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Allergen immunotherapy is currently the only causal treatment for allergic diseases in

human beings and animals. It aims to re-direct the immune system into a tolerogenic

or desensitized state. Requirements include clinical efficacy, safety, and schedules

optimizing patient or owner compliance. To achieve these goals, specific allergens

can be formulated with adjuvants that prolong tissue deposition and support uptake

by antigen presenting cells, and/or provide a beneficial immunomodulatory action.

Here, we depict adjuvant formulations being investigated for human and veterinary

allergen immunotherapy.
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INTRODUCTION

Allergen immunotherapy (AIT) is currently the only causative treatment for allergic diseases of
animals andman. Subcutaneous administration of allergen extracts—with or without an aluminum
hydroxide adjuvant—historically has proven efficacious for many allergic patients. However, recent
studies suggest that desensitizing properties of the allergen potentially can be enhanced by alternate
adjuvants or delivery systems, while maintaining freedom from adverse effects.

A number of delivery systems for AIT are currently being investigated (1–3) and applied in
animal models, but rather few human or veterinary clinical studies exist. For nano- (NP) or
microparticle (MP) preparations, various particulate compositions are complexed or filled with
allergens (3). The particulate materials must be biocompatible (resulting in no adverse reaction)
and can either be biodegradable (broken down in the organism) or non-biodegradable. Several non-
biodegradable materials tested as delivery systems for allergens in vitro as well as in animal models,
such as dendromers/dendrosomes (4), polyethylenimine (5), polypropylene sulfide (6), multiwalled
carbon nanotubes (7), gold nanoparticles (8), or fullerenes (9) have been comprehensively reviewed
(2). However, their fate in the organism is not absolutely clear and thus must be carefully studied.

We selected here themost promising novel AIT formulations, encompassing bothmodifications
of allergen and inclusion of immunomodulators, and describe their performance in human and
veterinary trials.
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FORMULATIONS WITH VEHICLES THAT

PROTECT IMMUNOGENICITY

For an allergen-specific and prolonged effect of AIT, allergens
must reach the immune system in a recognizable form, and be
released from any carrier in an optimal, perhaps gradual manner.
Thus, one general approach to enhance response to AIT is to
protect allergens from degradation, and/or ensure optimal release
by packing them into resistant carrier materials.

Methylmethacrylate Coating
Grass pollen allergen was coated with a co-polymer of
methacrylic acid and methylmethacrylate, called Eudragit
L-100 R©, to protect against gastric degradation, and administered
orally to Guinea pigs (10). The secondary antibody response
was greater than with an aqueous solution of the allergen.
An encapsulated ragweed allergen extract given to people with
hay fever led to an increase of anti-ragweed IgG antibodies, a
dampened increase of IgE antibodies, and decreased symptom-
medication scores without systemic reactions (11).

Plant Cell-Wall Fusion Proteins
Plant cell-expressed or complexed allergen proteins delivered
orally are protected from gastric acid and enzymatic degradation,
but are then digested by gut microbes in the colon and release
the allergens to the immune system (12). Transgenic rice
expressing the major house dust mite (HDM) allergen Der p
1 was developed as an edible AIT product (13). Several other
proteins have been used in this fashion to induce tolerance
in mice. After oral prophylactic administration of transgenic
rice expressing modified Japanese cedar pollen allergens Cry
j 1 and Cry j 2 (14, 15) to BALB/c mice or HDM allergen
Der p 2 in transgenic tobacco in a murine asthma model (16),
a decreased allergic response was uniformly seen. Chemically
modified ragweed pollen shells fed to BALB/c mice were
incorporated in the subepithelial tissue (17). In addition, bone-
marrow derived macrophages and dendritic cells cultured with
this pollen increased expression of CD40, CD80, CD86, and
MHC class II molecules and secreted proinflammatory cytokines
TNF-alpha and IL1-beta. Such studies have not been performed
in human or veterinary patients.

