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As pattern recognition receptors, cytosolic DNA sensors quickly induce an effective

innate immune response. Poxvirus, a large DNA virus, is capable of evading the host

antiviral innate immune response. In this review, we summarize the latest studies on

how poxvirus is sensed by the host innate immune system and how poxvirus-encoded

proteins antagonize DNA sensors. A comprehensive understanding of the interplay

between poxvirus and DNA-sensing antiviral immune responses of the host will

contribute to the development of new antiviral therapies and vaccines in the future.
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INTRODUCTION

Poxvirus is a double-stranded DNA (dsDNA) virus (1, 2) that replicates completely in the
cytoplasm. Members of the Poxviridae family include variola virus (VARV), vaccinia virus (VACV),
ectromelia virus (ECTV), and monkeypox virus (MPXV). VACV is a prototype member of the
Orthopoxvirus genus of the Poxviridae family and has been used as a live vaccine for smallpox
eradication (3). Interest in VACV persists because it is an excellent model for studying host
pathogen interactions and cell biology (4). ECTV is a mouse-specific pathogen that has been used
as a model to study the pathogenesis and immunobiology of Orthopoxvirus infection (5, 6).

The innate immune response against viruses is not only the first line of defense against viral
infection but is also important for the establishment of adaptive immunity against viruses. The
recognition of the viral DNA genome by DNA sensors, including cyclic GMP–AMP synthase
(cGAS), DNA-dependent protein kinase (DNA-PK), and IFN-γ inducible protein 16 (IFI16), is
the first step in the innate immune response (7, 8). Next, innate immune signal transduction is
initiated by activating adaptor proteins, such as stimulator of interferon genes (STING), resulting
in the production of a large number of defense molecules in the host, including interferons (IFNs)
and pro-inflammatory cytokines and chemokines (9–11).

The evolutionary arms race between the virus and the host leads to the virus-mediated
antagonism of antiviral immunity. Viruses hide their DNA from cellular sensing systems and/or
inactivate sensors and downstream signal transduction pathways. These viral strategies include
separation or modification of viral nucleic acids, interfering with specific post-translational
modifications of pattern recognition receptors (PRRs) or their adaptors, degradation or cleavage
of PRRs or adaptors, and separating or repositioning PRRs. For instance, there are a variety of
proteins that inhibit the activation of the transcription factors interferon regulatory factor 3 (IRF3)
and nuclear factor kappa B (NF-κB) or the Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) pathway (2).

Poxvirus encodes the largest number of immune antagonistic virus proteins, thereby showing
the most diverse immune escape strategies (4). During infection, these immunomodulatory
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proteins are delivered to the cytoplasm of the host cell to combat
the innate immune response (12, 13). The conserved central
region of the poxvirus genome encodes the open reading frames
(ORFs) essential for virus replication. The other ORFs are non-
essential for viral replication in cell culture (14), with most
associated with targeting the innate immune system (15, 16).

In this review, we summarize the DNA-sensing signal
pathways in poxvirus-infected cells. In particular, we focus
on DNA sensors (cGAS/DNA-PK/IFI16), an adaptor protein
(STING), and host defense molecules (IFNs/cytokines). We also
describe how poxvirus targets DNA sensors to abrogate the
antiviral immune response. Understanding antiviral immunity
and poxvirus-mediated antagonism mechanisms may guide the
development of live attenuated vaccines and antiviral therapies.

cGAS

In 2013, Sun et al. discovered a new DNA sensor, cGAS, which
advanced our understanding of innate DNA sensing (17). cGAS,
an enzyme belonging to the ancient oligoadenylate synthase
(OAS) protein family (18), is a universal cytoplasmic DNA
sensor upstream of STING. cGAS recognizes a large number
of cytoplasmic DNA viruses (HSV-1, KSHV, and VACV) and
retroviruses (HIV-1, HIV-2) (19–24). cGAS is activated upon
binding to DNA, which catalyzes the production of 2’3’-cGAMP
from ATP and GTP, resulting in the binding of second messenger
cyclic GMP–AMP (cGAMP) to STING (17, 25–29). As an
adaptor protein, STING recruits TBK1, which phosphorylates
IRF3. Then, IRF3 is relocated to the nucleus to induce IFN
and thus establishes an antiviral state (19, 30–33). NF-κB is also
activated by STING (32).

