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The current pandemic of coronavirus disease 19 (COVID-19) has affected millions

of individuals and caused thousands of deaths worldwide. The pathophysiology of

the disease is complex and mostly unknown. Therefore, identifying the molecular

mechanisms that promote progression of the disease is critical to overcome this

pandemic. To address such issues, recent studies have reported transcriptomic

profiles of cells, tissues and fluids from COVID-19 patients that mainly demonstrated

activation of humoral immunity, dysregulated type I and III interferon expression,

intense innate immune responses and inflammatory signaling. Here, we provide novel

perspectives on the pathophysiology of COVID-19 using robust functional approaches

to analyze public transcriptome datasets. In addition, we compared the transcriptional

signature of COVID-19 patients with individuals infected with SARS-CoV-1 and

Influenza A (IAV) viruses. We identified a core transcriptional signature induced by

the respiratory viruses in peripheral leukocytes, whereas the absence of significant

type I interferon/antiviral responses characterized SARS-CoV-2 infection. We also

identified the higher expression of genes involved in metabolic pathways including

heme biosynthesis, oxidative phosphorylation and tryptophanmetabolism. A BTM-driven

meta-analysis of bronchoalveolar lavage fluid (BALF) from COVID-19 patients showed

significant enrichment for neutrophils and chemokines, which were also significant in data

from lung tissue of one deceased COVID-19 patient. Importantly, our results indicate

higher expression of genes related to oxidative phosphorylation both in peripheral

mononuclear leukocytes and BALF, suggesting a critical role for mitochondrial activity

during SARS-CoV-2 infection. Collectively, these data point for immunopathological

features and targets that can be therapeutically exploited to control COVID-19.
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INTRODUCTION

The outbreak of coronavirus disease 19 (COVID-19), first
recognized in Wuhan, China, rapidly became a pandemic
of major impact not only on global public health but also
on economy and social well-being (1). SARS-CoV-2 infection
results in clinical outcomes ranging from asymptomatic status
to severe disease and ultimately, death (2). Understanding
of the molecular mechanisms underlying the pathology of
COVID-19 is required to design effective therapies and
safe vaccines. In this context, current investigations have
been devoted to biochemical characterization and cellular
phenotyping in patients to development of animal models of
COVID-19 (3).

Transcriptomics of peripheral blood cells has been a
powerful tool to characterize human immune responses to
diverse pathogens, including respiratory viruses (4–6). Gene
expression profiling by different analytical platforms and
sample types revealed that COVID-19 patients exhibit: (i)
activation of humoral immunity, hypercytokinemia, apoptosis
(7), and dynamic toll like receptor (TLR) signaling (8) in
peripheral leukocytes; (ii) induction of interferon stimulated
genes (ISGs), chemokines and inflammation in the lower
respiratory tract (7, 9, 10). Of importance, the results and
interpretation of these data were based on single-gene-level
analyses, in which significance of quantitative changes of each
gene are calculated separately and they are latter submitted
to pathway enrichment analysis. However, the statistical
power and sensitivity to identify pathways, or gene modules
(computational gene networks), associated with disease
phenotypes can be enhanced by the use of non-parametric
rank-based tests such as the robust positional framework
Gene Set Enrichment Analysis (GSEA) (11). Moreover,
interpretation of transcriptional changes during COVID-19 has
been primarily evaluated using canonical pathways that do not
often reflect human responses. Therefore, we propose alternative
strategies to analyze and interpret transcriptomics data, which
provide novel insights into immune and metabolic responses
during COVID-19.

MATERIALS AND METHODS

Data Collection and Processing
Datasets used in this study included public transcriptomes
available at the Genome Sequence Archive (GSA) or human
GSA in National Genomics Data Center, Beijing Institute of
Genomics (BIG), Chinese Academy of Sciences for RNA-seq data
related to SARS-CoV-2 infection (CRA002390 and HRA000143);
Gene Expression Omnibus (GEO) for RNA-seq data related
to SARS-CoV-2 infection (GSE147507) and microarray data
related to SARS-CoV-1 infection (GSE1739) or Influenza
A virus (IAV) infection (GSE34205, GSE6269, GSE29366,
GSE38900, GSE20346, GSE52428, GSE40012, GSE68310,
GSE61754, GSE90732); and ArrayExpress for NanoString
nCounter data related to SARS-CoV-2 infection (E-MTAB-
8871). DESeq2-normalized counts were used for the RNA-seq
dataset CRA002390 (7), while raw read counts for the RNA-seq

datasets GSE147507 (9) or HRA000143 (10) were treated and
normalized to log2 counts per million with EdgeR package
for R (12). Normalized data was acquired for NanoString
nCounter E-MTAB-8871 (8). Normalized microarray
datasets were acquired with OMiCC platform (13). Detailed
information about the datasets used in this study are described
in Table 1.