Polyanhydrides
Particles made of amphiphilic polyanhydrides are biodegradable
and show a favorable safety profile. Poly[methyl vinyl ether-co-
maleic anhydride] (Gantrez R© AN 119) has been investigated
in mouse models for oral immunotherapy against peanut
allergy (18–20), cashew nut allergy (21), and Lolium perenne
pollen allergy (22). Three doses of nanoparticle-coated peanut

Abbreviations: AIT, allergen immunotherapy; FDA, U.S. Food and Drug

Administration; HDM, house dust mite; MP, microparticle; MPLA,

monophosphoryl lipid A; NP, nanoparticle; ODN, oligodeoxynucelotides;

OVA, ovalbumin; PEG, polyethylene glycol; PGA, poly-glutamic acid; PHEA,

poly(hydroxyethyl)-aspartamide; PLGA, poly-lactic-co-glycolic acid; TLR, Toll-

like receptor; VLP, virus-like particles; RAO, recurrent airway obstruction;

IBH, insect bite hypersensitivity; PBMC, peripheral blood mononuclear cells;

WGA, wheat germ agglutinin; SLP, S-layer protein; LT, heat-labile toxin; SHAS,

Strontium-doped hydroxyapatite porous spheres; TADM, Triacedimannose.

allergens were able of protecting CD1 mice against severe
anaphylaxis induced by a peanut challenge (18). Similarly, in
CD1 mice presensitized to peanut, AIT with nanoparticle-
encapsulated peanut allergen was associated with significantly
lower concentrations of mMCPT-1, and an increased survival
rate after challenge, compared to AIT with free peanut extract
(20). Similar results were seen with allergens of L. perenne
combined with Gantrez nanoparticles and LPS of Brucella ovis
(22). Oral administration of cashew nut-loaded nanoparticles to
BALB/c mice led to a decrease in splenic Th2 cytokines, and
an enhancement of pro-Th1 and regulatory cytokines with an
increased expansion of T regulatory cells compared to mice
immunized with free allergens (21). Despite promising results
in these murine models, no published studies in human or
veterinary patients exist.

Evidence thus indicates that formulations protecting
the allergens are beneficial, and show Th1- and
Treg-inducing capacity.

ALLERGENS ADMINISTERED WITH NOVEL

ADJUVANTS

A different approach incorporates adjuvants along with
the allergen, with the goal of enhancing a desirable, non-
allergic immune response, optimally counteracting an
allergy-immune milieu.

Monophosphoryl Lipid A (MPLA)
Monophosphoryl lipid A (MPLA) is a compound derived from
Gram-negative bacteria and effectively applied in human allergic
patients since 1975 (23). In vitro studies indicate that it may
also induce the secretion of Th1 cytokines from equine cells,
thus making it a candidate for the treatment of insect bite
hypersensitivity (IBH) (24). Twelve healthy Icelandic horses were
immunized with Culicoides nubeculosus allergens adjuvanted
with MPLA plus alum, or alum alone (25). When their
peripheral blood mononuclear cells (PBMCs) were stimulated,
the MPLA/alum-immunized horses produced more IFN-gamma
and IL-10, both preferable in allergy.

Gelatin-CpG-ODN
Gelatin particles combined with CpG-ODN (GbpCpG) are
among the few preparations already studied in veterinary allergy
patients, including canine atopic dermatitis (26, 27) and equine
recurrent airway obstruction (RAO, an analog of human asthma)
(28–30). Uptake of these particles by canine PBMCs could
be demonstrated with confocal laser scanning microscopy,
and an increase of IL-10 secretion could be shown when
cells were incubated with GbpCpG compared to CpG-ODN
alone (27). Atopic dogs improved clinically after subcutaneous
administration of GbpCpG, while their IL-4 expression decreased
(26). Bronchoalveolar lavage cells from RAO horses were
incubated with different CpG-ODN sequences; IL-10 and
IFN-gamma release was increased, while IL-4 decreased (30).
When nebulized with a gelatin nanoparticle-based CpG-ODN
formulation, horses with RAO improved clinically and the IL-
10 concentration increased in their bronchoalveolar lavage fluid
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(28). In a subsequent placebo-controlled trial, this treatment
caused a persistent decrease of allergic clinical variables in horses
treated with nebulized GbpCpG (29). A later study described
lyophylisation of GbpCpG facilitating its storage and use (31).

Triacedimannose (TADM)
Incubation of the synthetic trivalent glycocluster TADM with
birch-stimulated PBMC of allergic rhinitis patients suppressed
the production of all Th2-type cytokines (32). TADM suppressed
IgE production and enhanced IFN-gamma production in a
mouse model of OVA-induced allergic asthma (32). Intranasal
application of TADM and timothy grass pollen extract to
sensitized BALB/c mice led to a much greater decrease in
lymphocyte and eosinophil counts in blood, BALF, and lung
biopsies compared to CpG-ODN and MPLA, and (in contrast to
CpG-ODN alone) did not increase neutrophil counts (33).

