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Gamma delta (γδ) T cells can effectively recognize and kill colorectal cancer (CRC)
cells, thereby suppressing tumor progression via multiple mechanisms. They also have
abilities to exert a protumor effect via secreting interleukin-17 (IL-17). γδ T cells have
been selected as potential immunocytes for antitumor treatment because of their
significant cytotoxic activity. Immunotherapy is another potential anti-CRC strategy after
an operation, chemotherapy, and radiotherapy. γδ T cell-based immunotherapy for CRC
shows fewer side effects and better toleration. This review will outline the immune
functions and the mechanisms of γδ T cells in the growth and progression of CRC in
recent years, and summarize the immunotherapies based on γδ T cells, thus providing
a direction for future γδ T cells in CRC research.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common gastrointestinal malignant tumors in the
world, with a high therapeutic need. Globally, CRC is the third most frequently diagnosed cancer
and the second leading cause of death from tumor diseases (1). The incidence and mortality of CRC
are rising rapidly in many low- and middle-income countries (2). In some high-income countries,
although the overall incidence and mortality of CRC has declined or stabilized (the decline of
CRC incidence and mortality in the older age group is partly due to the implementation of CRC
screening), the CRC incidence and mortality in individuals under 50 has increased significantly (3,
4). Presently, surgery remains the primary strategy to treat advanced CRC. Even though advances in
screening, diagnosis, and treatment have improved the prognosis of CRC in some countries, there
are still many people (about 25%) that are diagnosed with advanced CRC, among which almost 50%
develop metastases (5, 6). Only a few patients diagnosed with advanced CRC can receive radical
surgeries (7), and resection of resectable liver and lung metastases offers 20–45% 5-year survival
rates in carefully selected individuals (6). The overall efficacy of surgery and adjuvant therapy in
these individuals is not satisfactory. It has been shown that most patients (71.2%) with advanced
CRC develop recurrence within the first 2 years after surgery and the 5-year overall survival rate
of these patients was 34.7% (8). It is becoming more evident that the components of the tumor
microenvironment (TME) play critical roles in the occurrence, development, and prognosis of
CRC (9, 10). For example, NK cells (one of the immunocyte subsets in TME) that can combine
HLA class I molecules are able to recognize and eliminate CRC cells with aberrant HLA class I
expression (11). Cytokines, like IL-17, have abilities to perpetuate CRC progression via promoting
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angiogenesis and the production of myeloid-derived suppressor
cells (MDSCs) (12). Moreover, a meta-analysis showed a
statistically significant inverse relationship between intratumoral
vessel density (a surrogate marker of tumoral angiogenesis) or
vascular endothelial growth factor (one of the proangiogenic
factors in TME) expression and overall survival in CRC (13).
Therefore, it is necessary to discover a novel reasonable treatment
strategy based on the understanding of the TME.

Gamma delta (γδ) T cells are one small population of the
TME and a small subset of peripheral blood T lymphocytes,
which express heterodimeric receptor composed of γ and δ chains
on the cell surface. Most γδ T cells are CD4− or CD8− T
cells, while αβ T cells express CD4+ or CD8+ molecules. γδ T
cells are mainly distributed in subcutaneous tissue, the mucosa
of the intestinal tract, respiratory tract, and urogenital tract.
They are involved in the composition of intestinal intraepithelial
lymphocytes. Since γδ T cells recognize infected and transformed
cells rapidly, they are recognized as the first line of defense
against infections and malignant tumors (14). γδ T cells have
pleiotropic biological effects, including exerting cytotoxicity to
kill tumor cells, involved in immune regulation, presenting
antigen, inducing dendritic cells (DCs) maturation, and so on (15,
16). Moreover, γδ T cells are capable of infiltrating into various
tumor tissues, like rectal cancer, breast cancer, or pancreatic
cancer (17–19). In addition, they have abilities to recognize
different tumor cells in a major histocompatibility complex
(MHC)-unrestricted manner and lyse cancer cells by producing
chemokines and cytokines, or by direct contact with cancer cells
through the death receptor signal (19, 20), which suggests that γδ

T cells may have a potential role in antitumor immunotherapy.
However, accumulating evidence suggests that γδ T cells also play
a protumor role mainly by expressing interleukin-17 (IL-17) in
several cancers (17, 21–26).

Reviews published in the past few years mainly discuss the
functions of γδ T cells and their immunotherapeutic potential
against cancer in general. However, only a few foci were placed on
the immune effects and immune treatment strategies of γδ T cells
against CRC. In this review, we will summarize recent advances in
the role of γδ T cells in CRC immunity, as well as γδ T cells-based
immunotherapies against CRC.

