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The clinical success of cancer immunotherapies targeting PD-1 and CTLA-4 has ignited

a substantial research effort to improve our understanding of tumor immunity. Recent

studies have revealed that the immune contexture of a tumor influences therapeutic

response and survival benefit for cancer patients. Identifying treatment modalities that

limit immunosuppression, relieve T cell exhaustion, and potentiate effector functions

in the tumor microenvironment (TME) is of much interest. In particular, combinatorial

therapeutic approaches that re-educate the TME by limiting the accumulation of

immunosuppressive immune cells, such as Foxp3 regulatory T cells (Tregs) and

tumor-associated macrophages (TAMs), while promoting CD8+ and CD4+ effector T cell

activity is critical. Here, we review key approaches to target these immunosuppressive

immune cell subsets and signaling molecules and define the impact of these changes

to the tumor milieu. We will highlight the preclinical and clinical evidence for their

ability to improve anti-tumor immune responses as well as strategies and challenges

for their implementation. Together, this review will provide understanding of therapeutic

approaches to efficiently shape the TME and reinvigorate the immune response

against cancer.

Keywords: tumor-associated myeloid cells, regulatory T cells (Tregs), natural killer T (NKT) cells,

mucosal-associated invariant T (MAIT) cells, adenosine, transforming growth factor (TGF)β, prostaglandin,

immune toxicity

INTRODUCTION

The clinical validation of key conceptual developments in the field of tumor immunology
has engendered much interest in strategies to initiate immune cell function within the
tumor microenvironment (TME). Central to effective anti-tumor immunity induced by cancer
immunotherapies is the ability to re-educate and re-activate immune effector and cytotoxic T
cells to eliminate cancer cells. As such, immunotherapies targeting T cell immune checkpoint
receptors cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and/or programmed death-1
(PD-1)/programmed death-ligand 1 (PD-L1) have ascended to first-line therapies for a number
of solid malignancies (1). Combinatorial anti-tumor efficacy of ipilimumab (anti-CTLA-4) and
nivolumab (anti-PD-1) in advanced stage melanoma and renal cell carcinoma (RCC) highlights
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the importance of targeting multiple immune pathways to
unleash a more robust anti-tumor immune response (2, 3). In
addition, FDA-approval of pembrolizumab (anti-PD-1) for the
treatment of microsatellite instability-hi (MSI-h) and deficient
DNA mismatch repair (dMMR) tumors, the first cancer-site
agnostic treatment approval, as well as the correlation between
tumor mutational burden and survival outcome sheds light
on the significance of tumor genetics in initiating an immune
response (4–6). Similarly, PD-L1 status has been shown to impact
therapeutic outcome to PD-1/PD-L1 targeting immunotherapies
(7). This highlights that a better understanding of the immune
contexture and its interaction with surrounding tumor, stroma,
and their derivatives (e.g., chemokines and other soluble factors)
is crucial to developing novel therapeutic targets to efficiently
shape and re-condition the TME, reinvigorating the immune
response against cancer.

Functional anti-tumor immunity relies on both the quality
(effector and cytotoxic function) and quantity (numbers and
localization) of tumor-infiltrating lymphocytes (TILs) in the
TME. Targeting CTLA-4 and PD-1 non-redundantly mobilizes
and activates alternate T cell components, with CTLA-4 shown
to inhibit priming and generation of antigen-specific T cells in
the lymph nodes whereas PD-1 limits CD8+ T cell numbers in
the tissue, for superior anti-tumor outcomes (8, 9). The concept
of targeting two or more non-redundant immune regulatory
pathways for enhanced anti-tumor immunity is not limited to
adaptive immunity. A combination of anti-DR5, anti-CD40, and
anti-CD137 agonistic antibodies aiming to induce apoptosis in
tumor cells, activate antigen presenting cells (innate immunity),
and co-stimulate CD8+ T cells (adaptive immunity), respectively,
has been shown to eradicate both established transplantable
and spontaneous tumors (10). Similarly, it has been shown
that a combination of recombinant interleukin (IL)-2, anti-
PD-1, a tumor-antigen targeting antibody, and an additional
vaccine targeting three individual tumor antigens is able to
eradicate a poorly immunogenic murine melanoma, via the
activation of both innate and adaptive immunity (11). Here,
we review key approaches to target pathways alternative to
mainstream T cell checkpoint receptors to re-educate the TME
and alleviate immune suppression and highlight challenges for
therapy selection and implementation in the clinic.

Abbreviations: A2AR, A2A adenosine receptor; APCs, antigen presenting cells;

CSF1, colony stimulating factor 1; CSF1R, colony stimulating factor 1 receptor;

COX, cyclooxygenase; CTLA-4, cytotoxic T-lymphocyte associated protein 4;

dMMR, deficient DNA mismatch repair; EZH2, enhancer of zeste homolog 2;

FLT3L, FMS-like tyrosine kinase 3 ligand; IDO, indoleamine 2,3-dioxygenase;

IFN, interferon; irAEs, immune-related adverse events; IL, interleukin; MAIT,

mucosal-associated invariant T; MSI-h, microsatellite instability-hi; NKT,

natural killer T; NRP1, neuropilin-1; NSCLC, non-small cell lung cancer;

PDAC, pancreatic ductal adenocarcinoma; PD-1, programmed death-1; PD-L1,

programmed death-ligand 1; PMN-MDSC, polymorphonuclear myeloid-derived

suppressor cells; PTSG2, prostaglandin-endoperoxide synthase 2; RCC, renal

cell carcinoma; Tregs, regulatory T cells; TAMs, tumor-associated macrophages;

TGF, transforming growth factor; TILs, tumor-infiltrating lymphocytes; TME,

tumor microenvironment; TNF, tumor necrosis factor; VEGF, vascular endothelial

growth factor.