Polysaccharide Polymers
Carbohydrate-based particles complexed with Phl p 5 grass
pollen allergen or cat allergen Fel d 1 were successfully used in
several studies of AIT in mice (34–37).

The polyaminosaccharide chitosan (poly-D-glucosamine) is
approved for use in human wound healing, but is not yet
evaluated for AIT. Chitosan particles were used with ovalbumin
as a mucoadhesive to promote uptake by oromucosal dendritic
cells in vitro (38), and also with allergens from HDM and peanut
in mouse models to augment AIT (39–41).

Other polysaccharides used for preparation of particulate
delivery systems are dextran, alginate, starch, and cellulose
derivates. Amylopectin-based microparticles were formulated
with Bet v 1 from birch pollen for sublingual treatment of allergic
mice (42). Mannan-dextran-maltodextrin covalently attached to
OVA and papain were intradermally injected into BALB/c mice,
leading to elevated humoral immune responses, and an IgE-
to-IgG-shift (43). Another potentially useful polysaccharide is
pullulan, a polysaccharide which, coupled to HDM allergen
Der p 2, and administered to dogs, effectively reduced clinical
signs of atopic dermatitis (44). Carbohydrate-modified ultrafine
ceramic-core based nanoparticles, so-called aquasomes, are not
biodegradable, and have been applied in the mouse model with
ovalbumin (OVA) as model allergen preparation for intradermal
application (45).

Heat-Labile Toxin (LT) From E. coli
A patch delivery system for birch pollen allergen rBet v 1
with and without heat-labile toxin (LT) from Escherichia coli
was compared to subcutaneus alum-adsorbed rBet v 1 in a
guinea pig model (46). Only the rBet v 1-LT was able to
induce allergen-specific blocking IgG antibodies comparable to
subcutaneous immunization.

Miscellaneous Particulate Formulations
Strontium-doped hydroxyapatite porous spheres (SHAS) have
been used with OVA subcutaneously in a mouse model and led
to a sustained stimulation of both CD4+ and CD8+ T cells (47).
AIT with SHAS-OVA showed a higher efficacy as assessed by

symptom scores compared to soluble OVA. This approach was
not tested clinically in human or veterinary patients.

Poly(epsilon-caprolactone; PCL) is a biocompatible adjuvant,
and in mice sensitized to OVA led to lower IgE, fewer
anaphylactic reactions, and higher survival rate compared to
alum-adjuvant treated animals (48). Studies in human and
veterinary patients are lacking.

Modified difunctional water-soluble PEG dimethacrylate
(PEG-acetal-DMA) macromonomers have cleavable acetal units
(49), and when those were filled with allergen (OVA, grass pollen
allergen, HDM allergen) and encapsulated into liposomes, they
could avoid IgE-dependent activation of basophils in vitro, but
were taken up by dendritic cells (50).

Poly-glutamic acid particles (PGA) were used with Phleum
pretense pollen extract in vitro and increased allergen-specific IL-
10 production and proliferation of autologous CD4+ memory
T cells (51). Other investigators have shown that PGA per se is
an allergen in fermented soybeans, which causes hypersensitivity
reactions and even late-onset anaphylaxis (52–54). To the
authors’ knowledge, there are no studies evaluating PGA
in animals.

Protamine-based nanoparticles are biodegradable and
biocompatible arginine-rich peptides. When complexed with
Ara h 2 from peanut and CpG-ODN, they could counteract a
Th2-dominated allergen-induced immune response in mice (55).
A combination of liposomes with protamine and DNA was also
proven effective in combating Chenopodium album allergy in a
mouse model (56). At this point, there are no published clinical
studies with protamine-based nanoparticles.

Mesoporous silica nanoparticles were successfully used in
allergy models (57) with HDM allergen Der f 2 for subcutaneous
prophylactic treatment of mice (58). However, when applied
epicutaneously with mite extract in the form of agglomerates,
they induced AD-like skin lesions and promoted IgE-responses
(59). Studies in human and veterinary patients are lacking.

Taken together, many of novel adjuvants have shown Th1-
promoting capacity in vitro and in vivo in murine models and
even veterinary patient studies for horses and dogs. They were
capable of counter-acting IgE, inducing preferentially IFN-γ,
and/or IL-10 and also resulting in reduced symptom scores, being
more effective than their non-adjuvanted controls.

ALLERGENS COUPLED TO

IMMUNOMODULATORS

Efforts have also been made to enhance an overall shift in
the immune response away from Th2, while at the same time
presenting the offending allergen. Some approaches incorporate
elements that can redirect the overall immune response
from an allergy-prone Th2-IgE-milieu to a more Th1-IgG-
dominated reponse.