γδ T CELLS

Human γδ T cells are classified into three subtypes based on
the expression of δ chains: (1) Vδ1 T cells are enriched in the
thymus and mucosal epithelial tissues. They produce a variety of
cytokines like TNF-α and IFN-γ, and lyse infected or transformed
target cells by cytotoxicity (20, 27). (2) Vδ2 T cells, which exert
cytotoxicity in tumor immunoregulation and viral infection, are
mainly distributed in peripheral blood (28). T cell receptors
(TCRs) expressed on the surface of Vδ2 T cells are able to
recognize phosphoantigens produced by malignant cells, thereby
activating Vδ2 T cells to release perforins, granzymes, and IFN-
γ (20, 29). MDSCs may inhibit the production of IFN-γ and
degranulation in phosphoantigens-activated Vδ2T cells (30). (3)
Vδ3 T cells are mainly distributed in the liver tissue and rarely

in the peripheral blood, which can directly kill the target cells
and secrete cytokines. In mice, γδ T cells are categorized into two
subtypes based on what cytokines they release. Murine IFN-γ γδ

T cells express the CD27 molecule (which is a member of the TNF
receptor family and can bind to CD70), whereas IL-17 γδ T cells
cannot display CD27 (31). In addition to mice, IL-17 γδ T cells are
also found in humans (32–34). Although the production of IL-17
by human γδ T cells is rare, it is involved in the initiation and
progression of CRC by producing growth factors (12, 32). Pin Wu
et al. previously reported that tumor-infiltrating IL-17 γδ T cells
might be a key player in human CRC progression and metastasis
(32). It is also reported that IL-17 perpetuate CRC progression
via promoting angiogenesis and the IL-17/IL-23 pathway plays a
critical role in pathogenesis of CRC (IL-23 is a key modulator of
IL-17 γδ T cells responses) (12) (Figure 1).

Vδ2 T Cells
Vδ2 T cells are the most abundant subset of γδ T cells, accounting
for 50 to 90% of the total number of γδ T cells. Among Vδ2 T
cells, Vγ9Vδ2 T cells that co-express Vδ2 and Vγ9 chains are the
most abundant subtype. Vγ9Vδ2 T cells elicit robust inhibitory
effects on the tumorigenesis and growth of different tumors
(35–37). Murielle Corvaisier et al. (38) found that colon tumor
is frequently infiltrated by Vγ9Vδ2 T lymphocytes. Moreover,
a recent analysis of expression signatures from 39 different
malignancies, including CRC, revealed that tumor-infiltrating
γδ T cell is one of the most significantly favorable cancer-wide
prognostic immunocytes (39). Later, Liang Rong et al. (17) used
the Application of Fluorescent-activated Cell Sorting (FASC)
to analyze the percentage of γδ T cells (including Vδ1 T cells
and Vδ2 T cells) in tumor tissues, para-carcinoma tissues and
peripheral blood from 20 rectal cancer patients. The results
showed that although the percentage of Vδ2 T cells in tumor
tissues was negatively correlated with the T staging, the tumor-
infiltrating Vδ2 T cells showed robust cytolytic activity. Recently,
an assessment of tumor-infiltrating Vγ9Vδ2 T cell frequency
by deconvolution of human cancers microarrays showed that
CRC patients with high infiltration of Vγ9Vδ2 T cells had
higher overall survival rates (40). These findings indicate that
Vδ2 T cells are closely related to the progression and prognosis
of tumor patients.

Circulating Vδ2 T cells that are stimulated by microbial
phosphoantigens and IL-2 would express gut-homing integrin
α4β7 (molecules that mediate Vδ2 T cells trafficking to the
human intestinal mucosa) and widely populate the mucosa of the
human intestinal tract (41). Moreover, Vδ2 T cells can respond
and proliferate rapidly, following stimulation with microbial
phosphoantigens, and produce proinflammatory cytokines such
as IFN-γ and TNF-α, thus contributing to mucosal immune
responses (41). Aminobisphosphonates (42) (zoledronate
and pamidronate) induce isopentenyl pyrophosphate (IPP)
accumulation in tumor cells, thus activating and amplifying
Vγ9Vδ2 T cells (43). Vγ9Vδ2 T cells that were stimulated by
zoledronate and exposed to colon cancer stem cells are induced
to proliferate and secrete cytokines (TNF-α and IFN-γ), cytotoxic
and apoptotic molecules [TNF-related apoptosis-inducing ligand
(TRAIL) and BLT esterase], resulting in the capability of killing

Frontiers in Immunology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 1600

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-01600 September 7, 2020 Time: 18:48 # 3

Ma et al. The Role of γδ T Cells in CRC

FIGURE 1 | Classification of γδ T cells. In human, γδ T cells can be classified into Vδ1 T cells, Vδ1 T cells, and Vδ3 T cells. In mice, γδ T cells can be categorized into
IFN-γ γδ T cells and IL-17 γδ T cells. IFN-γ, interferon-γ.

and lysing colon tumor cells (20). And the cytotoxicity of
Vγ9Vδ2 T cells in colon cancer is mainly mediated by the
granule exocytosis pathway of effector substances (cytokines and
granzymes). Moreover, Maria Raffaella Zocchi et al. (44) found
that the local TME of CRC stimulated by zoledronate expresses
BTN3A1/CD277 (BTN3A1 can bind to phosphoantigens and
drive the activation of Vγ9Vδ2 T cells through conformational
changes of the extracellular domains) to stimulate and expand
effector Vγ9Vδ2 T cells that carry antitumor activity. Therefore,
Vδ2 T cells, especially Vγ9Vδ2 T cells, have the potential to be
used in immunotherapy against CRC, and zoledronate serves
a stimulator in antitumor immunotherapy to activate and
expand γδ T cells.

Vδ1 T Cells
Compared with Vδ2 T cells, Vδ1 T cells account for a
small proportion of γδ T cells. They are mainly distributed
on the surface of the mucosa. Although a large number
of studies about the antitumor effects of γδ T cells mainly
focus on Vγ9Vδ2 T cell subset, it is becoming more evident
that Vδ1 T cells also play a critical role in progression of
hematological malignancies and some epithelial-derived solid
tumors (including CRC) (45–47).

