (144, 145) the slow acquisition of immunity. DCs at
this stage are critical in maintaining an immunological balance
between parasite burden and a sufficient immune response.
Immune evasion by the parasite could cause an increase in
parasite burden resulting in severe pathology, while an excessive
and uncontrolled immune response may lead to the development
of a severe life threating cerebral malaria (146–148).

Studies of blood stage infections with DC have largely
employed DCs prepared from peripheral blood monocytes or
isolated from peripheral blood of uninfected individuals (4,
102). Fewer studies have analyzed the phenotype and function
of peripheral blood DCs from individuals who are currently
undergoing a malaria episode (103, 149, 150). In this context,
in vivo mouse models of malaria have been particularly helpful
to understand the tissue responses of DC, for example splenic
DC and allow temporal analysis of how Plasmodium infection
changes DC phenotype (8, 104).

IN VITRO DC INTERACTION WITH
PLASMODIUM

In vitro studies have been used to identify the mechanisms used
by the parasite to modulate DC function. These studies have
either used human monocyte derived dendritic cells (moDCs) or
bona fide DCs to assess DC- P. falciparum interactions.

Urban et al. (4) showed that when moDCs were co-cultured
with P. falciparum iRBC, at a ratio of 1:100, and later stimulated
with lipopolysaccharide (LPS), exhibited a decreased expression
of key maturation markers (CD40, CD80, CD86, and CD83) (4).
Once moDCs were exposed to iRBC, they lacked the capacity to
activate allogeneic T cells (4). This modulation of DCmaturation
may result from an interaction between CD36 on DCs with
PfEMP-1 on iRBC (105). A subsequent study found that a ratio
of 1 DC: 100 iRBC inhibited LPS induced moDCs activation,
cytokine production, and allogeneic T cell activation regardless
of CD36-binding with iRBC (102). The high ratio of DC to

iRBC coincided with an increase in apoptotic and necrotic
cells, which was observed in both PfEMP1-deficient iRBCs and
PfEMP1 expressing iRBCs, this could account for the failure
of DCs to respond (102). At low iRBC to moDC ratio (10:1),
moDCs made a modest response to LPS induced maturation
and retained their ability to secrete cytokines and activate T
cells (102). Elliot et al. (102) were unable to point out the
mechanism used by P. falciparum to modulate moDC function,
although they found that hemozoin, from iRBC lysate, did not
inhibit LPS maturation of moDCs (102). The studies show that
a dose-dependant relationship exists between iRBC and moDCs
inhibition and dose range experiments are an essential part of
ensuring experimental reproducibility in the future.

Another study found that at a low ratio of 10 iRBC per moDCs
did not trigger the upregulation of HLA-DR, CD83, or CCR7 on
moDCS (151), contradicting the study by Elliot et al. (102). At a
ratio of 100 iRBCS per moDCs, moDCs were able to secrete IL-
1β, IL-6, IL-10, TNF-α, and upregulate the chemokine receptor
CXCR4 (151). Exposure of moDCs to schizont lysate resulted
in an increase in the expression levels of CD86 while CD80 and
HLA-DR levels remained unaffected even at high concentration
of schizont extract (106). Exposure to schizont lysate, followed
by LPS stimulation, did not affect the maturation of moDCs.
The schizont lysate exposed moDCs maintained their ability to
differentiate allogeneic T cells into Th1 and regulatory T cells
(Treg) that secrete large amounts of IFN-γ. Additionally, the
generated Tregs also secreted IL-10 and TGF-β (106).

The different in vitro studies looking at the effect of P.
falciparum on moDCs have yielded varying results. This could be
attributed to the use of the Plasmodium parasite at different stages
of development in the RBC. Another explanation could be that
the studies used different experimental methods in the isolation
of the Plasmodium infected red blood cells and in the generation
of moDCs.