Modified Adenine Conjugates
Der p 2 allergen bound to 8-OH-modified adenine (nDer p2-
Conj) forms an allergen-TLR7 agonist conjugate. When injected
subcutaneously, it reduces allergen challenge-induced murine
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airway inflammation (60–62), triggers TLR7, redirects allergen-
specific Th2 responses, and promotes a Th1 response as well as
an increase in IL-10 with prolonged effects.

Mannan-Modified Allergens and Allergoids
Mannan preparations, alone or allergen-conjugated, appear
capable of downregulating IgE responses. Konjac glucomannan
(Amorphophallus konjac) fed to BALB/c mice suppressed IgE
class switching in B cells and inhibited Th1 and Th2 responses
(63). It also suppressed IgE production and clinical signs in
a mouse model of allergic rhinitis (64). Administration of
neoglycocomplexes of mannan with ovalbumin and papain to
sensitized mice led to a class switch from IgE to IgG, and to a
decrease in basophil degranulation in vitro (43).

Polymerized allergoids have been coupled to non-oxidized
mannan from Saccharomyces cerevisae (PM-allergoids); this is
one of the few modified allergen preparations that has been
studied in dogs (65). Dendritic cells capture PM-allergoids
better than native allergens and enhance Th1/Treg cell responses
upon subcutaneous or sublingual administration (66, 67).
Interestingly, the addition of alum may impair their tolerogenic
properties (68).

DNA Engineered Hybrids With Copolymers
Hybrid allergen molecules are obtained by combining the
epitopes of several allergens. Subsequently, their immunogenicity
can be enhanced by coupling with copolymers. Engineered
hybrids expressing the major allergens from Parietaria pollen
allergens Par j 1 and Par j 2 were prepared as nanoaggregated
copolymers with poly (hydroxyethyl)-aspartamide (PHEA). They
are biodegradable, water-soluble and showed low cytotoxicity, no
effect on hemolysis, and no non-specific activation of basophils.
Basophil activation properties were, however, maintained in
cells from Parietaria-allergic subjects, indicating preserved
crosslinking capability of the hybrid allergen (69). No in vivo
studies have been reported with this preparation.

Allergen Linked to CpG

Oligodeoxynucleotides (CpG-ODN)
CpG-ODN are short, single-stranded synthetic DNA molecules
with immunostimulatory properties that induce a Th1-
based immune response (70), which prevents Th2-mediated
hypersensitivity in mouse models of allergic diseases such
as allergic rhinitis (71), asthma (72), conjunctivitis (73), and
anaphylactic shock (74). Purified Amb a 1 from Ambrosia
artemisiifolia pollen linked to CpG-ODN was successfully tested
subcutaneously in humans and resulted in a shift from Th2 to
Th1 with an increase of IFN-γ and a decrease in IL-5, proving
suitable as an agent for immune redirection in immediate
hypersensitivity diseases (75).

Siderophore-Bound Iron or Retinoic Acid

as Immunomodulatory Ligands
Bos d 5 cow milk allergen is capable of binding iron via
siderophores. The immunomodulatory properties of iron-bound
allergen were tested in vitro with human PBMC (76). The empty

apo-form of Bos d 5 increased CD4+ cells, IL-13, and IFN-
gamma, whereas the complexed holo-form decreased CD4+ cells
and induced apopotosis. Similarly, only the apo-form of birch
pollen allergen Bet v 1 led to an increase in IL-13, while IFN-
gamma was increased with both formulations when incubated
with human PBMC (77). Accordingly, spiking of Bet v 1 or Bos d
5 with iron may be an effective approach to improve the efficacy
of AIT against birch pollen and cow milk allergy, respectively
(76, 77).

The major allergen Bos d 5 was also complexed with the
vitamin A metabolite retinoic acid (78). IgE binding was not
influenced, but PBMCs from healthy people stimulated with the
complex led to a decrease of CD4+ T cells as well as IFN-gamma,
IL-13 and IL-10, although induction of CD4+CD25+Foxp3+
regulatory T cells was not seen (79). In contrast to apo-Bos d
5, a highly allergenic molecule, holo-Bos d 5 thus seems to have
reduced immunogenicity.