IMPROVING TUMOR CONTROL WITH
MYELOID CELLS IN THE TME

Myeloid cells predominate the TME and in many cases evolve
to display an immunosuppressive phenotype and ineffective
antigen presenting cells (APCs) due to the inflammatory milieu
(Figure 1). Tumor-associated macrophages (TAMs) are innate
immune cells of heterogeneous origins that have been shown
to accumulate in the TME as tumors progress (12–14). The
presence of immunosuppressive TAMs can interfere with T
cell-mediated anti-tumor immune responses (15, 16). Given
the absence of a universal definition for TAMs, we have listed
relevant markers used in individual studies. It has been reported
that an accumulation of monocyte-derived TAMs (CD11blo

MHC-II−/lo) positively correlates with the proportion of tumor-
infiltrating exhausted PD-1+ CD8+ T cells in a mouse model
of mammary cancer (12), illustrating a potential mechanism by
which TAMs promote tumor escape by modulating the CD8+

T cell response. More recently, it has been shown that TAMs
(CD11b+ MHC-II+) are capable of stripping anti-PD-1 bound to
PD-1+ T cells by binding to the antibody Fc domain, abrogating
the anti-tumor activity of this immune checkpoint inhibitor
(17). It remains unclear if a similar resistance mechanism
also exists in the context of anti-PD-L1 therapy. However, in
preclinical mouse models Fc engagement is critical for anti-PD-
L1 (clone 10F.9G2) therapeutic efficacy by enabling depletion of
immunosuppressive TAMs (CD11b+ F4/80+) (18). Therefore,
defining the functionality of an antibodies Fc region for optimal
therapeutic activity in the context of both T cells and myeloid
cells is an important consideration. Additionally, modulating
TAMs via targeted depletion, inhibiting active migration, and
promoting activation and differentiation, as a means to re-
educate the TME may increase permissiveness to immune
checkpoint inhibitor therapy.

The colony stimulating factor 1 (CSF1)/CSF1 receptor
(CSF1R) axis is crucial for TAM differentiation (19). Selective
depletion of TAMs by targeting CSF1R using monoclonal
antibodies or small molecule inhibitors has been shown to
restrict CSF1R+ TAM accumulation in the TME, leading to
reduced tumor growth in a number of mouse models (20–
23). Depletion of CSF1R+ TAMs demonstrated efficacy in
improving a wide range of existing cancer therapies, including
chemotherapy, oncogene-targeted therapy, and immunotherapy
(21, 23, 24). In preclinical BRAF-mutant melanoma, co-
administration of PLX3397 (CSF1R inhibitor) together with
PLX4720 (mutant BRAF inhibitor) effectively sensitizes a
PD-1-resistant tumor model to anti-PD-1/PD-L1 therapies
(23). However, CSF1R inhibition induces the expansion of
polymorphonuclear myeloid-derived suppressor cells (PMN-
MDSC) that may abrogate the efficacy of combination CSF1R
inhibition and anti-PD-1 treatment (23, 25). Evidence that
targeting CSF1R and CXCR2 signaling to inhibit TAM and PMN-
MDSC expansion, respectively, alongside anti-PD-1 facilitates
improved anti-tumor immune responses than either doublet
combination (25). Alternatively, targeting the CCL2/CCR2 axis,
a key chemokine pathway involved in macrophage migration
to inflammatory sites, to limit their entry into the TME
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FIGURE 1 | Immunosuppressive targets in the tumor microenvironment. Re-educating the tumor microenvironment to improve the response to cancer

immunotherapies can be performed through targeting many cellular and immunosuppressive factors. These include (A) tumor-infiltrating myeloid cells such as

tumor-associated macrophages and dendritic cells, (B) tumor-infiltrating Tregs, and (C) tumor-derived immunosuppressive factors. Therapeutically altering these

immunomodulatory components may promote anti-tumor immunity either alone or synergize with FDA-approved immune checkpoint inhibition.

enabled numerical and functional improvement of intratumoral
lymphocyte infiltrate (26–29). Wu et al. demonstrated improved
survival outcomes in cutaneous T-cell lymphoma-bearing mice
treated with a CCR2 inhibitor and anti-PD-1 (28). Collectively,
these studies highlight that inhibition of pro-tumor TAMs in
the TME reinvigorates the anti-PD-1-driven T cell response.
Of note, a phase I/II clinical trial accessing the combinatorial
effect of nivolumab, GVAX (a cancer vaccine expressing
GM-CSF) and BMS-813160 (a CCR2/CCR5 dual antagonist)

in pancreatic ductal adenocarcinoma (PDAC) is currently
underway (NCT03767582).