Few studies have examined the effect of P. falciparum on cDCs
and pDCs due to their low numbers in peripheral blood. One
study examined the effect of P. falciparum on cDC2 and pDCs
(103). The co-culture of cDC2 with P. falciparum at a ratio of
1:3 resulted in the upregulation of maturation markers (CD80,
CD86, CD40, and HLA-DR) and inflammatory chemokines
CCL2, CXCL9 and CXCL10 but did not induce secretion of
inflammatory cytokines. Exposure of cDC2 to iRBC did not
inhibit cytokine secretion in response to LPS, which was contrary
to what was observed with moDCS (103). The low ratio of iRBC
to DC may account for this observation as the study did not
use a higher ratio of iRBC to cDC2. The cDC2 exposed to
iRBC maintained their ability to present antigens and activate
naive T cells to polarize them toward a Tfh1 phenotype that
secretes IFN-γ (103). The study also found that crosstalk between
pDCs and cDC2 was important in shaping immune responses
against malaria. The co-culture of pDCs and cDCs resulted in the
upregulation of HLA-DR, CD86, and CD40 on pDCs and CD80
and CD86 on cDC2. There was also an increase in the secretion of
interferon alpha (IFN-α) by pDCs and chemokines CXCL9 and
CXCL10 by cDC2. This cross-talk between these two DCs was
contact dependent, suggesting cell to cell interaction is necessary
to initiate chemokine secretion (103). The study highlighted the
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importance of cell to cell interaction which is crucial in trying to
understand immune responses in malaria.

In mouse studies using bone marrow derived dendritic cells
(BMDCs), P. chabaudi schizonts were shown to be able to
activate BMDCs to produce the pro-inflammatory cytokines IL-
12 and TNF-α. The P. chabaudi exposed DCs did not inhibit
LPS activation, contrary to what was observed with P. falciparum
exposed human DCs (152).

EX VIVO DC INTERACTION WITH
PLASMODIUM

A number of studies have compared peripheral blood DCs
in varying malaria transmission settings and different at-risk
groups. In Kenya, children hospitalized with either mild or severe
malaria were found to have a lower number of DC expressing
HLA-DR and a lower number of circulating DCs compared
with healthy children (149). A follow up study revealed that the
expression levels of HLA-DR was reduced on monocytes and
cDC but not on pDC and that DC modulation continued during
convalescence. An increase in the frequency of BDCA3+ cDC1
in the peripheral circulation was also observed during the course
of the malaria infection (153).

A similar study was conducted in Mali looking at the function
of DCs in children with severe malaria from the Dogon and
Fulani community. The two communities reside in the same
geographical region and are exposed to the same intensity of
P. falciparum transmission yet the Fulani are less suspectable
to P. falciparum infection (154). DCs from malaria infected
children of the Dogon community expressed lower levels of
HLA-DR and CD86 on their DCs, while the frequency of
BDCA-2+ pDCs and BDCA-3+ cDC1 increased compared
to uninfected counterparts. Infected children from the Fulani
community exhibited higher levels of HLA-DR and CD86 on
their DCs but had a lower number of circulating BDCA-
2+ pDCs and BDCA-3+ cDC1 compared to their uninfected
counterparts (150). The study also showed that infected children
from the Fulani community retained their ability to produce
IFN-γ after their PBMC were stimulated with specific TLR
ligands at levels that were similar to those of uninfected children.
The Dogon children, on the other hand, had low levels of
cytokine produced due to TLR impairment which increased
parasite burden and development of malaria symptoms (150).
This showed that P. falciparum infection resulted in altered DC
activation with reduced response to TLR agonists in Dogon
children, while in the Fulani children, DC activation and TLR
responses were unaffected.

The increase in the number of circulating BDCA-2+
pDCs and BDCA-3+ cDC1 during malaria infection has been
attributed to an increase in the amounts of FMS-like tyrosine
kinase 3 (Flt3) ligand (Flt3-L) (155). Flt3 is highly expressed on
hematopoietic progenitor cells, but the expression is lost as cells
commit to lymphoid and myeloid progenitor cells, which gives
rise to the various cell lineages but its expression onDCs remains.
Flt3 receptor tyrosine kinase and its ligand Flt3-L are known to
be key in the development of dendritic cells and maintenance

of their numbers (156, 157). Flt3-L production increases during
a malaria episode as mast cells become activated and release
membrane bound Flt3-L into circulation resulting in an increase
in the number of pDCs and CD1c (155).