Expression of Allergens by Bacterial

Vectors
Streptococcus thermophilus (ST) expressing rBet v 1 was evaluated
in a mouse model (80). BALB/c mice were sensitized with rBet v
1 and then treated orally with either ST, ST and rBet v 1, or ST
expressing rBet v 1. After aerosol challenge, T regulatory cells, IL-
10, and IFN-gamma were increased with the expressed-allergen
preparation; bronchial eosinophilia, allergen-induced IL-4, and
the rBet v 1-specific IgE/IgG2 ratio were decreased, indicating a
shift from Th2 to Th1 and Treg immune responses (80).

Profilin (Che a 2), the major allergen of C. album, was
expressed in Lactobacillus lactis, and was bound by human
anti-profilin IgE (81). However, bacterial survival was greatly
reduced with low pH and simluated gastric and intestinal juices.
Oral vaccination with recombinant Lactobacillus plantarum
expressing the Japanese Cedar pollen allergen Cry j 1 led to a
suppressed allergen-specific IgE response and decreased nasal
symptoms in a murine model of allergic rhinitis (82).

Allergens Conjugated to Bacterial

Products
Bacterial surface S-layer proteins (SLPs) are two-dimensional
crystalline arrays of glycoprotein subunits present on the
outermost layer of many bacteria, and have strong adjuvant
properties. Conjugating recombinant allergens with SLPs leads
to strongly reduced IgE-binding activity and promotes the
induction of allergen-specific Th0/1 cells and regulatory T cells.
This type of allergen modification has been attempted with
inhalant allergens (83). Subsequently, bacterial S-layers have
been studied as carriers for peanut allergen-derived peptides
(84, 85). A fusion protein of an Ara h 2-derived protein and
an S-layer protein was recognized by Ara h 2-specific IgE of
human patients but was not able to degranulate sensitized rat
basophils in vitro (84). The A20, tumor necrosis factor-induced
protein 3 (TNFAIP3), is a ubiquitin-modifying protein playing
a defensive role in the pathogenesis of allergic diseases. A DNA
vaccine coexpressing Der p 2 and ubiquitin A20 encapsulated
into nanoparticles used intranasally in a murine model of allergic
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rhinitis was able to inhibit allergen-specific IgE, IL-4, IL-10, and
IL-17 secretion and to increase IgG1, IgG2a, and IFN-γ (86, 87).

A genetically engineered inhalative cholera toxin B
subunit/allergen fusion molecule, CTB-Bet v 1, was shown
to improve the immunomodulatory capacity of the mucosal
delivery system better than chemically coupled products (88).

Overall, the concept of redirecting the immune response from
a Th2 to a Th1-bias as part of AIT has promise. However, most
immunomodulatory components—except for CpG-ODN—have
been tested in murine models only, and need to be further tested
in human and veterinary patients.

COMBINATION AND MISCELLANEOUS

APPROACHES

Several formulations combine the enhancing and modulating
effect on the immune response, in parallel to protecting the
antigen from degradation or digestion, and further releasing it
in a delayed manner. Different particulate formulations together
with immune-cell targeting substances have been used for
these attempts.

Liposomes
Liposomes are bilayers of phospholipids, forming vesicles which
can transport aqueous substances inside. They are biocompatible,
biodegradable, and can be co-formulated with oligomannose
coats, a preparation that was tested in human HDM-allergic
asthma patients (89). Mouse models were used to study the
efficacy of liposomes in treating allergy against Japanese cedar
pollen (90), HDM (91), cat (92), OVA (93), or cockroach (94).
Lipid nanoparticles together with Parietaria allergen Par j 2 were
characterized biochemically and biophysically (95). Liposome
complexes with CpG-DNA and individual allergen extracts were
used intradermally for treatment of canine atopic dermatitis after
failure of conventional AIT (96). Pruritus improved and IL-4
production decreased with treatment (96). Chronic rhinitis in
adult cats could be treated with feline IL-2-filled liposomes plus
DNA, although a Th2 bias could not be identified in those cats
(97). Liposomes with HDM allergens Der p 1 or Der p 2 reduced
clinical and medication scores, skin test responses, and bronchial
challenge responses in asthmatic patients (89).