It is worth highlighting that not all tumor-infiltrating myeloid
cells promote tumor growth. The production of CXCL9 and
CXCL10, predominantly by TAMs (CD11b+ Ly6Cint CD11c+

F4/80+), enhances CD8+ T cell infiltration and tumor control in
response to combination anti-PD-1 and anti-CTLA-4 in a mouse
model of mammary adenocarcinoma (30). High production of
these chemokines within the TME is associated with better
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survival outcomes in melanoma patients receiving combination
treatment (30). In light of these findings, reprogramming these
innate immune cell subsets may be beneficial due to their antigen
presenting properties promoting infiltration of an effective
anti-tumor T cell response. In KPC (LSL-KrasG12D/+;LSL-
Trp53R172H/+;Pdx-1-Cre) PDAC TAMs (CD11b+ Gr1− F4/80+)
enable T cell exclusion and consequently, resistance to immune
checkpoint therapy is likely driven by the absence of effector
T cells that can be modulated (31, 32). Independent studies
of mouse pancreatic models have demonstrated the remodeling
activity of the agonistic CD40 antibody by overcoming T cell
exclusion in the TME, leading to improved therapeutic response
to anti-CTLA-4, and/or anti-PD-1 (33–35). Using a T cell-
rich but anti-PD-1 resistant mammary carcinoma model, we
have recently demonstrated that IL-12 induced by an agonistic
CD40 antibody could render terminally exhausted PD-1hi tumor-
infiltrating CD8+ T cells into their PD-1int progenitor state
(36), leading to improved anti-tumor immunity in response to
anti-PD-1 following sensitization by anti-CD40 agonism.

An additional therapeutic approach to re-educate the TME
and bolster the efficacy of immune checkpoint therapy is
combination treatment with FMS-like tyrosine kinase 3 ligand
(FLT3L) and poly I:C treatment, to expand and enhance
maturation of anti-tumor CD103+ dendritic cells (DCs) resulting
in a dramatic increase of intratumoral T cells (37). Notably,
T cell-activating IL-12 producing CD103+ DCs diminish over
time (37–41), suggesting that they may facilitate tumor control
during tumor initiation. Beavis et al. also reported a role for
anti-PD-1/CTLA-4 activated CD4+ Foxp3− cells in enhancing
IL-12 production by CD103+ DCs, which in turn promoted
T cell-mediated anti-tumor immunity in mice (42). The
persistence of intratumoral stimulatory DCs (CD103+ BDCA-
3+) defined by gene expression profiles corelated with improved
overall survival outcomes and was associated with higher TIL
measurements in metastatic melanoma (43). Mediating the
abundance of intratumoral stimulatory DCs was the presence of
tumor-infiltrating natural killer cells and expression of FLT3L,
together these components may assist in determining anti-
PD-1 therapeutic response and identify therapeutic strategies
to potentiate efficacy (43). More recently, a cluster of DCs
named mregDCs (mature DCs enriched in immunomodulatory
molecules) co-expressing immunoregulatory genes (Cd274,
Pdcd1lg2, and Cd200) and maturation genes (Cd40, Ccr7, and
Il12b) was found in single cell analysis of mouse and human
non-small cell lung cancer (NSCLC) DC infiltrate (44). Of
note, neutralizing IL-4 was shown to enhance mregDC IL-12
production, repressing lung adenocarcinoma in mice (44). With
advances in high-throughput single-cell analysis to provide fine-
detail of immune infiltrate in tumors, it is likely to facilitate an
expansion of our repertoire of novel targets that will assist to
re-educate DCs and other myeloid cells specifically in the TME.

RE-EDUCATING SUPPRESSIVE AND
UNCONVENTIONAL T CELLS IN THE TME

Regulatory T cells (Tregs) serve as a barrier to limit
inflammation, however, their enrichment in the TME of

established cancer correlates with poor prognosis and
a dampened anti-tumor immune response (Figure 1).
Clinical studies have resolved that a higher effector/Treg
ratio is associated with favorable outcomes in multiple solid
cancers (45, 46). In addition to Treg-induced suppression of
effector T cells by manipulating their migration, activation,
functionality and/or survival (47, 48), Tregs are able to
form an immunosuppressive barrier capable of limiting the
trafficking of activated antigen-specific CD8+ T cells into
the TME (49). Importantly, Foxp3+ Tregs promote effector
CD4+ and CD8+ TIL dysfunction, with improved cytokine-
producing capacity upon Treg depletion and reinvigorated
T cell responses to immune checkpoint blockade (50–52).
However, systemic Treg depletion introduced transiently can still
increase susceptibility of mice to autoimmunity (53), indicative
that identifying an appropriate target to specifically remove
intratumoral Foxp3+ Tregs will be advantageous for maintaining
therapeutic safety.