A few studies have looked at the function of DCs in adults
during a malaria episode. A study in Thailand found that adults
with both severe and mild malaria had a decreased number of
TLR2 expressing cDCs circulating in the periphery and a lower
surface expression of TLR9 on pDCs but an increase in the
surface expression of TLR2 on cDCs compared with healthy
controls (158). There was also a marked reduction in the number
of circulating pDCs, this could be attributed to their migration
to the secondary lymph nodes, and an increase in serum levels of
IFN-α (159). A study conducted in Papua found that adults with
acute P. falciparummalaria had a reduced number of circulating
pDCs and cDCs, but higher numbers of immature DCs that
were HLA-DR+CD11c–CD123– (5). Interestingly both pDCs
and cDCs from infected participants were apoptotic as seen by
Annexin-V binding. The DCs also expressed low levels of HLA-
DR and costimulatory molecules and were unable to adequately
capture antigen, resulting in reduced ability to prime naive CD4T
cells (5). These studies are therefore consistent with a role for
malaria infection in reducing the number of circulating DCs and
their function in antigen presentation and T cell activation.

Controlled human infection model (CHMI) have also been
used to assess the function of BDCA-1+ cDC2 and pDCs at
varying doses of P. falciparum (160). Healthy volunteers were
enrolled into two cohorts; one cohort was inoculated with 150
iRBCs and the other 1,800 iRBCs, participants were treated
once parasitaemia reached ≥ 1,000 parasites/ml (160, 161). The
expression levels of HLA-DR on BDCA-1+ cDC2 and pDCs in
both cohorts were significantly reduced at peak parasitaemia and
this effect was still evident on BDCA-1+ cDC2 24 h after anti-
malarial treatment. The cohort inoculated with a higher dose
of iRBC had a reduced number of circulating BDCA-1+ cDC2
which was attributed to apoptosis of the DCs during the course
of the infection, this was evident by the upregulation of caspase-
3 (160). The BDCA-1+ cDC2 from this cohort had a defective
phagocytic capacity and there was a positive association between
HLA-DR expression and phagocytic capacity (160). pDCS on the
other hand expressed low levels of CD123 at peak parasitaemia in
both cohorts which persisted 24 h after anti-malarial treatment.
The number of pDCs in circulation significantly reduced in the s
iRBC cohort, this was due to apoptosis of pDCs during the course
of infection (161). At peak parasitaemia DCs from the 1,800
iRBC cohort were restimulated ex vivo with TLR ligands and
their response measures. On re-stimulation with TLR1/2, TLR4,
and TLR7, BDCA-1+ cDC2 failed to upregulate HLA-DR and
CD86 but increased TNF secretion (160).While re-stimulation of
pDCS with TLR7 and TLR9 resulted in upregulation of HLA-DR,
CD123, CD86 on their surface and an increased secretion of IFN-
α (161). This shows that malaria infection in naive individuals
results in impairment of cDC function but not pDCs function.
Indicating that pDCs may play a role during malaria infection
and further studies are needed to deduce its role. The altered
BDCA-1+ cDC2 also contributed to hampering effector T cells
functions, allowing an increase of parasite burden (160).
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The various studies above have shown that DC phenotype is
altered during a malaria episode resulting in impaired ability to
upregulate HLA-DR and the costimulatorymolecules CD86 (150,
153, 160). This altered DC phenotype has a reduced phagocytic
capacity which impairs its ability to process antigens (160) and
adequately stimulate allogeneic T cells (5, 153). The parasite also
modulates TLR signaling thereby affecting cytokine secretion
(150, 160) resulting in severe pathology. In children, there seems
to be a notable increase in the number of circulating BDCA-
3+ cDC1s during a malaria episode (150, 153, 155), which was
attributed to increases in serum levels of Flt3-L (155), but this
effect was not observed in children from Papua (162). In both
children and adults, there was a decrease in the number of
circulating DCs which was attributed to increased DC apoptosis
(5, 159, 161) but also increased DC migration to secondary
lymphoid organs may also play a role in reduction on peripheral
blood DC numbers. The decrease in peripheral numbers of
DCs also corresponded with an increase in IL10 and TNF-α
(5, 149, 153), which may play a role in DC loss of function and
suppression of T cell function. In these studies, DC function was
altered regardless of the severity of malaria infection. The DC
phenotype seen in the acute infection in the CHMI study (160),
was similar to those seen in naturally exposed individuals, and
repeated infection, in naturally exposed individuals, could lead
to sustained downregulation of DC function that may impact
negatively on the immunity of an individual.