A study showed that cytomegalovirus-induced Vδ1 T cells
could inhibit not only the primary colon tumor growth but also
the emergence of metastases (48). After that, Wu, Dang et al.
(47) found that the freshly isolated human peripheral blood Vδ1
T cells, especially the Vδ1 T cells expanded ex vivo, had better
cytotoxicity to adherent and sphere-forming colon tumor cells
than Vδ2 T cells. The antitumor effect for colon cancer mediated
by Vδ1 T cells could be achieved not only by the secretion
of cytokines (CD107a, perforin, granzyme B), but also by the
direct contact between cells and the cytotoxicity-related receptors
and ligands (Fas, death receptor 4/5, MICA/B, and ICAM-1)

(47). The findings also showed that adoptive transferred Vδ1 T
cells that were expanded by PHA and IL-7 could significantly
inhibit tumor growth and prolong survival of colon tumor-
bearing mice (47). Also, by comparing the characteristics of γδ

T cells in CRC, normal colon tissue, and normal peripheral
blood, Meraviglia, S. et al. (49) found that there were 4% of
γδ T cells in tumor-infiltrating lymphocytes, and Vδ1 T cells
were the dominant γδ T cell subtype in CRC. Comparing to
the adjacent normal colon tissues in CRC patients, Vδ1 T cells
from tumor tissues produced significantly less IFN-γ, which
was likely due to the presence of some identified inhibitory
molecules by colon tumor stem cells. In addition, another recent
study showed that the human gut-resident intraepithelial Vδ1 T
cell subset, that constitutively expressed NKp46, exhibited high
antitumor activity against CRC, and the expression of NKp46
on intestinal intraepithelial lymphocytes was associated with
high cytolytic potential. The data of this study also showed
that lower frequencies of NKp46pos/Vδ1 IELs in tumor-free
tissues from CRC patients was associated with a higher risk
of metastasis (50). In conclusion, the findings of these studies
demonstrate that Vδ1 T cells are involved in the progression
of CRC and pave the way for utilizing Vδ1 T cells in anti-
CRC immunotherapy.

IMMUNE FUNCTIONS OF γδ T CELLS

General Functions of γδ T Cells in Cancer
Tumor immunosurveillance is a critical part of
immunosurveillance. As a key player in tumor immune
surveillance, γδ T cells are able to perceive the changes
of the antigens on the malignant cells. The mevalonate
biosynthetic pathway is a metabolic pathway of synthetic IPP and
dimethylallylpyrophosphate (DMAPP) in general cells. When
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this pathway in tumor cells was inhibited, it could lead to the
accumulation of IPP, thereby activating γδ T cells to play an
antitumor role. A recent study focused on CRC has shown that
zoledronate, which can suppress the mevalonate biosynthetic
pathway, plays a key role in the activation of γδ T cells (44).
It is reported that phosphoantigens activate γδ T cells in a
TCRs-dependent manner (51), but the concrete mechanism of
recognition and activation is still not clear. Furthermore, studies
have shown that γδ T cells not only have antitumor effects but
also protumor effects, which are mainly mediated by IL-17
(17, 23) (Figure 2).

Antitumor Effects and the Mechanism
Previous studies have shown that accumulation of IPP and
DMAPP in cancer cells induces abnormal expression of MHC
Class I polypeptide-related sequence A and/or B (MICA/MICB)
and UL16-binding proteins (ULBPs), thus activating γδ T cells
by binding MICA/MICB and ULBPs to NKG2D (a lectin-type
activating receptor, which is expressed on the surface of the most
NK and NKT cells) (52–54). It is reported that the activation
of the cytolytic response of human γδ T cells is associated with
the secretion of perforin and granzyme B, which is mediated by
NKG2D (55, 56). Besides, Simoes André E. et al. reviewed that

FIGURE 2 | Immune functions of γδ T cells in cancers. γδ T cells can exert an antitumor effect by a direct killing effect, death receptor signal pathway, ADCC, and
secreting cytokines and chemokines (A), whereas γδ T cells can stimulate and promote the growth and progression of cancer cells by producing IL-17 (B). MDSC,
myeloid-derived suppressor cell; DC, dendritic cell; NEUT, neutrophil; NCRs, NK cell receptors; ULBPs, UL16-binding proteins; NKG2D, natural killer group 2,
member D; MICA/B, MHC Class I-related sequence A and B; TRAIL, TNF-related apoptosis-inducing ligand; TRAIL-R, TNF-related apoptosis-inducing
ligand-receptor; Fas-L, fas ligand; ADCC, antibody-dependent cytotoxicity; GM-CSF, granulocyte-macrophage colony stimulating factor; TLR, toll-like receptor;
TNF-α, tumor necrosis factor-α.
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γδ T cells also express NK cell receptors (NCRs) like NKp30,
NKp44, and NKp46, showing NK cell-like effects to recognize
tumor antigens (50, 57). A recent study also demonstrated that
the NKp46 expression on γδ intestinal epithelial lymphocytes was
associated with high antitumor activity against CRC (50). Since
γδ T cells express NCRs and have both T cell characteristics and
NK cell characteristics, they are regarded as a bridge between
innate immunity and adaptive immunity.