Poly-Lactic-Co-Glycolic Acid Particles

(PLGA, PLG, PLA)
These polyesters are approved for use in people as absorbable
surgical suture. In mouse models for birch allergy, they were
successfully administered subcutaneously with Bet v 1 (98,
99). In addition, PLGA-microparticles were used orally with
different plant lectins e.g., Aleura aurantia lectin, wheat-germ
agglutinin or Ulex europaeus-I, or Vibrio cholerae neuraminidase
to target mucosal cells for enhanced uptake (100–103). Other
allergens used with PLGA-particles in animal models via different
routes are the Chenopodium allergen rChe a 3, as sublingual
immunotherapy in a mouse model of allergic rhinitis (104, 105),
Ole e 1 from olive pollen or T cell epitopes thereof for intranasal
prevention (106, 107), bee venom allergen PLA2 (108), pollen-
profilin from palm Caryota mitis (109), Der p 2 from HDM

(110), peanut extract (111), or beta-lactoglobulin frommilk whey
(112). PLGA locally induced a regulatory T cell response via the
incorporated mediator substances TGF-beta-1, rapamycin, and
IL-2 to prevent a subsequent contact dermatitis reaction (113).
In addition to complexing PLGA-particles with allergens, PLGA
were complexed with immune-modulating substances such as
CpG-ODN for allergy and asthma prevention (114) and with Der
p 2-A20 DNA in allergic rhinitis (87) in mouse models. There are
no studies in companion animals with PLGA.

Virus-Like Particles (VLP)
Virus-like particles are used as carriers for allergens, or without
antigen for antigen-independent immunomodulation (115).
Particles consisting of bacteriophage coat proteins and a TLR-9
agonist, but without allergen, were injected into HDM-allergic
patients and led to lower symptom-medication scores, higher
quality of life and better allergen tolerance (116). A second
study with A-type CpG-ODN and HDM-extract showed similar
results; allergen-specific IgG increased as well (117). Recently,
equine IBH was safely treated with IL-5-linked VLP made from
cucumber mosaic virus to induce auto-antibodies against IL-
5 (118–121). Clinical signs of treated horses improved and
their eosinophilia was decreased compared to controls. The
same principle was used successfully with IL-31-linked VLP for
treatment of IBH in horses and for atopic dermatitis in dogs
(122, 123). A very interesting approach is the immunization of
cats with Fel d 1-VLPs (HypoCatTM) to induce a neutralizing
antibody response in the animal against its own Fel d 1-protein
for protection of humans against cat allergy (124, 125). In BALB/c
mice, adeno-associated VLP were also tested with an OVA-
derived B cell epitope (126), with Art v 1 from mugwort (127)
and with peanut allergens Ara h 1 and Ara h 2 (128). Fel d 1
displayed on VLPs failed to induce human mast cell activation
in vitro (129). The peptide HDM allergen Der p 1 was coupled to
a virus-like particle derived from a bacteriophage and injected in
healthy volunteers. Significant IgG responses against the allergen
were observed and the vaccine was well-tolerated (130).

Aleuria Aurantia Lectin (AAL)
AAL is derived from the edible orange peel mushroom A.
aurantia. When birch pollen-sensitized BALB/c mice were fed
with birch pollen-AAL-microspheres, the birch pollen-specific
IgG2a, but not IgG1 or IgE increased, as well as IFN-gamma, IL-
10, and IL-4 (101). Oral administration of birch pollen-AAL-MS
led to an IgG2 antibody response in naive BALB/c mice (102).
AAL microspheres may have the potential to serve as a vehicle
and adjuvant for oral immunotherapy, potentially stimulating
specific mucosal immune responses via M-cell targeting (100).

Wheat Germ Agglutinin (WGA)
Birch-pollen allergens were entrapped in poly(D,L-lactic-co-
glycolic acid) microspheres, further coated with WGA to target
enterocytes used for oral immunotherapy of type I allergy to
protect allergens from digestion and to support intestinal uptake
(131). The antigenicity of the birch pollen was maintained at
∼60% even after 2 h of simulated gastric digestion, and allergen-
specific IgG serum concentrations increased in BALB/c mice fed
with the WGA-birch pollen-microspheres (131).
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With these approaches, VLP, liposomes, and PLGA particles
seem to have promise, and are already tested in human, canine,
feline, and equine patients.

SUMMARY

Allergen immunotherapy is the only treatment for allergic
diseases that is truly causal and modifies the course of the
ongoing disease. As this review discusses, many dozens attempts
have been made to identify adjuvants, immunomodulators,
physical packaging, conjugates, and combinations of the above
to modify allergenic proteins, making them safer, and more
efficacious in AIT. Many of the formulations have scarcely
progressed beyond in vitro studies, though some show great
promise in rodent models. Our task is now to select the most
promising candidates, and carry them forward into preclinical
studies that can more carefully predict which will translate
into clinical benefit. Because many human allergic diseases are
found nearly identically in animals, veterinary studies could
serve as an elegant precursor to the same investigations in
human patients.
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