Functional Analyses
Data were analyzed with the positional framework Gene Set
Enrichment Analysis (GSEA) (11), using pre-ranked mode, 1,000
permutations and weighted enrichment statistics. The Blood
Transcriptional Modules (BTMs) (24) and metabolic pathways
annotated in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (25) were used as gene sets.

To construct the network of BTMs from peripheral blood
mononuclear cell (PBMC) transcriptomes, genes were pre-
ranked by the Wald test statistics score calculated with DESeq2
package comparing each gene in COVID-19 patients and healthy
controls, as described (7). BTMs detected with a false discovery
rate (FDR) adjusted p < 0.001 were then linked by the number of
genes shared between two gene modules.

To perform the BTM-driven meta-analysis between
respiratory viruses, gene lists from each dataset were pre-
ranked by log2 fold change of experimental samples over
healthy controls. Gene modules significantly associated with
at least 50% of the datasets were selected by a nominal p
< 0.001 for PBMCs and whole blood. The datasets were
not merged at the single-gene-level. Each dataset was
composed by a different number of genes and samples, and
different types of samples (Table 1). The output of the GSEA
provides a normalized enrichment score (NES) for each BTM
associated with each dataset. The NES was then compared
between datasets selected at the determined cut-off (p <

0.001). To enforce confidence in the enrichments, we also
retained only the BTMs that were associated with at least
50% of the datasets, independently of infection, sample type
and regulation. Metabolic pathways from KEGG database
were selected by a FDR adjusted p < 0.05 for PBMCs from
COVID-19 patients.

For BALF datasets (CRA002390 and HRA000143), genes
were also pre-ranked by log2 fold change of experimental
samples over healthy controls and used as input in pre-ranked
GSEA. BTMs and KEGG metabolic pathways were selected by
relaxed significance (nominal p < 0.05) and consistent up- or
downregulation in both datasets. For lung biopsies (GSE147507),
one sample from COVID-19 patients shows a distinct read count
profile and was considered an outlier as described (26). The
remaining sample was used to perform single sample GSEA,
in which genes were pre-ranked by log2 fold change of the
experimental sample over healthy controls.

Networks were visualized and generated with Cytoscape v3.7.2
(27). Heat maps were generated with the package gplots for R
and hierarchical clustering with the package amap for R, using
Euclidian distance metric and Ward linkage. The bubble plots
were generated with the package ggplot2 for R. GraphPad Prisma
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TABLE 1 | Publicly available datasets used in the study.

Dataset ID Platform/

Technology

Virus infectiona Sample typeb Sample size (I/C)c Data Repositoryd References

CRA002390 MGI and Illumina/RNA-seq SARS-CoV-2 PBMC/

BALF

3/3 GSA-BIG (7)

HRA000143 Illumina/RNA-seq SARS-CoV-2 BALF 8/20 hGSA-BIG (10)

E-MTAB-8871 NanoString nCounter SARS-CoV-2 Whole blood 3/10 ArrayExpress (8)

GSE147507 Illumina/RNA-seq SARS-CoV-2 Lung tissue 2/2 GEO (9)

GSE1739 Affymetrix/Microarray SARS-CoV-1 PBMC 10/4 GEO (14)

GSE34205 Affymetrix/Microarray IAV PBMC 28/12 GEO (15)

GSE6269 Affymetrix/Microarray IAV PBMC 18/6 GEO (16)

GSE20346 Illumina/Microarray IAV Whole blood 19/18 GEO (17)

GSE29366 Illumina/Microarray IAV Whole blood 16/9 GEO

GSE40012 Illumina/Microarray IAV Whole blood 40/18 GEO (18)

GSE38900 Illumina/Microarray IAV Whole blood 16/31 GEO (19)

GSE52428 Affymetrix/Microarray IAV Whole blood 124/17 GEO (20)

GSE61754 Illumina/Microarray IAV Whole blood 66/22 GEO (21)

GSE68310 Illumina/Microarray IAV Whole blood 52/12 GEO (22)

GSE90732 Illumina/Microarray IAV Whole blood 86/22 GEO (23)

aSARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SARS-CoV-1, severe acute respiratory syndrome coronavirus 1; IAV, influenza A virus.
bPBMC, peripheral blood mononuclear cells; BALF, bronchoalveolar lavage fluid.
c(I/C), samples from infected patients/samples from healthy controls.
dGSA-BIG/hGSA-BIG, Genome Sequence Archive (GSA)/Human Genome Sequence Archive (hGSA) in National Genomics Data Center, Beijing Institute of Genomics (BIG), Chinese

Academy of Sciences https://bigd.big.ac.cn/gsa-human/; GEO, Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/; ArrayExpress, ArrayExpress Archive of Functional

Genomics Data https://www.ebi.ac.uk/arrayexpress/.

v. 8 was used to perform t-tests onNanoString nCounter data and
generate bar plots.