In addition to the recognition and activation mediated by
TCRs and NCRs, γδ T cells can be activated by TRAIL.
TRAIL receptors often overexpressed and usually located in the
endochylema and cell nucleus of tumor cells. Doaa Tawfik et al.
(19) found that the knockout of TRAIL-R4 could reduce the
sensitivity of cancer cells to cytotoxicity through up-regulation
of COX-1 and COX-2 as well as the production of PGE2 that
could attenuate the toxic activity and proliferation of γδ T
cells. Another death receptor signal pathway is mediated by Fas
ligand (FasL) produced by γδ T cells, which induce the killing
of target cells via the binding with the Fas receptor (22, 58).
Antibody-dependent cytotoxicity (ADCC) is also a significant
death-inducing mechanism. Vδ2 T cells that express FcγRIIIA
(CD16) could kill colon carcinoma through ADCC (51). When
tumor antigens are bound to the corresponding antibody, the Fc
segment of the antibody will combine with the receptor on the
surface of γδ T cells, thereby killing target tumor cells. Moreover,
it is reported that IL-15, programmed death receptor-1 (PD-1),
and CD19-specific triple body SPM-1 can enhance the ADCC
of γδ T cells (59–61). Apart from these, γδ T cells show a
direct killing effect on transformed cells by producing perforin,
granzymes, and granulysin.

In addition to the above-mentioned cytokines and the
corresponding receptors that are able to affect the antitumor
activity of γδ T cells, some immunocytes also affect their
antitumor immune activity. A recent study has shown that
the levels of cytotoxicity-related markers (CD16) and co-
stimulatory molecules (CD80 and CD86) are higher when
γδ T cells are exposed to IL-15 DCs (16). And IL-15 DCs
could stimulate the proliferation of the γδ T cells by inducing
the production of soluble IL-15 and IFN-γ and the contact-
independent mechanism in the leukemia environment, thus
promoting the antitumor activity (16). Activated γδ T cells also
promote the maturation of DCs (62). Moreover, the killing
capabilities of freshly isolated resting human γδ T cells on ductal
pancreatic adenocarcinoma cells was reduced when neutrophils
were present, and it was more obvious when neutrophils were
activated by zoledronate (63). Although the interaction between
these immunocytes and γδ T cells has not been demonstrated
in the current CRC studies, many studies have clearly shown
that these cells can interact with each other. Therefore, further
investigation into the interaction between these cells in CRC is
warranted (Figure 2A).

Protumor Effects and the Mechanism
IL-17 is an inflammatory cytokine that is mainly produced by
activated T cells and can mediate inflammation. In humans, IL-
17 is believed to promote angiogenesis and tumor growth by
recruiting MDSCs (26, 32, 64) (MDSCs can further promote

tumor growth after being attracted and activated by tumor cells).
IL-17 producing γδ T cells are recognized as a critical source
of IL-17 and play an important role in the tumorigenesis of
many cancer types (32–34, 49). IL-17 produced by γδ T cells
drives the occurrence and progression of the tumor through
several downstream effects on tumor cells, endothelia, and
other immunocytes.

Some cytokines, like IL-1β and IL-23, could induce the
production of IL-17 by γδ T cells (65). Microbial products are
likely to trigger IL-23, which is mainly produced by tumor-
associated myeloid cells, to facilitate the tumoral IL-17 response,
thereby promoting tumor growth and progression (66). IL-6
and TGF-β promote the production of IL-17 mediated by C5a
(26, 67). In addition, the absence of IL-2 can result in higher
IL-17 production in IL-2-deficient mice, and IL-2 is able to
down-regulate IL-7R to negatively impact the survival of γδ T17
cells (68).

Indeed, the tumor promotion by IL-17 γδ T cells is also
regulated by neutrophils, DCs, and other cells. Neutrophils
interact with IL-17 γδ T cells and play a critical role in regulating
TME. Pioneering work has demonstrated that tumor-infiltrating
neutrophils inhibit the proliferation of γδ17 T cells through
inducing oxidative stress and restraining the production of
IL-17 in TME (69). Hans-Heinrich Oberg et al. (70) noted
that neutrophils activated by zoledronate inhibited the γδ T
cell proliferation due to not only the production of reactive
oxygen species but also the expression of arginase-1 and
serine proteases. However, their subsequent study showed that
neutrophils co-cultured with γδ T cells could enhance the
killing ability of activated IL-17 γδ T cells in the presence
of zoledronate, which might be attributed to the fact that
direct TCRs-dependent activation enhanced the cytotoxic activity
and cytokine/granzyme B production of γδ T cells (63). The
direct TCRs-dependent activation is mediated by γδ T cell-
specific pyrophosphate antigens or bispecific antibodies. In turn,
the activity of neutrophils is influenced by the production of
IL-17 and other substances. These studies indicate that the
interaction of neutrophils and T cells perhaps depend on the
local microenvironment of the tumor. Therefore, further studies
are needed to explore the specific factors that can affect the
interaction between neutrophils and γδ T cells. In other diseases,
it has been proved that IL-23 induced γδ T cells to produce
IL-17 and DCs secreting IL-23 could promote the infiltration
of neutrophils in stress sites (71). Later, Lo Presti, E. et al.
(72) reported that plasmacytoid DCs stimulated by the Toll-
like receptor (TLR) and activated by IL-3 could induce the
proliferation of Vγ9Vδ2 T cells and selectively induce the
production of IL-17 when they were co-cultured with Vγ9Vδ2
T cells. However, there are few reports about the interaction
between IL-17 γδ T cells and DCs in CRC, which need to be
further investigated in the future (Figure 2B).