IN VIVO MOUSE MODELS OF MALARIA

Mouse models have been extensively used to study DC-
Plasmodium interaction. In vitro interaction of P. chabaudi
schizonts with mouse bone marrow derived DCs resulted in
an increase in the secretion of tumor necrosis factor-α(TNF-
α), IL-6, and IL-12p40 and IL-12p70 (152). In mice injected
with P. chabaudi, DCs had fully functional cytokine production
6 days after challenge with Plasmodium parasite (163). Further
studies demonstrated DCs were able to upregulate co-stimulatory
molecules CD40, CD54, CD86 (164) during acute infection,
and were able to migrate into T cell areas in the spleen (165).
Other studies with P. chabaudi show that during initial stages
of murine erythrocyte infection, CD8+ DCs are activated by
infected erythrocytes as they expressed high levels of MHC
II and costimulatory molecules and initiated a Th1 type of
response. This response is short lived as the CD8+ DCs
undergo apoptosis and are soon replaced by CD8- DCs with
lower expression levels of costimulatory molecules and MHC
II (166).

Consistent with the studies above, Millington et al. (8)
showed that DCs isolated from the spleen of mice 4 days
after P. chabaudi infection were moderately activated as
they upregulated surface expression of CD40, CD80, and
CD86. However, during convalescence (days 12 and 21 post-
infection), DC did not upregulate costimulatory molecules
and were refractory to stimulation with LPS or CD40L.
When mice infected with P. chabaudi were immunized with
ovalbumin (OVA) antigen and LPS, they produced significantly

lower levels of OVA-specific IgG compared with uninfected
immunized mice, however, this effect was only seen when
immunized at days 12 and 21 post infection (not day 4).
Thus, initial malaria infection in mice does seem to cause
DC activation; however DCs enter a refractory state in
following the initial peak of parasitaemia. Similar to convalescent
DCs, in vitro bone marrow derived DCs pre-exposed to P.
chabaudi were unable to increase expression levels of MHC
II and co-stimulatory molecules CD40, CD80, and CD86, and
LPS stimulation of these DCs was unable to increase their
expression (8).

Further work suggested that hemozoin could also modulate
DC function which resulted in impairment of T cell and B
cell function. Hemozoin treated DCs retained their capacity to
process antigen and present them on MHC class II to naive
CD4T cells. Thus providing the essential signal 1 (peptide-MHC
complex) via the T cell receptor (TCR) but these DCs were
unable to form stable long lasting clusters with naive T cells,
resulting in the generation of dysfunctional T cells (8, 104). These
dysfunctional T cells failed to proliferate and produce adequate
amount of effector cytokines (IL-2, IL-5, IL-10, IFNγ) (8), and
were unable to migrate to B cell areas in the lymph nodes to aid in
B cell proliferation and antibody production (8, 104). The short
interactions and lack of large clustering observed are known to
interfere with the generation of Tfh cells as long sustained DC-
T cells interaction is required for commitment of naive CD4T
cells to Tfh cells (167). It is possible the dysfunctional DCs can
lead to the generation of exhausted T cells, as a result of the
short time of antigen presentation to the T cells in the absence
of adequate co-stimulation. The dysfunctional T cells could also
lead to the generation of atypical memory B cells which are
normally associated with malaria episodes.

Dendritic cells have been shown to play a vital role in the
survival of mice during a lethal infection with P. yoelii. Wykes
et al. (168) showed that DCs from mice infected with non-lethal
P. yoelii infection were fully functional APC and maintained
their ability to stimulate T cells, unlike DCs from lethal P. yoelii
infection which were not functional. DCs from mice infected
with the non-lethal parasite were adoptively transferred into
naive mice, which were then infected with lethal infection P.
yoelii. These DCs were able to control parasitaemia and aid
in survival of the mice by secreting IL-12 (168). This could
in part explain the difference in malaria outcomes observed in
natural infections.