RESULTS

Modular Transcriptional Network of
Peripheral Leukocytes From COVID-19
Patients
To evaluate the robustness of our approach, validate previous
findings and obtain novel perspectives into immune responses to
SARS-CoV-2 infection, we constructed a modular transcriptional
network of PBMCs from COVID-19 patients. Genes were
pre-ranked by the Wald test statistics score calculated with
DESeq2 package [7[, and used as input in pre-ranked GSEA.
We interpreted the dynamics in gene expression of COVID-
19 patients using the alternative tool to conventional pathways,
the BTMs, which were particularly devised to evaluate human
immune responses (24). To ensure maximal confidence, we
applied a conservative statistical cutoff (FDR adjusted p < 0.001)
to select significant BTMs (Figure 1A). The transcriptional
network captured several cellular characteristics of SARS-CoV-
2 infection in peripheral blood, including T and NK cell
(Figure 1D) cytopenia (28), and upregulation of cell cycle
or genes associated with plasma cells and immunoglobulins
(7). In addition, our approach also detected increased signals
of monocytes (Figure 1B), dendritic cells (Figure 1C) and
of the mitochondrial respiratory electron transport chain in
SARS-CoV-2 infection (Figure 1A), suggesting a critical role

of metabolic pathways for the immune response of COVID-
19 patients.

Transcriptional Features of SARS-CoV-2
Infection Compared to SARS-CoV-1 and
IAV
To gather further insights on host responses to SARS-CoV-
2 infection, the modular transcriptional signature of COVID-
19 patients was compared to that of individuals infected with
SARS-CoV-1 or IAV. For this, we analyzed 11 additional public
transcriptome datasets, spanning over 600 samples from human
PBMCs or whole blood. Gene lists from each dataset were pre-
ranked by the log2 fold changes relative to healthy controls and
used as input in pre-ranked GSEA. The statistical cutoff was
established at nominal p < 0.001, whereas only BMTs present in
at least 50% of datasets are shown (Figure 2A). Independently
of the cohort, technology to quantify gene expression (RNA-
seq or microarray) and type of sample (PBMCs or whole
blood), we observed a core transcriptional response that is
comparable between infections caused by SARS-CoV-2, SARS-
CoV-1, and IAV. This core response includes modules of cell
cycle and proliferation, monocytes and dendritic cells. Indeed,
the module M67 (dendritic cells) was upregulated in almost
all datasets. Of interest, SARS-CoV-1 and IAV infections also
induced significant reduction of peripheral T lymphocytes and
NK cells. Datasets from IAV infection induced activation of type
I interferon/antiviral responses or RIG-1 like receptor signaling,
while only SARS-CoV-1 induced significant association to one
module, antiviral IFN signature. Data from a different cohort
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FIGURE 1 | COVID-19 induces the differential activity of gene modules underlying immune cells. (A) BTM association with the transcriptional profile of PBMCs from

COVID-19 patients (RNA-seq dataset CRA002390) was determined with gene set enrichment analysis (GSEA), with 1,000 permutations and weighted enrichment

statistics. The gene list was pre-ranked by Wald statistic scores derived from DESeq2 output. Nodes in the network indicate BTMs reaching a significance of FDR

adjusted p < 0.001. Colors represent the normalized enrichment scores (NES) of each BTM. Width of edges represent the number of genes shared by two BTMs.