Intratumoral Foxp3+ Tregs are highly suppressive, with
an activated phenotype marked by the expression of several
classes of immune receptors [ENTPD1 (CD39), CTLA-4, OX40,
and GITR], and chemokine receptors (CCR4). Studies using
preclinical mouse models showed that anti-CTLA-4 (clone 9H10,
9D9, and H11; antagonist), anti-OX40 (clone OX86; agonist)
and anti-GITR (clone DTA-1; agonist) exhibited varying levels
of intratumoral Treg depleting activity in vivo that was critical to
their efficacy (54–59). Anti-CTLA-4 (clone 9D9, mouse IgG2a)
and anti-OX40 were shown to specifically deplete intratumoral
Tregs but not peripheral Tregs (56, 57). Tumor-infiltrating
Treg depletion by anti-CTLA-4 enhanced anti-PD-1 sensitivity
to the previously resistant AT3 mouse mammary carcinoma
(36). In the clinic, mogamulizumab (an anti-human CCR4
antibody, engineered for ADCC activity) was developed to
specifically deplete CCR4+ suppressive Tregs found in the TME
(60), and is undergoing testing in combination with T cell
checkpoint targets in Phase I/II clinical trials (NCT02301130,
NCT02705105, NCT02476123, and NCT02946671). While it
remains unclear whether combining anti-CCR4 and anti-PD-
1 provides favorable survival benefits, an increase in the
proportion of CD8+ T cells and a reduction in activated
Foxp3hi Tregs was observed in TILs from patients, along
with an acceptable safety profile [(61); NCT02476123]. With
advances in antibody engineering, we should expect refinement
of antibodies for both existing and novel targets to modulate
TME-specific Tregs to enhance anti-tumor immunity (51, 62, 63).
Revisiting targeting CD25-expressing Tregs, Vargas et al. found
that by altering the IgG backbone (from rat IgG1 to mouse
IgG2a) greater specificity was afforded toward intratumoral
Treg depleting activity by an Fc-optimized version of CD25
antibody (64). Anti-CD25-mediated intratumoral Treg depletion
synergized with PD-1 blockade therapy in a number of mouse
cancer models (64), highlighting the importance of remodeling
the Treg dynamics within the TME to enhance checkpoint
blockade therapy. Translation of this combination needs to
be thoroughly examined, to limit the depletion of alternate
CD25-expressing cell types including effector T cells and
NK cells.
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Given the critical role of Tregs in maintaining immune
homeostasis, attenuating intratumoral Treg suppressive function
may be a safer approach to remodel the TME while minimizing
the risk of systemic autoimmunity. Studies from a series of
experimental modeling showed that the disruption of Foxp3, the
critical transcription factor to maintain Treg lineage, altered their
suppressor function (65–67). This also resulted in the generation
of pathogenic effector T cells (67, 68). However, disruption of
intratumoural Treg suppressive function has been shownwithout
the loss of its Foxp3+ Treg identity. Neuropilin-1 (NRP1) appears
crucial to maintain intratumoural Treg stability without aberrant
loss of Foxp3 identity, and anti-NRP1 displayed therapeutic
efficacy in suppressing tumor growth (69). Notably, using a
co-transfer model of NRP1-intact and NRP1-deficient Tregs,
interferon (IFN)-γ produced by NRP1-deficient Tregs is capable
of causing fragility to the suppressive capacity of NRP1-intact
Tregs, resulting in improved host anti-tumor immunity (70).
Similar to the role of NRP1 to maintain Treg stability, the histone
H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2)
has been recently shown to be critical for the maintenance
of activated Foxp3+ Tregs (71). EZH2 inhibition destabilizes
Foxp3 expression and inhibits tumor growth in vivo (72, 73).
While targeting these pathways may be able to provide an
opportunity to dismantle Treg suppressionwithin the TME, these
therapies still lack specificity to this cell type. Understanding
the role of these molecules in multiple cell types and disease
settings is likely to dictate their applicability for utility in
cancer immunity.

Besides Tregs, unconventional T cells have also received
considerable interest in tumor immunology for their
immunoregulatory role. In contrast to CD8+ and CD4+ T cells
that interact with MHC class I and II molecules, unconventional
T cells such as natural killer T (NKT) cells interact with non-
classical MHC CD1d molecules (74). α-GalCer (a glycoplipid
molecule derived from a marine sponge extract) is a known
ligand for NKT cells, and has been widely used to experimentally
modulate NKT cells (75). α-GalCer-activated NKT cells are
capable of producing high levels of cytokines (including IFN-γ
and IL-21), anti-tumor effector and cytotoxic molecules (perforin
and granzymes), and elicit direct tumor lysing properties (76–
78), which assists to alleviate immunosuppression and enhances
DCmaturation, leading to improved anti-tumor T cell immunity
(79–81). Song et al. demonstrated that NKT cells specifically kill
monocytes pulsed with neuroblastoma cell lysate and reduce
tumor-infiltrating monocytes in a non-classical MHC-dependent
manner (82), highlighting a role for NKT cells in shaping the
immune infiltrate in the TME. Studies in mice reported superior
anti-tumor activity when α-GalCer therapy to drive NKT cell
activity was combined with anti-PD-1 (83, 84). However, most
clinical trials assessing the anti-tumor effect of α-GalCer-related
compounds have not yet yielded promising outcomes (74).
Discoveries of novel NKT cell agonists (β-mannosylceramide)
and improved α-GalCer analogs (α-C-GalCer) (74, 85), as
well as greater understanding of tumors where this cell type is
prominent may assist in harnessing the potential of NKT cells to
improve T cell checkpoint therapy.