The cGAS–STING pathway is very important for sensing
ECTV infection, inducing type I IFN production and controlling
ECTV replication (34). In the lymph nodes of mice infected
with ECTV, inflammatory monocytes (IMOs) are the main cells
producing type I IFN in draining lymph nodes (DLNs). To induce
the expression of IFN and pro-inflammatory cytokines, IMOs
require STING–IRF7 and STING–NF-κB (10).

By using cGAS-deficient mice, researchers showed that type
I IFN is not produced during VACV infection (35, 36). In
addition, cGAMP, produced by cGAS in virus-infected cells,
can be transferred to uninfected neighboring cells through gap
junctions, where it promotes STING activation and antiviral
immunity reactions independent of type I IFN (37).

Interferon-induced oligoadenylate synthetase-like (OASL)
binds specifically to cGAS and inhibits cGAS enzyme activity in
the process of DNA virus infection, which inhibits IFN induction
and promotes DNA virus replication through the cGAS–STING
DNA sensing pathway (38). Deletion of human OASL andmouse
OASL2 can inhibit DNA virus infection. OASL1 and OASL2 are
negative feedback regulators of cGAS and inhibit cGAS-mediated
type I IFN induction (38).

The modified VACV Ankara strain (MVA) has been designed
as a vaccine vector (39–41), and it can effectively prevent
VARV and MPXV infection (42, 43). IFN in MVA-infected
conventional dendritic cells (cDCs) is produced independently
of the RNA-sensing pathway mediated by MDA5, MAVS, TLR3,
or TRIF and is not affected by the absence of TLR9/MyD88 in

the DNA sensing pathway in vivo. The cGAS/STING-mediated
DNA-sensing pathway plays a key role in MVA-induced IFN
production in CDCs. MVA infection of cDCs triggers the
phosphorylation of TBK1 and IRF3, which is abolished in the
absence of cGAS and STING. Similar results were also observed
in mouse models (44).

TLR9

Of the 10 TLRs found in humans, TLR9 is the only known DNA
sensor. TLR9 specifically recognizes the unmethylated CpGmotif
in dsDNA (CpG DNA), which is common in bacterial and viral
genomes (32, 45–47). TLR9 recruits the adaptor protein MyD88
and then recruits tumor necrosis factor receptor associated factor
6 (TRAF6) and IκB kinase (IKK) complexes; the former leads to
the activation of IRF7 and ultimately induces the production of
type I IFN (48, 49), and the latter leads to the activation of NF-κB,
resulting in the induction of inflammatory cytokines (50).

TLR9/MyD88 sensing increased the expression of the NKG2D
ligand in virus-infected migratory dendritic cells (mDCs), and
induced production of IFN-γ in classical NK cells and innate
lymphoid cells (ILCs). IFN-γ induces CXCL9 in uninfected
IMOs and induces the recruitment of protective NK cells to
DLNs (51). In CD11c+ cells, MyD88–IRF7 recruit IMOs to
DLNs, and although the TLR9–MyD88–IRF7 signaling pathway
is necessary for IMOs recruitment to DLNs, it is not directly
necessary for type I IFN production. The induction of type I
IFN in DLNs during ECTV infection is due to the indirect
recognition of the virus by the TLR9–MyD88–IRF7 and STING–
IRF7/NF-κB pathways (52). Compared with wild-type mice,
mice lacking TLR9 and MyD88 showed higher viral loads,
more severe pathological liver and spleen conditions, and
increased susceptibility to ECTV infection (53–55). C57BL/6
mice lacking IRF7 and NF-κB, which are downstream targets
of TLR9–MyD88 and STING, are highly susceptible to ECTV
infection (52).