(B) Representative network of the BTM enriched in monocyte (M11.0). Colors represent log2 fold changes of each gene in the transcriptome of COVID-19 patients

compared to healthy controls. (C,D) Heat maps representing the differential expression signatures of genes enriched in (C) dendritic cells (M168) and genes enriched

in (D) natural killer (NK) cells I (M7.2), between COVID-19 patients and healthy controls.

of patients and analytical platform also demonstrated that
several genes involved in type I interferon/antiviral responses
were not significantly altered in whole blood of COVID-19
patients (Figure 2B).We also evaluated BTMs that were uniquely

associated to the transcriptomes from COVID-19 patients,
which showed enrichment in immune-related modules and
heme biosynthesis (Figure 2C). Data indicates an upregulation
of heme biosynthesis in PBMCs from COVID-19 patients
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FIGURE 2 | Modular transcriptional profiles of SARS-CoV-2 infection compared to SARS-CoV-1 or IAV. (A) The BTM-driven meta-analysis was based on over 600

human transcriptome samples including: SARS-CoV-2 (CRA002390-PBMC), SARS-CoV-1 (GSE1739-PBMC), Influenza (IAV)-PBMC (GSE34205, GSE6269), and

IAV-whole blood (GSE29366, GSE38900, GSE20346, GSE52428, GSE40012, GSE68310, GSE61754, GSE90732). Gene lists were pre-ranked by log2 fold change

of experimental samples over healthy controls and used as input in GSEA, with BTMs as gene sets, 1000 permutations and weighted enrichment statistics. BTMs

reaching a significance of nominal p < 0.001 and associated with at least 50% of the datasets are shown. Colors represent the normalized enrichment scores (NES),

reflecting negative (blue) or positive (red) regulation. Gray color indicates that difference was not significant. Each dataset was specified by ID, virus and sample type in

the heat map (B) Expression of type I interferon-related genes in whole blood of an independent cohort of COVID-19 patients and analytical platform (E-MTAB-8871)

(8). (C) BMTs specifically enriched in PBMCs from COVID-19 patients (FDR adjusted p < 0.01). (D) Representative network of the heme biosynthesis II (M222)

module. Colors represent log2 fold changes of each gene in the transcriptome of COVID-19 patients compared to healthy controls. (E) Metabolic pathways enriched

in the transcriptome of PBMCs from COVID-19 patients. Genes were pre-ranked by log2 fold change of COVID-19 patients over healthy controls and used as input in

GSEA, with KEGG pathways as gene sets, 1,000 permutations and weighted enrichment statistics. Pathways reaching a significance of FDR adjusted p < 0.05 are

shown. Bubble color is proportional to the normalized enrichment score (NES) and size to the significance, as indicated in the x axis.

(Figure 2D). Because immune responses are tightly connected to
metabolic programs (4, 29–31), we explored metabolic pathway
enrichment with the KEGG database. In addition to porphyrin
metabolism, which shares significant proportion of genes with
BTM M222 (heme biosynthesis II), our analysis confirmed the
upregulation of glycolysis and gluconeogenesis (7), and detected
other pathways such as tricarboxylic acid (TCA) cycle, oxidative
phosphorylation, tryptophan metabolism, glycan degradation,
nucleotide metabolism and galactose metabolism (Figure 2E).

Inflammatory and Metabolic Signatures of
Lower Respiratory Tracts From COVID-19
Patients
Because the lung is the primary site of infection and failure of
this organ is a severe complication of SARS-CoV-2 infection,
we also evaluated immune and metabolic signatures in the
lower respiratory tract of COVID-19 patients. For that, we
performed a BTM-driven meta-analysis of transcriptomes from
samples of bronchioalveolar lavage fluid (BALF) (7). Using a
relaxed statistical cutoff (nominal p < 0.05), there were nine

significant BTMs and three KEGG metabolic pathways that
were consistently up or downregulated among both datasets
(Figure 3A). BTMs reflect upregulated networks of chemokines
and neutrophils, as well as reduced expression of genes
related to dendritic cells, monocytes, and T cell activation.
We also found consistent upregulation of the modules related
to chemokines (Figure 3B) and neutrophils (Figure 3C) in
lung tissue data from one COVID-19 patient. Few metabolic
pathways were consistently regulated between the BALF
datasets, including the upregulation of oxidative phosphorylation
and downregulation of fructose and mannose metabolism
and other glycan degradation (Figure 3A). None of these
metabolic pathways were significantly enriched on the sample of
lung tissue.