Mucosal-associated invariant T (MAIT) cells are another class
of unconventional T cell that have gained much attention, given
their relative abundance in humans and their association to a
number of inflammatory diseases (74). MAIT cells primarily
recognize a number of microbial vitamin B metabolites (such
as riboflavin metabolized to 5-OP-RU) (86–89) presented by the
unconventional non-polymorphic MHC I-like molecule, MR1
(90). Additional MR1-independent IL-12/18-induced activation
has been reported (91, 92). Upon activation, MAIT cells are
capable of producing cytokines [(IL-17, IL-2, IFN-γ, and tumor
necrosis factor (TNF)], proliferate and gain cytotoxic function
(93–95). In the absence of defined tumor antigens binding to
tumor-derived MR1, it is reasonable to speculate that MAIT
cells may be regulated by microbial antigens and may be more
frequent in tumors with a microbial presence. Circulating levels
of MAIT cells were reduced in patients with mucosal-originated
cancers (gastric, colon, and lung), but appeared normal in
patients with breast, liver, or thyroid cancer (96). In colon
cancer patients, MAIT cells were shown to be preferentially
enriched in the TME in comparison to unaffected tissue (96–
99). Poor survival prognosis has been associated to increased
levels of tumor-infiltrating MAIT cells in colon cancer patients
(98). In contrast, MAIT cells did not show a correlation
to patient survival in esophageal adenocarcinoma (100). In
concordance with the activation of MAIT cells (TCR-MR1
or IL-12/18 cytokine), they likely elicit direct (MAIT cell to
tumor cell) and indirect (MAIT cell to non-MAIT cell or
IL-12/18 cytokine competition) effects, regulating host anti-
tumor immunity in a TME-specific manner (74, 101). Yan et
al. recently reported MR1-deficient mice (which lack MAIT
cells) showed improved anti-tumor immunity when assessed
using models of experimental lung metastasis, subcutaneous
tumor growth, and de novo carcinogenesis (102). In light
of these findings, a further assessment of MAIT cells in
the cancer setting and their relationship to prognosis and
therapeutic outcome should be determined. In addition, given
a great interest in microbial modification of the TME (103–
105) determining whether microbes can be used to initiate
metabolic functions that promote anti-tumor immunity is
also of interest.

LIMITING IMMUNOSUPPRESSIVE
FACTORS IN THE TME

As well as initiation of immunosuppression by immune cell
subsets, the tumor itself produces a range of molecules to enable
tumor progression and facilitate immune escape (Figure 1).
Many of these are soluble factors that prevent overzealous
inflammation during tissue damage and infection, however also
mediate tumor immune evasion. Transforming growth factor
(TGF)β plays an essential role inmediating immune homeostasis,
however, in the context of tumor, TGFβ has been shown to both
directly promote tumor progression and initiate a broad range
of immune responses. These include enhancing suppressive
myeloid cell infiltrate (106, 107), disabling NK cell function,
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and promoting transition to group 1 innate lymphoid cells in
the TME (108), as well as altering the functionality of effector
T cell populations while promoting Treg immune suppression
(109–111). SMAD-3, which acts downstream of TGFβ1 signaling,
directly induces PD-1 expression in adoptively transferred tumor
antigen-specific CD8+ T cells isolated from the TME (112). This
suggests that PD-1-upregulation that facilitates tumor immune
escape may in part be dependent on TGFβ. In addition, TGFβ
is associated with excluding CD8+ T cell entry into the tumor
core, which is known to diminish immunotherapy efficacy (113).
Correspondingly, TGFβ1 gene expression is significantly higher
in patients that show stable or progressive disease, compared
to those with complete or partial responses (113). Targeting
TGFβ and therapies directed toward PD-1/PD-L1 or CTLA-4
amplifies tumor control by enabling a robust T cell response
with improved CD4+ and CD8+ T cell activation and CD8+ T
cell cytokine and cell killing capacity (113–116). By inhibiting
TGFβ in combination with PD-1/PD-L1 blockade, CD8+ T cells
also display enhanced capacity to infiltrate the tumor periphery
and core, promoting T cell inflammation, and resolving T cell
exclusion (113, 117). This highlights that targeting TGFβ may be
most effective in tumor types in which TGFβ signaling mediates
immune exclusion from the TME.

Impeding the clinical utility of pan-TGFβ inhibitors
(blocking isoforms TGFβ1,−2, and−3) is the potential for
significant toxicity, particularly pertaining to cardiac function.
Development of galunisertib (LY2157299), a TGFβRI inhibitor,
has shown promise for both its anti-tumor activity and ability
to modulate the TME to provide improved anti-tumor control
to immunotherapies (118). However, due to toxicity concerns,
intermittent administration of galunisertib has been performed
in clinical trials [(119) NCT01246986]. Whether intermittent
drug exposure provides selective pressure for tumor escape is
unclear. As TGFβ1 appears to be the predominantly enriched
in human cancers, targeting this isoform specifically may
prove advantageous. Development of TGFβ1-specific inhibitors
that promote synergistic anti-tumor immune responses when
combined with anti-PD-1, but lack cardiovascular pathologies
have been identified and may lead to greater clinical utility
(120). Downstream targets of tumor-derived TGFβ activation
may also be more desirable and in some cases are already being
assessed for therapeutic potential alongside immune checkpoint
inhibitors and other immunomodulatory compounds in
the clinic.