DOWNSTREAM EFFECT OF DC
DYSREGULATION

Collectively, the studies above support the hypothesis that
during the blood stage of Plasmodium infection, DC function
is dysregulated resulting in phenotypically altered DCs that are
unable to appropriately activate naive CD4 cells. Furthermore,
the failure by naive CD4T cells to differentiate into CD4
follicular helper T cells results in a failure of B cell help and
reduced humoral immunity. The phenotype of the resulting T
cell population is unclear; however, P. falciparum infection has
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been associated with increased expression of the T cell inhibitory
receptor programmed cell death-1 (PD-1) on CD4T cells. This
was observed in a cohort of children in Mali (169) and Kenya
(7), during an ongoing P. falciparum infection. Apart from an
increase in the expression of PD-1 on CD4T cells, P. falciparum
infection was seen to drive an increase in the frequency of atypical
memory B cells which was as a result of the exhausted T cell
phenotype (7).

Butler et al. (169) using non-lethal P. yoelii infections,
also showed that prolonged infection resulted in dysfunctional
parasite specific CD4T cells that expressed exhaustion markers
PD-1 and lymphocyte-activation gene-3 (LAG-3) (169). These
inhibitory ligands worked in synergy to inhibit T cell function
during the Plasmodium infection. The ability of CD4T cells to
produce cytokines deteriorated with prolonged infection, while
dual blockade of PD-1 and LAG-3 with monoclonal antibodies
restored the number of parasite specific CD4T cells and their
ability to secrete cytokines. It also resulted in an increase in
the number of CD4 Tfh cells and plasmablasts, thus improving
the anti-parasite humoral response in P. yoelii infected mice
(169). These studies show that that malaria induces T cell
exhaustion and that PD-1 plays a role in the pathogenesis
of malaria.

Apart from the upregulation of the T cell inhibitory receptors
programmed cell death-1 (PD-1) and Lymphocyte Activation
Gene 3 (LAG3), malaria infection upregulates the production
of IFN-γ and IL-10 on CD4T cells (170, 171). This creates a
suppressive environment that polarizes CD4T cells toward IFN-
γ producing Th1 like lineage, suppressing induction of Th2
and Tfh, which are vital in B cell response. This polarization
occurs after a single malaria episode and may affect subsequent
parasite exposures

T cell exhaustion can be due to persistent antigen exposure,
resulting in sustained TCR stimulation by dysfunction
DCs, leading to sustained upregulation of PD-1 (172, 173).
The inhibitory PD1 signal on T cells works by inhibiting
downward signals from TCR and costimulatory molecules
and initiates transcription of inhibitory genes (Figure 2B)
(174–176). Cytokine signaling also plays a role in T cell
exhaustion. Malaria induces secretion of IL-10 from DCs,
providing an immunosuppressive environment that skews
the development of CD4T cells and dual blocking IL-10
and PD-1 signaling in mice restores T cell function (177).
Transcriptional profile of exhausted T cells greatly varies
from effector and memory T cells, indicating that exhaustion
is a unique state of T cell differentiation (178–180), that
is regulated by the master transcription factor TOX (181).
The signaling pathways that lead to the differentiation
of exhausted T cells and expression of TOX are yet to
be known.

There are still gaps in our current understanding of the
intracellular mechanism of PD1 signaling and what its target
genes are. The molecular events initiated by downstream
IL-10 signaling that shape T cell exhaustion are yet to
be known.

CONCLUSION

The population in malaria endemic areas are known to have a
reduced immune response against vaccines (2, 3), and ongoing
malaria infections in these individuals reduce pre-existing
adaptive immune responses (101). The evidence presented above
strongly indicates this is due to dysfunctional DCs that fail
to prime effective T cell responses, thus affecting immune
responses. There is a potential gap is in our understanding of
the effect of antimalarial drugs on the phenotype, function and
numbers of DCs and T cells. Whether antimalarial treatment
restores DC-T interaction is an area of research is yet to
be explored.

This information could address a significant public health
challenge in administering malaria vaccines and other vaccines
in malaria endemic areas. Malaria infection also induces CD4T
cell exhaustion, through upregulation of negative regulatory
molecules such as PD-1 and LAG3 (7, 169), which dampen
immune responses. How T cell exhaustion is induced in malaria
is still unknown as there is no evidence in literature explaining
how and where these cells arise, and if dysfunctional DCs play
a role in this, and how the cytokine environment during a
malaria episode influence T cell exhaustion. There is a need to
better understand the interaction between DC-T cell, the cellular
and molecular signals that are involved in the formation of
this immune synapse and how malaria affects this interaction.
This will aid in developing novel methods that will target the
affected molecular pathways and restore DC-T cell interaction
and function.
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