DISCUSSION

Here, we used a robust modular transcriptomics approach that
captured significant changes of cellular patterns in peripheral
blood of COVID-19 patients, including T lymphopenia
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FIGURE 3 | Modulation of immune networks and metabolic pathways in the lower respiratory tract of COVID-19 patients. (A) BTM-driven meta-analysis of

bronchoalveolar lavage fluid transcriptomes (BALF) (RNA-seq datasets CRA002390 and HRA000143) from COVID-19 patients (7, 10). Gene lists were pre-ranked by

log2 fold change of experimental samples over healthy controls and used as input in GSEA, with BTMs or KEGG metabolic pathways as gene sets, 1,000

permutations and weighted enrichment statistics. BTMs or metabolic pathways reaching a significance of nominal p < 0.05 and consistently regulated in both

datasets are shown. BTMs are denoted by the black borders and metabolic pathways by gray borders. Bubble colors represent the normalized enrichment score

(NES) regulation and sizes are proportional to the significance of the association. (B,C) Enrichment plots for the BTMs chemokines and inflammatory molecules in

myeloid cells (M86.0) and enriched in neutrophils (M37.1) from an independent sample of one COVID-19 patient’s lung tissue (RNA-seq dataset GSE147507) (9). The

gene list was pre-ranked by log2 fold change of the experimental sample over healthy controls and used as input in GSEA with the BTMs as gene sets, 1,000

permutations and weighted enrichment statistics.

and reduced numbers of NK cells (28). Several hypothesis
have been formulated to explain the lymphopenia during
COVID-19, including T cell infection by SARS-CoV-2
(32), or T cell exhaustion (33). In addition, we identified
upregulated expression of chemokines and neutrophils in the
lung tissue and BALF of COVID-19 patients that support an
immunopathological role for these granulocytes (34). These
data are in line with findings by Zhou et al. (10), which also
suggest higher proportion of neutrophils, activated dendritic
cells and activated mast cells via cell deconvolution of BALF
transcriptomes. Interestingly, our data suggest increased
proportion of monocytes and dendritic cells in the circulation,
but not in the BALF. Using single-cell RNA-seq, some studies
demonstrated that dendritic cells are indeed reduced in the
BALF (35) and there are significant phenotypical alterations
of monocytes from COVID-19 patients compared to healthy
controls (36).

We demonstrated that compared to SARS-CoV-1 or IAV,
SARS-CoV-2 infection fails to induce significant type I interferon
responses in PBMCs (Figure 2A) or whole blood (Figure 2B),
which corroborates the low concentrations of type I interferon
in the circulation of COVID-19 patients (9, 37, 38). These
findings contrast with induction of ISG expression in both
lung tissue (9) and BALF (10) of COVID-19 patients, while
recent studies indicate that type I and III interferons negatively
affect the lung epithelium during viral infections (39, 40). The
transcriptional response of peripheral leukocytes reflects the

systemic adaptations to the inflammatory environment imposed
by SARS-CoV-2 infection, whereas type I interferon signaling
in peripheral leukocytes might affect immunity in other organs
such as the kidneys (41). Importantly, recent data suggest an
improvement of patients with uncomplicated COVID-19 treated
with interferon-alpha2b (42).

We expect that several factors will contribute to differences in
transcriptional profiles of larger cohorts of COVID-19 patients,
especially those bearing comorbidities associated with severe
disease. Higher expression of angiotensin-converting enzyme
2 (ACE2) has been suggested as a potential mechanism of
susceptibility of individuals with comorbidities associated with
COVID-19 (43). However, severe disease and death also occur
after infection of otherwise healthy individuals, indicating
that a series of mechanisms account for the severity of
COVID-19. Upregulated expression of genes that coordinate
heme biosynthesis has been described in sepsis secondary
to pneumonia and suggest a protective mechanism against
oxidative stress (44). Hypoxia also modulates the expression of
genes coding for proteins that coordinate heme biosynthesis
(45). We hypothesize that excessive heme accumulation could
amplify pro-inflammatory cytokine production (46, 47) or
cause intravascular coagulation (48) and promote pathology
during COVID-19.

Strikingly, we observed the modulation of several metabolic
pathways in PBMCs and BALF, while oxidative phosphorylation
was the only significant metabolic pathway overlapping in both
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compartments. This suggests a critical role for mitochondrial
activity during COVID-19. Many metabolites composing the
pathways identified in the current study have been quantified
via metabolomics of plasma or serum from COVID-19
patients (49, 50). Mass spectrometry measurements revealed the
modulation of pathways such as TCA cycle and fructose and
mannose metabolism (50), tryptophan metabolism, glycolysis
and gluconeogenesis and others (49). Metabolomics analysis
of human PBMCs infected with IAV showed activation
of tryptophan metabolism and glycolysis, whereas glucose
consumption via hexosamine biosynthesis underlies the cytokine
storm promoted by IAV infection (51) and could also
affect COVID-19. Taken together, this study demonstrates
unappreciated inflammatory networks and metabolic pathways
that are associated with COVID-19.
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