Functions of γδ T Cells in CRC
Antitumor Effects
γδ T cells are suggested to inhibit the formation and progression
of colorectal adenocarcinoma (73). Tumor-derived γδ T cells that
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were stimulated by CD3 monoclonal antibodies could produce a
lot of IFN-γ and showed strong cytotoxic activities to autologous
and allogenic gastrointestinal tumor cells (74). A recent study
showed that Phloretin could enhance the cytolytic effects of γδ T
cells on colon cancer cells by facilitating the proliferation of IFN-
γ producing γδ T cells, and the underlying mechanism might
be associated with the increased expression of PFP, GraB, and
CD107a as well as the activation of the Wnt signaling pathway
(75). Moreover, Vδ2 T cells that expressed FcγRIIIA (CD16)
could kill colon carcinoma cells via ADCC (51).

A series of ex vivo expansion experiments have shown
that γδ T cells stimulated by phosphoantigens have robust
killing capabilities on CRC (20, 44, 45, 50, 51). Human γδ T
cells stimulated by zoledronate produced higher IFN-γ, TNF-
α, granzymes, and TRAIL, thus enhancing the killing effect
on the colon cancer stem cells, which was mediated by the
granule exocytosis pathway and was related to the expression of
isoprenoid by tumor cells (20). TCRs expressed on γδ T cells are
able to mediate colon cancer stem cell recognition and killing,
whereas NKG2D play a role only when tumor targets express
several NKG2D ligands (20). Moreover, a recent study suggested
that the high cytolytic potential and the production of IFN-γ
were relevant to the NKp46 expression on γδ intestinal epithelial
lymphocytes, which was associated with the high antitumor
activity against CRC (50). Tumor-infiltrating γδ T cells (Vδ 1
and Vδ 2 T cells) expanded ex vivo exert strong inhibitory
effects and killing activity to rectal cancer cells (17). Furthermore,
zoledronate could induce the CRC microenvironment expressing
BTN31 to produce effector γδ T cells with anti-CRC activity
(44). Altogether, γδ T cells are characterized as effector cells with
tumor-killing abilities.

Protumor Effects
A recent study has shown that the upregulation of IL-17 is
correlated with the colorectal tumorigenesis (66), suggesting
that if the expression of IL-17 decreases, the occurrence and
development of CRC will be inhibited. Indeed, several studies
have confirmed that inhibition of IL-17 suppresses the occurrence
of colitis, colonic dysplasia, and colon cancer (64, 76). For
example, research by Mahesh Kathania et al. (24) has shown
that the ubiquitin ligase Itch can restrain the expression of IL-
17 by inhibiting or deactivating ROR-γt ubiquitination, therefore
protecting against colitis-associated colon cancer.

In 2014, Pin Wu et al. (32) were the first to report the role
of IL-17 γδ T cells in promoting human CRC and demonstrated
that γδ T cells are the main source of IL-17 in human CRC.
They found that disruption of CRC epithelial barrier resulted
in the accumulation and activation of inflammatory DCs, and
triggered γδ T17 cells polarization as well as production of IL-
17, IL-8, TNF-α, and GM-CSF in γδ T cells, which promoted the
recruitment and proliferation of MDSCs, and finally inhibited
inflammation triggered by CRC and promoted tumorigenesis
(32) (Figure 2). Another research team assessed the secretion
of IL-17, IFN-γ, and TNF-α by CRC-infiltrating γδ T cells
stimulated by ionomycin and PMA in vitro, then used three
different FACS gating strategies. Surprisingly, they confirmed
that the majority of CD45+ IL-17+ cells both in CRC and in

adjacent non-tumor colon tissues were CD3+ cells but not γδ

T cells that preferentially produced IFN-γ in CRC and adjacent
normal tissues (49). Moreover, the production of IFN-γ by
γδ T cells (Vδ 1 and Vδ 2 T cells) was significantly reduced
in CRC tissues compared with adjacent normal tissues. The
results of this study showed that compared with normal colon
tissue and blood, tumor-infiltrating γδ T cells had reduced the
capacities to produce IFN-γ but did not produce IL-17 (49).
The discrepancy that the results of this study are not consistent
with the former study is likely due to some unknown inhibitory
components in local TME.

Functions of γδ T Cells in IBD and CAC
Inflammatory bowel diseases (IBD) including Crohn’s disease
(CD) and ulcerative colitis (UC) are complex chronic
inflammatory disorders of unknown origin that could affect
the intestinal tract (77). Colitis-associated cancer (CAC) may
develop in patients with IBD, which is primarily due to chronic
intestinal inflammation (78, 79). It is reported that the cumulative
incidence of CRC by colitis duration was 2.5% at 20 years, 7.6%
at 30 years, and 10.8% at 40 years (78). As the population of
patients with IBD grows older, there is an increasing risk of
CAC development (80). However, the underlying mechanisms
of initiation and development of IBD and how chronic
inflammation in IBD leads to CAC development remain unclear.
It is well recognized that multiple components of the immune
system are involved in the pathogenesis of IBD and CAC (81).
γδ T cells, as a critical component of the immune system, are
mainly distributed in the mucosa of the intestinal epithelium
and regarded as the first line of defense against pathogens,
and may play a significant role in the pathogenesis of IBD
and CAC (82).