AIM2

Absent in melanoma 2 (AIM2), a member of the PYHIN protein
family, is a receptor of cytoplasmic DNA. AIM2 senses viral
DNA and can activate the inflammasome pathway (56, 57), which
plays an important role in the production of pro-inflammatory
cytokines and the clearance of infected cells through pyroptosis
(58). After AIM2 binds to DNA through its HIN200 domain,
caspase-1 is recruited and activated, leading to the production
of inflammatory cytokines, including IL-1β and IL-18. Disabling
AIM2 inhibits caspase-1 activation by cytoplasmic dsDNA
and VACV infection (59, 60). More importantly, AIM2-
deficient cells have a defective innate immune response to
VACV (61).

IFI16, DNA-PK, AND OTHER DNA
SENSORS

IFI16, a member of the PYHIN protein family, recognizes
the DNA virus genome in the nucleus and activates antiviral
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gene expression and the inflammasome-mediated immune
response. IFI16 is mainly located in the nucleus but can also
shuttle between the cytoplasm and nucleus in different types
of cells (62). IFI16 could bind to the dsDNA fragment of
70 bp from the VACV genome (48). It can also interact
with STING to induce the TBK1-dependent IFN-β response.
The nuclear induction of IFI16 upon cell exposure to viral
DNA activates the inflammasome pathway through ASC
and caspase-1, resulting in the production of IL-1β and
IL-18 (63).

Both IFI16 and cGAS are necessary for the activation of
STING, which is induced by cGAMP. They interact with STING
to promote its phosphorylation and translocation. IFI16 is the
main nuclear DNA receptor, while cGAS plays an auxiliary role.
For example, upon the stabilization of IFI16 to initiate or prolong
signal enhancement, the synergistic effect of IFI16 and cGAS can
induce immune signaling in response to exogenous DNA in the
nucleus (64, 65).

DNA-PK is a protein kinase that binds to cytoplasmic
DNA. It is composed of Ku70, Ku80, and catalytic subunit
DNA-PKCs. In the case of VACV infection, DNA-PK relies
on STING, TBK1, and IRF3 to induce cytokine production
(32, 45–47). PRR detection of DNA triggers the production
of type I IFN, cytokines, and chemokines through the STING
pathway (51).

DNA viruses usually release genomic DNA into the nucleus of
host cells after entry. Heterogeneous nuclear ribonucleoprotein
A2B1 (HnRNPA2B1) recognizes viral DNA, undergoes
homodimerization, and is demethylated by arginine demethylase
JMJD6 at Arg226. This modification results in hnRNPA2B1
translocation to the cytoplasm and activation of the TBK1–IRF3
pathway, which enhances IFN-α/β production. In addition,
hnRNPA2B1 promotes the modification of N6-methyladenosine
(m6A) and the nuclear and cytoplasmic transport of cGAS,
IFI16, and spiny mRNA. These factors mediate the amplified
activation of the cytoplasmic TBK1–IRF3 pathway. Therefore,
nuclear hnRNPA2B1 initiates and amplifies the innate immune
response to DNA viruses (52).

RNA polymerase III is a new type of dsDNA cytoplasmic DNA
sensor, and RIG-I is pivotal in sensing viral RNA. AT-rich dsDNA
serves as a template for this DNA sensor, RNA polymerase III
converts poly(dA:dT) to poly(A:U)-rich dsRNA, which, in turn,
serves as a RIG-I agonist. Then, activation of RIG-I by this
dsRNA induces the production of type I IFN and activation of
the transcription factor NF-κB (53–55).

VIRAL ANTAGONISM

Poxvirus inhibits innate immunity through diverse
mechanisms that involve multiple players including sensors,
adaptors, and effectors. In this review, we focus on sensors
and the most recent studies on adaptors and effectors.
Therefore, only a small number of poxvirus immune
antagonistic proteins are discussed. More poxvirus immune
evasion mechanisms have been summarized in previous
studies (4, 66–69).