Angiogenesis in the TME is an important component to
enable nutrient accessibility and maintain tumor growth, this is
driven in part by TGFβ induction of vascular endothelial growth
factor (VEGF). While VEGF inhibitors have been approved
for a number of indications in both oncology and vascular-
related diseases, in the cancer setting interest in both anti-
angiogenic and immunomodulatory properties for this target are
increasing. Notably, VEGF-A promotes inhibitory checkpoint
expression and transcriptional reprogramming relating to
exhaustion in CD8+ T cells (121, 122). TOX, the transcription
factor that mediates CD8+ T cell exhaustion, was shown
to be tightly regulated by VEGF-A (122). In addition, both
VEGF-A and TOX expression levels were significantly reduced

in MSI-h colon cancer patients compared to patients with
microsatellite stability (122). MSI-h patients have better survival
outcomes in response to cancer immunotherapies, which is
predominantly attributed to higher tumor mutational burden
(123, 124), but may also be in part be due to reduced
angiogenic factors and relieved T cell exhaustion. By combining
VEGF-targeted therapies and anti-PD-1, improved anti-tumor
immune response was achieved (121, 122). However, TGFβ
and VEGF are not completely redundant, and co-targeting
these molecules together either therapeutically or through
tumor-specific genetic ablation provides additional therapeutic
benefit to overcome immune tolerance in the TME (125).
As clinical cohorts involving combination VEGF/TGFβ and
immune checkpoint blockade treatment mature, determining
which patients respond to this therapy, but also which patients
are refractory and the mechanism that initiates tumor escape is
of importance.

Generation of immunosuppressive adenosine limits anti-
tumor immunity (126). Both CD39, which catabolizes ATP to
AMP, and CD73, the enzyme that generates adenosine from
ATP, are expressed by and relate to poor prognosis in a number
of cancer types (127–130). Regulation of tumor-derived CD73
remains complex with multiple mediators identified, including
TGFβ (131, 132). Additional evidence that CD73 expression
is driven by adenosine-sensing through host-A2A adenosine
receptor (A2AR) expression (133, 134), TNF (135), and hypoxia
within the TME (136, 137). In melanoma, CD73 levels have been
linked to low MITF expression and highly invasive tumors (135).
CD73 expression appears to increase with adaptive resistance
in anti-PD-1-treated melanoma patients as well as MART-1
adoptive T cell therapy (135), suggesting that tumor expression
may facilitate therapeutic resistance in response to active anti-
tumor immunity. In melanoma patients with innate therapeutic
resistance, CD73 is not present or induced with exposure to anti-
PD-1 treatment (135), likely due to a lack of inflammatory stimuli
in the TME. Therapies targeting the adenosinergic pathway
have been shown preclinically to potentiate the response of
chemotherapies (127), immune checkpoint inhibitors (138, 139),
chimeric antigen receptor T cells (140) and oncogenic BRAF
inhibitors (141). This can also be through indirectly targeting
the adenosine pathway, with both systemic oxygenation which
relieves hypoxia-driven adenosine production, and blockade of
an alternate mechanism of adenosine-production by inhibiting
CD38, with both shown to potentiate the therapeutic efficacy
of immune checkpoint blockade (137, 142, 143). Similarly,
targeting upstream CD39 has been shown preclinically to
promote therapeutic activity of immune checkpoint inhibitors
(144), chemotherapies (145), and even can potentiate CD73
blockade in suboptimal concentrations (146). This highlights the
complex regulatory network and the multi-faceted combination
strategies involving adenosine-related molecules that may add
benefit to patient care.

Targeting adenosine production and signaling have both
moved forward to early phase clinical trials with promising
results (NCT02403193, NCT02503774, NCT03454451). Notably,
citforadenant (an A2AR inhibitor) in combination with
atezolizumab (anti-PD-L1) initiated therapeutic response in
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both patients naïve to immunotherapies and those refractory
to prior immunotherapy exposure, highlighting the potential
for this combination to reinvigorate anti-tumor immunity
(147). Analysis of tumor biopsies from renal cell carcinoma
(RCC) preceding therapeutic intervention revealed an adenosine
signature that may predict patients who will benefit from
adenosine-related therapies (147). The adenosine signature was
consistent with myeloid inflammation and reduced angiogenesis,
both of which have been defined as poor prognostically for
atezolizumab and sunitinib (tyrosine kinase inhibitor) treatment.
This identifies a patient group for which adenosine may be
most applicable, that inadvertently are less responsive to
current clinically approved therapies for RCC. In addition,
an extended disease control rate in response to citforadenant,
with or without atezolizumab, was linked to improved CD8+

T cell infiltration (147). Adenosine has previously been shown
to limit the proliferation and maturation of lymphocytic
immune cell subsets (126, 134), and increased immune
infiltrate in to the tumor core has been observed in response
to co-targeting CD73 and A2AR in preclinical models (133).
Understanding the regulation of the adenosinergic pathway
in particular tumor types and in response to cancer therapies,
including immunotherapy, may identify patient populations
where adenosine-related therapies may be implemented with
greatest success.