Both human Vδ 1 T cells and Vδ 2 T cells are able to
exert an immunoregulatory function and contribute to the
pathophysiology of IBD (83–85). Initial studies demonstrated
that the number of Vδ 1 T cells were increased in the
inflammatory tissue of IBD patients, and Vδ 1 T cells were a major
source of IFN-γ (86), suggesting that Vδ 1 T cells played a role
in controlling IBD. Moreover, IL-15 produced by epithelial cells
plays a key role in γδ T cells, regulating mucosal inflammation in
the mouse colon (83). Later, a study showed that the frequency of
Vδ 1 T cells in tissue from IBD patients was decreased while Vδ2
T cells were increased in the gut of IBD patients and contributed
to TNF-α production (84). Two similar studies also showed that
Vδ 2 T cells were the dominant tissue-infiltrating γδ T cells in
chronic inflamed IBD, whereas Vδ 1 T cells presented more in
healthy colon tissue (85, 87). The tissue-infiltrating Vδ 2 T cells
in IBD produced amounts of IFN-γ and TNF-α. Moreover, Lo
Presti, E. et al. found that low percentages of Vδ1 and Vδ2 T
cells were infiltrated in CAC tissue, but the levels of IFN-γ, TNF-
α and IL-17 produced by Vδ2 T cells were increased (85, 87).
Transcriptomes also showed a clusterization of gene expression
found in IBD patients, which was related to the induction and
the maintenance of the inflammatory status (85). The gene
expression profile revealed that patients with sustained IBD had
an overexpression of the pro-inflammatory cytokine genes (87).
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These findings demonstrated that Vδ 2 T cells were related to
the IBD and CAC pathogenesis and played a protective role in
both diseases. The different findings of early studies and later
studies, is probably due to the limitation of sample size and the
difference of experimental materials as well as methods. Further
studies are needed to determine the functions of different γδ T
cell subpopulations in the pathophysiology of human IBD. In
addition to Vδ 1 T cells and Vδ 2 T cells, Kadivar et al. have
defined and characterized a novel subtype of human CD8αβ+ γδ

T cells that were enriched in the intestinal tract of patients with
active IBD and produced cytotoxic mediators, such as IFN-γ and
TNF-α, suggesting a role in IBD (88).

CRC IMMUNOTHERAPY BASED ON γδ T
CELL

Immunotherapy is another important strategy of antitumor
therapy after surgery and adjuvant therapies, which has shown
unprecedented success in clinical practice. Application of
programmed cell death protein-1/programmed cell death-ligand
1 (PD-1/PD-L1) and chimeric antigen receptor-T (CAR-T)
cells, have completely changed the treatment landscape of
many different malignancies like leukemia, melanoma and so
on (59, 89, 90). However, in solid tumors like CRC, the
role of immunotherapy based on PD-1/PD-L1 and CAR-T
cells is limited. By contrast, immunotherapy based on innate
immunocytes like γδ T cells shows antitumor activity with fewer
observed side effects (91, 92). The reaction of γδ T cells to
recognize tumor antigens in the MHC-unrestricted manner is
rapid, which makes them a key player in immune surveillance.
Moreover, γδ T cells could be amplified easily either in vivo or
ex vivo. Studies also reported that the prognosis of cancer patients
is related to the percentage of γδ T cells (39, 49). Therefore, it is a
feasible antitumor strategy to use γδ T cells against CRC.

Treatment Approaches
Because tumor phosphoantigens are recognized and activated
by TCRs of γδ T cells in an MHC-unrestricted manner (29),
phosphoantigens are usually used to stimulate γδ T cells ex vivo
and in vivo. Chemosynthetic phosphoantigens (like bromohydrin
pyrophosphate, BrHPP) and aminobisphosphonates (like
pamidronate and zoledronate) are able to activate and enhance
the cytotoxicity of Vγ9Vδ2 T cells by blocking the mevalonate
pathway and promoting the intracellular accumulation of IPP
(43). In addition to the stimulation of phosphoantigens, the
proliferation of γδ T cells depends on the existence of IL-2.
IL-2 is a type of cell growth factor in the immune system
and plays an important role in anti-infection and antitumor
by: (1) regulating the activity of lymphocytes in peripheral
blood; (2) promoting the proliferation of activated T cells;
(3) inducing the cytotoxicity of NK cells and cytotoxic T
lymphocytes; and (4) enhancing the ADCC against malignant
cells via stimulating the expression of CD56, IL-2Rα and TNF
receptors. Adoptive immunotherapy based on IL-2 has been
used in different tumors, such as melanoma, kidney cancer,
hepatic carcinoma, and CRC. In addition, early studies have

shown that the use of low-dose IL-2 can reduce the recurrence
of patients with hematological malignancies treated by bone
marrow transplantation (93). Although a high dose of IL-2
may produce a lot of side effects, the adverse reactions caused
by a low dose of IL-2 cannot be ignored. For instance, when
a low dose of IL-2 stimulates γδ T cells, it will increase the
number of circulating regulatory T cells, thus resulting in strong
immunologic suppression. Therefore, an accurate dosage and
regimen of IL-2 are required to expand γδ T cells when treating
patients with tumors.