DNA SENSORS

cGAS is the main sensor that mediates IRF activation and ISG
response to VACV lacking F17 (44, 70). The poxvirus F17 protein
hijacks the mammalian target of rapamycin (mTOR) regulatory
factors Raptor and Rictor, leading to an mTOR imbalance. Excess
mTOR accumulates in the Golgi apparatus and causes mTOR-
dependent cGAS degradation, thus inactivating the cGAS–
STINGpathway (71). In contrast, whenVACV lacking F17 infects
the cells, cGAS activates STING. Then, STING is phosphorylated,
dimerized, and translocated from the endoplasmic reticulum
(ER) to the perinuclear region, where it mediates the activation
of IRF3 (72).

DNA-PK can be antagonized by VACV proteins C16 and C4.
C16 and C4 bind to Ku and block the binding of Ku to DNA (73),
resulting in the reduced production of cytokines and chemokines,
decreased recruitment of inflammatory cells, and inhibition of
IRF3 signaling. The response to VACV infection is weakened
in cells and mice lacking DNA-PK components (49). A model
infected with C16-knockout VACV show fewer signs of disease
and upregulated cytokine synthesis (73, 74). C4 inhibits NF-
κB signaling (75) and cytokine production in vitro and in vivo.
The loss of C4 enhances the recruitment and activation of cells
involved in innate and acquired immunity.

ADAPTORS

Georgana et al. studied the activation of innate immune signals
by four different VACV prototypes. They found that the virulent
Copenhagen and Western Reserve VACV strains inhibited
STING dimerization and phosphorylation during infection and
in response to transfected DNA and cGAMP, thus effectively
inhibiting DNA sensing and the activation of IRF3. However, an
attenuated MVA strain showed the opposite result, and IRF3 was
activated by cGAS and STING after infection (70). Georgana et
al. found that virus-encoded protein C16 is a viral DNA sensing
inhibitor that acts upstream of STING and has the ability to block
STING activation (70).

DOWNSTREAM SIGNALING MOLECULES

The mutation of serine to alanine in the IκBα-like motif of A49
prevented β-TrCP binding, stabilized p-IκBα and inhibited the
activation of NF-κB (76). B14 targets IKK complex and inhibits
the activation of NF-κB in response to TNF-α, IL-1β, Poly(I:C),
and PMA (77). The intracellular immunomodulatory proteins
K1L, N1L, and A52R can inhibit the NF-κB signaling pathway
(44, 78, 79).

VACV virulence factor N1 is a 14 kDa cytoplasmic protein that
facilitates an increase in virulence (80, 81) and plays an inhibitory
role in the cGAS–STING–IRF3-dependent cytoplasmic DNA-
sensing pathway and in IFN-β gene induction (82).

Poxvirus protein serine protease inhibitor 2 (SPI-2) and
cytokine response modifier (CrmA) are involved in a variety
of poxvirus immune escape strategies. SPI-2 and CrmA target
caspase-1 to prevent apoptosis and cytokine activation. The
ectopic expression of SPI-2 or CrmA inhibits the induction of
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FIGURE 1 | Antagonism of the DNA sensor by poxvirus. During poxvirus infection, the cytosolic DNA sensor activates the adaptor, which in turn activates a series of

downstream effectors to produce interferons, cytokines, and interleukins for an antiviral immune response. DNA sensors, adaptors, effectors, and virus-encoded

inhibitors are in blue, yellow, green, and red, respectively. dsDNA, double-stranded DNA; TLR9, toll-like receptor 9; IFI16, interferon-γ inducible protein 16; cGAS,

cyclic guanosine monophosphate-adenosine monophosphate synthase; DNA-PK, DNA-dependent protein kinase; AIM2, absent in melanoma 2; MyD88, myeloid

differentiation factor 88; STING, stimulator of interferon genes; ASC, apoptosis-associated speck-like protein containing a CARD; IFN, interferons; CK, cytokines;

NF-κB, nuclear factor κB; TBK1, TANK-binding kinase 1; IRF3, interferon regulatory factor 3; P, phosphorylation; IRF7, interferon regulatory factor 7; IL, interleukin;

HnRNPA2B1, heterogeneous nuclear ribonucleoprotein A2B1; ER, endoplasmic reticulum; ISGs, IFN stimulating genes.