With increasing examination of the TME it is clear that a
number of therapeutic regimens may be successfully repurposed
in the treatment of cancer. For instance, targeting adenosine has
been utilized previously in the setting of neurodegeneration, but
has increasingly shownmerit for initiating anti-tumor immunity.
Additionally, aspirin may provide a combinatorial approach
to overcome therapeutic resistance to immune checkpoint
inhibitors. Increasing evidence demonstrates that cyclooxygenase
(COX)-driven production of prostaglandins mediates anti-PD-1
resistance and limits the proinflammatory tumor milieu (148).
COX enzymatic activity is disrupted by high-dose aspirin,
which valuably may be repurposed to the cancer setting
alongside immunotherapies to promote anti-tumor immunity.
Regular aspirin users with colorectal cancer patients displaying
low tumor PD-L1 expression are also afforded significantly
improved survival outcomes (149). This survival advantage
was not identified in PD-L1 high tumors, suggesting that
engagement of the PD-1/PD-L1 axis in the TME may abrogate
aspirin-mediated anti-tumor benefit and the potential utility
of combination treatment. Genetic ablation of prostaglandin-
endoperoxide synthase 2 (PTSG2), which encodes COX-2, has
been shown to promote CD8+ T cells and decrease the frequency
of Tregs within the TME (150), both of which are predictive
markers of good prognosis. Induction of COX-2 may be in part
regulated by TGFβ, highlighting the complex nature of direct
and indirect regulatory pathways that the tumor elicits to subdue
the anti-tumor immune response. Clinical trials to develop an
understanding of prostaglandin/COX-2 inhibition and immune
checkpoint blockade therapeutic responses are underway in
multiple tumor types [(151) NCT03396952, NCT03638297,
NCT03864575, NCT03926338].

IMPLEMENTING COMBINATION
THERAPEUTIC REGIMENS

While preclinical studies have identified a number of clinically
relevant therapeutic strategies to reinvigorate the immune
response against cancer, their successful clinical utility has been
difficult to implement (Figure 2). Combining indoleamine 2,3-
dioxygenase (IDO) inhibition, an enzyme upregulated in human
cancers that initiates the breakdown of tryptophan leading
to multi-faceted immunosuppression within the TME (152),
alongside immune checkpoint inhibitors showed promise for
enhancing anti-tumor immunity in mice (153, 154). However,
in a phase 3 clinical trial assessing the survival benefit
for stage III/IV unresectable melanoma patients treated with
epacadostat (selective IDO1 inhibitor) and pembrolizumab (anti-
PD-1), this combination failed to provide additive therapeutic
potential compared to pembrolizumab alone (155). Improved
understanding of the TME is necessary to assist rational
selection of immunotherapies required for optimal treatment
outcomes. Of course, this remains a challenge even for clinically
approved agents, where aside from tumor PD-L1 expression
and genetic stablility of the tumor, no biomarkers for efficacy
or toxicity of immune checkpoint inhibitors are approved for
clinical use. Significant investment to establish biomarkers to
denote responders and non-responders should be performed
in early phase clinical trials to identify subgroups for which
combination therapies may show greatest activity, an important
first-step to facilitate response, mitigate toxicity, and minimize
unnecessary cost.

In the same vein, examining optimal timing for
immunotherapeutic combinations is often not well-defined. In
most cases, therapeutic benefit for novel clinical agents are tested
either alone or alongside concurrent anti-PD-1/PD-L1 treatment,
often in cancer patients refractory to previous immune
checkpoint inhibitor exposure. Preclinical evidence suggests
synchronous administration of multiple immunotherapies can
in some circumstances be detrimental. Two independent studies
identified that concurrent administration of anti-OX40 to anti-
PD-1 therapy either with or without a tumor vaccine diminished
the anti-tumor immune response compared to addition of anti-
OX40 alone in preclinical mouse models (156, 157). Notably,
staggering the timing of these therapies where anti-OX40
preceded anti-PD-1 treatment facilitated greatest tumor control
(156). Using a preclinical PDAC model, the use of gemcitabine
and nab-paclitaxel, a standard chemotherapy combination for
PDAC, impaired the efficacy of anti-CD40, anti-PD-1, and
anti-CTLA-4 (34). Additionally, transient treatments preceding
immune checkpoint inhibition can also significantly re-educate
the immune response to promote anti-tumor immunity. In an
anti-PD-1-resistant mouse model, a single-dose of agonistic anti-
CD40 sensitized the TME to anti-PD-1 treatment in a synergistic
manner (36). Strongly activating or agonistic therapies may
provide greatest benefit as sensitizing agents to remodel the
TME and promote entry of anti-tumor immune cells that are
then targetable by immune checkpoint blockade. Alternating
timing of treatments or reducing the therapeutic window for
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FIGURE 2 | Growing challenges in the implementation of immunotherapeutic strategies. Decision-making for the most efficacious immunotherapeutic combination for

cancer patients presents multiple layers of challenges. These include those surrounding the patient’s tumor microenvironment, the potential risk for initiation of

immunotoxicities, and the sequence for appropriate timing of therapeutic interventions. Surrounding each of these challenges are multidimensional considerations that

relate to improving anti-tumor immunity and targets that influence the selection of immunomodulatory agents.

largely inflammatory combinations may also assist to potentiate
therapeutic response and minimize immunotherapy-induced
immune-related adverse events (irAEs).