There are two strategies to activate and amplify γδ T cells.
(1) In vitro expansion: γδ T cells are isolated from the tissues
or peripheral blood of the patients with tumors, stimulated with
phosphoantigen, anti-TCRγδ antibody (17) or IL-2, expanded to
a certain number, and finally reinfused back to patients to play
an antitumor role. This immunotherapy strategy is also known as
adoptive transfer, which can expand γδ T cells ex vivo to obtain
the required number of cells. But this method also has limitations
like a high treatment cost and the need for accurate control of
the amplification process. (2) In vivo expansion: a process by
which the circulating γδ T cells are expanded by intravenous
administration of phosphoantigens or aminobisphosphonates in
the presence of IL-2, is relatively less expensive. However, clinical
trials aimed at the in vivo expansion of γδ T cells in CRC have not
been carried out so far.

Studies Based on γδ T Cell
Immunotherapy
During the past few years, most of the studies about γδ T
cells-based immunotherapies mainly focused on Vγ9Vδ2 T cell
subtypes, especially on how to activate them in vivo or ex vivo and
how to improve their concentration in peripheral blood. A series
of ex vivo studies and clinical trials based on γδ T cells against
CRC have also been reported in recent years.

Bouet-Toussaint, F. et al. (94) collected peripheral blood
samples from 11 tumor patients (six with hepatocellular
carcinoma, four with CRC, one with sarcoma) and 16 healthy
people. They then amplified Vγ9Vδ2 T cells ex vivo with a single
dose of phosphoantigen (BrHPP or zoledronate) in the presence
of exogenous IL-2. Two weeks later, the expanded Vγ9Vδ2 T
cells moderately expressed CD16 (an NK marker related to
cytotoxic function) and strongly expressed C-type lectin receptor
CD161 (NKRP-1A), NKG2D, and CD94 co-receptor. Moreover,
autologous Vγ9Vδ2 T cells stimulated by BrHPP or zoledronate
showed specific cytolytic activity against HCC and CRC primary
cells but not against autologous primary normal cells, which
might be related to the NKG2D expression on Vγ9Vδ2 T
cells (94). Moreover, the proliferated Vγ9Vδ2 T cells that were
stimulated by BrHPP could selectively recognize and lyse HCC
and CRC by releasing IFN-γ and TNF-α. Altogether, it is feasible
in adoptive immunotherapy for HCC and CRC, that Vγ9Vδ2
T cells can be expanded from peripheral blood mononuclear
cells (PBMCs) of patients with advanced cancer and stimulated
by phosphoantigens.

Although Vγ9Vδ2 T cells stimulated by phosphoantigens
have lytic activity to a variety of human malignant tumors,
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TABLE 1 | Clinical trials using γδT cells.

References Year Disease Number of
patients

Phase of
clinical trial

Treatment
approach

Intervention Outcomes

J. Bennouna et al. (92) 2010 RCC, CC, EC, GC, OC, BC 28 I Adoptive transfer BrHPP + IL-2 12 SD, 16 PD

A. Noguchi et al. (91) 2011 BC, CC, LC, others 25 I Adoptive transfer Zol + IL-2 3 SD, 8 PD, 3 PR

A. J. Nicol et al. (96) 2011 Melanoma, OC, CC, BC, others 18 I Adoptive transfer Zol + IL-2 3 SD, 11 PD, 2 PR,
1 CR, 1 NE

T. Izumi et al. (42) 2013 CRC 6 I Adoptive transfer Zol + IL-2 1 CR, 4 PR, 1 NE

RCC, renal cell carcinoma; CC, colon cancer; EC, esophagus carcinoma; GC, gastric cancer; OC, ovarian cancer; BC, breast cancer; LC, lung cancer; CRC,
colorectal cancer; BrHPP, bromohydrin pyrophosphate; Zol, zoledronate; SD, stable disease; PD, progressive disease; PR, partial response; CR, complete response;
NE, not evaluable.

Cabillic, F. et al. (43) observed that nearly half of tumor patients
showed a low proliferative response of Vγ9Vδ2 T cells after the
conventional stimulation of phosphoantigens. Subsequently, they
co-cultured PBMCs from HCC patients and CRC patients with
hepatic metastases (mCRC) with immature DCs stimulated by
aminobisphosphonate zoledronate to amplify γδ T cells ex vivo.
They found that PBMCs co-cultured with zoledronate-pretreated
DCs could induce strong γδ T cell expansion, significantly
increased the expression of IPP and IFN-γ, thus enhanced the
cytotoxicity of Vγ9Vδ2 T cells. Interestingly, the stimulation
of zoledronate-pretreated DCs on Vγ9Vδ2 T cells resulted in
higher IFN-γ production than that of BrHPP or zoledronate.
The tumor cells pretreated with zoledronate could significantly
increase the cytotoxicity of Vγ9Vδ2 T cells against isolated tumor
cells from patients. Therefore, Vγ9Vδ2 T cell expansion can
be effectively improved through the co-culture of PBMCs with
DCs pretreated by zoledronate, indicating that this strategy could
be used to improve the efficacy of immunotherapy for HCC
and mCRC patients.