IFN-β and its downstream genes. SPI-2 and CrmA can also
bind to TBK1 and IKKε to disrupt the STING-TBK1/IKK ε-
IRF3 complex, which is a newly discovered mechanism of the
SPI-2/CrmA–mediated immune escape of poxvirus (83).

VACV expresses many proteins that antagonize the IFN
system. C6 is a multifunctional IFN inhibitor expressed prior
to viral genome replication and resides in the cytoplasm
and nucleus. It can reduce IFN production and inhibit

IFN-induced signal transduction, thus inhibiting ISG expression
(84). C6 inhibits the activation of IRF3 by binding to TBK1
in the cytoplasm, thus blocking the induction of IFN by
IRF3 (84).

Poxvirus encodes several soluble IFN receptors. For instance,
VACV B8 interacts with IFN-γ and prevents it from binding to
IFN-γ receptors (85–87). VACV B18 binds to type I IFN and
blocks the signal transduction of IFNAR (88–91).
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CONCLUSION AND PERSPECTIVES

In this review, we discussed the interplay between poxvirus
and host antiviral innate immune factors, particularly focusing
on the STING pathway (Figure 1). The sensor proteins
upstream of STING are cGAS, DNA-PK, and IFI16. There
are two pathways of downstream STING effectors: TBK1-
IRF3 and IKK-NF-κB. These two signaling pathways induce
the production of IFNs and cytokines. In addition, we also
described other signaling pathways that trigger the innate
immune response.

Subcellular compartments are involved in the spatiotemporal
interplay between poxviruses and DNA sensing molecules. TLR9
is located in endosomes, while STING is located in the ER. Yip1
Domain Family Member 5 (YIPF5) is recycled between the ER
and the Golgi, involving the maintenance of the Golgi structure.
YIPF5 recruits STING to COPII vesicles and facilitates STING
trafficking from the ER to the Golgi apparatus, triggering type I
IFN production (92). Interestingly, cGAS and IFI16 are located
in the nucleus and cytoplasm. Acetylation of nuclear localization
signal sequences targets IFI16 to the cytoplasm, thus fine-
tuning the subcellular distribution of IFI16. Endogenous cGAS
seems to be uniformly distributed in the cytoplasm and nucleus
(93). Although poxvirus replicates in the cytoplasm, many viral
proteins are located in the nucleus. cGAS and IFI16 are partially
localized to the nucleus; however, no nuclear poxvirus proteins
are reported to antagonize cGAS or IFI16 in the nucleus.

To successfully survive, the poxvirus genome encodes a
number of immunomodulatory proteins to escape the innate
immune response. The key challenge is to translate the
viral evasion mechanism into useful applications for the
development of new vaccines and antiviral drugs. Knockouts of

immunomodulatory proteins or the depletion of specific viral
PRR antagonistic mechanisms may lead to changes in virulence
and/or the immune response, which may effectively induce
long-lasting immune antiviral responses and may improve the
immunogenicity of viral vectors.

Through these recent achievements, we have gained a
richer understanding of viral evasion mechanisms in host cells.
However, there are gaps that need to be investigated further.
Firstly, how the interplay between poxvirus and innate immune
response affects human viral diseases is unknown. Secondly, what
are the relative contributions of the many DNA sensors required
for poxvirus sensing? There is no definite answer to date. Finally,
what might be the unique viral ligands that activate distinct
DNA sensors? Are these DNA sensors involved in different
cell types? Determining the molecular mechanism of poxvirus
evasion will not only greatly contribute to important insights
for the development of antiviral drugs and vaccines but will also
provide a viral model for the future study of viral antagonism to
host immunity.
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