CHALLENGES FOR RE-EDUCATING
THE TME

With the advent of high-throughput screening to delineate
critical components that prevent immune infiltrate or disable
active anti-tumor immunity, a growing understanding of
rational targets to re-ignite a therapeutic response is becoming
increasingly available (158–161). This aims to equip patients

who develop adaptive or acquired resistance with greater tools
to re-engage the immune response against cancer and for
patients with innate resistance to enable visibility of tumors
(162, 163). New subgroups of cancer patients that present distinct
challenges to the efficacy of immunotherapies are emerging.
Of growing interest, is the relationship between metastatic site
and therapeutic outcome, in which liver metastasis appears to
be a major obstacle even for combination anti-PD-1 and anti-
CTLA-4 treatment (164, 165). Most prominently, melanoma
patients bearing liver metastasis have reduced CTLA-4 and
PD-1 co-expression in CD8+ T cells (164), which has been
shown to stratify therapeutic response to immune checkpoint
inhibitor treatment (166). Efforts to provide mechanistic insight
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as to whether therapeutic resistance is due to myeloid cell
dysfunction, Treg suppression, and immunosuppressive factors
accumulating in the TME are essential, highlighting the need for
tailored immunotherapies.

As the number and type of combination immunotherapies
expands, the risk for increasing irAEs may also become more
prevalent. Combination nivolumab (anti-PD-1) and ipilimumab
(anti-CTLA-4) clearly exhibits greater levels of severe grade
3-4 immunotoxicities than either therapy alone (3, 167).
Surprising levels of irAEs have been observed with other rational
combinations. For instance, targeted therapies (such as BRAF
inhibitors and MEK inhibitors) have been shown to potentiate
immune checkpoint inhibitor activity in preclinical models (168),
but when used together in melanoma patients severe irAEs were
observed forcing closure of the study (169, 170). This highlights
a need for improved preclinical models that emulate clinical
conditions and allow for simultaneous assessment of tumor
control and development of irAEs (171). Developing tumor
models in autoimmune-prone mice or lowering the threshold
for self-tolerance in mice with available syngeneic tumors that
are resistant to autoimmune responses may facilitate improved
therapeutic modeling (53, 171, 172). With the expanding use
of cancer immunotherapies in more diverse populations of
cancer patients, including those with pre-existing autoimmune
diseases or previous immunotherapy-induced irAEs (173),
or under persistent immunosuppression due to chronic
viral infections (174) and allogeneic transplantation (175),
developing preclinical models that incorporate multiple elements
relating to tumor origin, patient history, and environment
that assist in providing a more informed understanding
of the clinical impact of therapeutic combinations will
be essential.

As the number of immunotherapeutic targets expands,
initiating smarter multi-modal strategies, to provide greater
efficacy with lower toxicity will be appealing. Advancement in
engineering therapies to have delayed release or greater tissue and
cellular specificity have great promise. As mentioned, depletion
of intratumoral Tregs without impacting peripheral Tregs would
be advantageous for inducing TME-specific modulation of the
CD8+ to Treg ratio, while avoiding toxicity induced by systemic
depletion. Notably, the development of a dual variable domain
anti-CTLA-4 antibody, which exhibits an outer tumor antigen-
binding site that hides the CTLA-4 binding region of the
antibody until reaching the TME has been shown to reduce
immunotherapy-induced toxicity without impeding anti-tumor
immunity (176). Similarly, bispecific or trispecific antibodies that
target multiple markers upregulated in the TME on both immune
cell subsets and the tumor may also lead to greater efficacy (177,
178). One such example, is the bispecific antibody combination

targeting OX40 and CTLA-4, which significantly enhanced
CD8+ T cells and reduced Tregs specifically within the TME,
leading to better tumor control than either therapy alone (178). In
addition to modifying the target antigen, antibodies may also be
conjugated to biomaterials or nanoparticles, to ensure sustained,
local release (179). Refinement made to antibodies by factoring
TME properties, such as pH activation and PD-1 glycosylation
(180–182), should also significantly improve the specificity and
potency of immunotherapies and limit unwanted toxicity.

FUTURE DIRECTIONS

While determining the optimal immunotherapy for an individual
TME remains a challenge, encouraging is the range of
available strategies to re-educate the immune response against
tumor. Refinement of therapeutic targets against cellular and
immunomodulatory molecules within the TME are increasing,
and their promise for clinical utility is growing. Importantly,
greater effort in defining the therapeutic setting where each
may be applicable will be essential for clinical success. Since
anti-PD-1/PD-L1 has shown value in multiple modalities,
examining tumor types where anti-PD-1 activity is limited
may yield greatest therapeutic breakthroughs in identifying
strategies to remodel inert immune circumstances in the
tumor. In deciding on the use of these therapies, a cost-
benefit analysis relating to the purported immunotoxicity and
likelihood for the immunotherapy strategy to enhance anti-
tumor immunity is necessary. This emphasizes a need for rational
and selective combination immunotherapies to be utilized
within a defined TME in order to re-educate the anti-tumor
immune response.
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