The above researches indicated that both phosphoantigens
and IL-2 were necessary for the expansion of γδ T cells ex vivo.
Some clinical studies about Vγ9Vδ2 T cell-based adoptive
transfer therapies also showed that IL-2 was necessary for the
proliferation of γδ T cells in vivo (92). However, a recent
study showed that adoptively transferred Vγ9Vδ2 T cells could
also be amplified well in vivo without the infusion of extrinsic
IL-2. The research group of Izumi, T. et al. (42, 95) used
zoledronate + IL-2 to prepare a large scale of proliferated Vγ9Vδ2
T cells ex vivo. They applied the expanded Vγ9Vδ2 T cells
to phase I study of adoptive immunotherapy for patients with
recurrent non-small-cell lung cancer, and the patients showed
great tolerance to the cultured Vγ9Vδ2 T cells (95). After that,
they conducted a clinical trial to evaluate the efficacy of adoptive
immunotherapy based on autologous γδ T cells for patients who
received pulmonary metastasectomy of CRC. They identified
the characteristics of Vγ9Vδ2 T cells in patients who received
the adoptive transfer. The number of Vγ9Vδ2 T cells increased
gradually in six patients who received autogenous Vγ9Vδ2 T
cells injection, and the percentage of IFN-γ+ or CD107a+ cells
in Vγ9Vδ2 T cells was higher than that of other Vγ9-CD3+
T cells, suggesting that Vγ9Vδ2 T cells in vivo had toxicity
against cancer cells. Moreover, in the absence of exogenous
IL-2, the ex vivo-expanded γδ T cells infused back into the
patients showed a CD45RA−CD27− effector phenotype and were

IL-2Rα-IL-7Rα-IL-15Rα-IL-2Rβ+ γc+ that might bind to the IL-
15Rα/IL-15 complex, which suggested that endogenous IL-15
might sustain the proliferation of γδ T cells in patients treated
with adoptive transfer (42) (Table 1).

Other several clinical trials based on γδ T cells are also
conducted in CRC patients (Table 1). A total of 28 patients
with advanced solid tumors, including three colon tumor
patients, were enrolled in a two-center, open-label, phase I
study, and the results showed that the application of the
combination of bromohydrin pyrophosphate (IPH1101) and a
low-dose of IL-2 was safe and well-tolerated in antitumor
immunotherapy, which could effectively induce the expansion
of γδ T cells in tumor patients, and the degree of expansion
depended on the concentration of IPH1101 (92). In this trial,
no patient achieved an evaluable objective response; stable
disease was observed in 12 patients, and progressive disease was
observed in 16 cases. No grade 4 toxicity was observed at any
dose level among 28 patients. Similarly, another clinical trial
involving 25 patients with advanced solid tumors (including
1 patient with colon cancer) also showed that no severe
adverse events were observed after the reinfusion of γδ T
cells stimulated and amplified with zoledronate and IL-2 (91).
A total of 14 patients were evaluable for objective tumor
response. Among these 14 patients, eight cases of progressive
disease, three cases of stable disease, and three cases of partial
response were observed. In addition, A. J. Nicol et al. (96)
enrolled 18 patients with advanced solid tumors (three cases
of colon cancer) into a phase I clinical study to evaluate
the feasibility and safety of immunotherapy based on ex vivo
expanded, activated Vγ9Vδ2 T cells. No dose-limiting toxicity
was observed, but three cases who received Vγ9Vδ2 T cell
reinfusion, while continuing previously ineffective therapy, had
disease responses. The clinical outcome of this trial is shown
in Table 1.

Altogether, we can see that γδ T cell-based immunotherapy is
safe and well-tolerated in tumor patients including CRC patients.
γδ T cells-based immunotherapy has so far, however, mainly
focused on solid tumors such as melanoma, lung cancer, breast
cancer, prostate cancer, and so on, and the results of these trials
show great tolerance and safety. The clinical research on solid
tumors of hollow organs such as CRC and gastric cancer is
still insufficient. Therefore, the application of γδ T cells-based
immunotherapies in cavity organ tumors requires substantial
research in the future.
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CONCLUSION REMARKS

As a bridge between innate immunity and adaptive immunity, γδ

T cells have attracted great interest from the research community
because of their rapid recognition of stressed cells in an MHC-
unrestricted manner, coupled with their robust killing activity
in different tumor types. The killing effects are mainly mediated
by direct cytotoxicity, secretion of cytokines, expression of death
receptors, and so on. γδ T cells also play a role in perpetuating
CRC progression, which is closely related to the survival of
CRC patients. Studies have shown that they could significantly
inhibit the occurrence and development of CRC. On the other
hand, recent studies showed that γδ T cells could promote
the occurrence and growth of CRC by secreting IL-17. Their
antitumor and protumor effects on CRC perhaps mainly depend
on the components of local TME. Compared with αβ T cells, γδ

T cells recognize tumor cells via an MHC-unrestricted manner
and can be expanded ex vivo easily, thus being used in tumor
immunotherapy. Immunotherapies based on γδ T cells are safe
and well-tolerated in patients with solid tumors. However, some
patients do not respond to γδ T cells-based immunotherapies. It
is therefore necessary to explore the interaction between γδ T cells
and tumor cells in vivo, and to explore what components affect

and regulate this process, as well as exploring approaches to the
reasons why some patients did not respond to immunotherapy
or showed a low proliferative response of Vγ9Vδ2 T cells
after the conventional stimulation of phosphoantigens. Further
studies are needed to enhance the immunotherapy strategies
on CRC, including better amplification of γδ T cells and a
better clinical response. Clinical trials with large sample sizes on
in vivo expansion and adoptive transfer of γδ T cells in CRC
should be carried out to optimize current strategies. Also, the
combination of traditional chemotherapy and immunotherapy
that may improve patient’s response and overall survival is
necessary to be explored to investigate the efficacy and safety.
Of note, the interaction and mechanism between γδ T cells
and other immunocytes remain unclear, so it will be valuable
to elucidate it.
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