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Human Leukocyte Antigen class II (HLA-II) molecules present peptides to T lymphocytes

and play an important role in adaptive immune responses. Characterizing the binding

specificity of single HLA-II molecules has profound impacts for understanding cellular

immunity, identifying the cause of autoimmune diseases, for immunotherapeutics, and

vaccine development. Here, novel high-density peptide microarray technology combined

with machine learning techniques were used to address this task at an unprecedented

level of high-throughput. Microarrays with over 200,000 defined peptides were assayed

with four exemplary HLA-II molecules. Machine learning was applied to mine the signals.

The comparison of identified binding motifs, and power for predicting eluted ligands

and CD4+ epitope datasets to that obtained using NetMHCIIpan-3.2, confirmed a

high quality of the chip readout. These results suggest that the proposed microarray

technology offers a novel and unique platform for large-scale unbiased interrogation of

peptide binding preferences of HLA-II molecules.

Keywords: ultra-high density peptide microarray, MHC class II, HLA, antigen presentation, prediction, peptide

binding, high-throughput, machine learning

INTRODUCTION

The highly diverse major histocompatibility complex (MHC) proteins play a major role in
the adaptive immune system. MHC class II proteins present peptides of variable lengths
mainly derived from extracellular antigens (1). In humans, MHC is called human leukocyte
antigen (HLA). The HLA locus is highly polymorphic, resulting in different HLA molecules
having a specific peptide binding preference and specific peptidomes. The HLA is an
important susceptibility locus in genetic studies of many immune-related diseases, often with
multiple HLA alleles playing a role (2–4). However, beyond the suggested association, these
studies do not inform about the causes of a disease, i.e., the antigen/epitope that binds to
associated HLA proteins and potentially drive the disease onset. To make this link between

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01705
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01705&domain=pdf&date_stamp=2020-08-05
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.wendorff@ikmb.uni-kiel.de
mailto:a.franke@mucosa.de
https://doi.org/10.3389/fimmu.2020.01705
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01705/full
http://loop.frontiersin.org/people/564485/overview
http://loop.frontiersin.org/people/737661/overview
http://loop.frontiersin.org/people/939585/overview
http://loop.frontiersin.org/people/1038358/overview
http://loop.frontiersin.org/people/582387/overview
http://loop.frontiersin.org/people/861251/overview
http://loop.frontiersin.org/people/354720/overview
http://loop.frontiersin.org/people/479847/overview


Wendorff et al. High-Throughput Microarray for HLA-Peptide Prediction

HLA and antigen, further studies to characterize the peptidome
bound by specific HLAs are necessary (5, 6). To this end,
efficient and reliable high-throughput technologies formeasuring
peptide-HLA interaction are needed. Different assay types may
be used to record the interaction between HLA and peptides
(7). Classical in-vitro assays measure one single interaction of
a synthetic peptide and an HLA-molecule in one experiment.
Mass spectrometry of HLA eluted peptides considers the whole
process of antigen synthesis up to presentation might fail the
identification of low abundant peptides or modified peptides. To
avoid costs and time delays in-silico prediction tools for HLA
binding and antigen presentation have been trained on measured
assay data (8–17).

Here, we set out to overcome the experimental limitations
outlined above by employing our high-density peptide
microarray data, a new high-throughput in-vitro technology
(18, 19), combined with synthetic in-vitro generated HLA-II
molecules (20) to perform large-scale unbiased characterization
of HLA-II allele-specific binding. Earlier work has used peptide
microarray for measuring peptide-HLA interaction, but this
was limited to thousands of peptides per array (21). Here, the
high-density peptide microarray enables the in-situ synthesis of
over 2 million peptides per array on about 2 cm2 (18). To this
end, we synthesized about 70,000 random peptides in triplicates
on one array, allowing us to generate vastly more data points
than the combined number of all HLA-DR epitopes registered
in the immune epitope database IEDB (www.iedb.org) (7).
This technology enables the analysis of whole proteomes of
interest in one single experiment and the systematical analysis
of post-translational modifications. Our presented technology
offers a unique solution to produce large datasets to characterize
binding properties of HLA-II molecules and improve the in-silico
prediction of peptide-HLA interaction while being suitable for
hypothesis driven tests.

To prove the quality of the high-density peptide microarray
for characterizing peptide-HLA-II interactions, we selected four
HLA-DRB1 proteins that are known to be strongly associated
with ulcerative colitis, a complex chronic inflammatory bowel
disease (2). For DRB1∗01:03, DRB1∗03:01, DRB1∗15:01, and
DRB1∗15:02, a set of 69,815 random peptides were analyzed. To
mine the extracted datasets and to learn predicting peptide-HLA
binding, we applied NNAlign (22), as well as a deep learning
approach, referred to as PIA (Peptide Immune Annotation).
Using the obtained models, we assessed the quality of the
chip readout in terms of identified binding motifs, and
power to predict publicly available MS data from elution
experiments as well as CD4+ epitope datasets in comparison to
NetMHCIIpan-3.2 (8).

STATE OF RESEARCH

Peptide-HLA Assays
The IEDB collects all types of immune epitopes. The oldest
record is from 1952 (7). From the 90s to 2010, in-vitro assays
measuring binding of synthetic peptides to HLA molecules (20,
23) were the most common MHC binding assays (www.iedb.
org). In the last 5 years, mass-spectrometry (MS) sequencing of

HLA eluted peptides (24, 25) became more popular (first records
already in 1991).

Both methods have their strengths and weaknesses. In-vitro
binding studies can measure interaction of individual peptide-
HLA combinations. However, this approach is highly cost-
intensive (one assay per peptide) and the assay fails to address
some events leading up to effective HLA antigen presentation
such as antigen processing, the effects of chaperones like HLA-
DM, editing of the repertoire of HLA bound peptides (12,
14), and HLA-peptide complex stability. In contrast, recent
advances in MS technology have expanded the detectable peptide
repertoire presented by HLA molecules (immunopeptidome)
by use of liquid chromatography MS. Immunopeptidome data
include comprehensive information on the complex HLA ligand
presentation (26), and analysis results of such data are a
rich source of information for learning about the underlying
rules of HLA antigen presentation. However, MS HLA peptide
elution data mainly covers self-peptides and is assumed to
miss low abundant peptides (26), further post-translational
modifications might be identified but misinterpreted (27).
Another problem arising with natural cell lines is that they most
often present different HLA proteins. To solve this problem,
either homozygous cell lines, tagging of a specific HLA allele
(14, 28) or algorithms for deconvolution of the HLA proteomes
can be employed (16, 17, 29). However, deconvolution has been
shown to be of limited success in cases of lowly expressed
HLA proteins or cells expressing HLA proteins with overlapping
proteome specificity (14).

Peptide-HLA Binding Prediction
Beyond the different experimental approaches developed to
specify peptide-HLA interaction, large efforts have been made
to develop prediction models capable of accurately predicting
peptide-HLA binding. Historically, most in-silico methods have
been developed based on in-vitro binding data and an exemplary
state-of-the-art computational method is NetMHCIIpan (8, 9,
30). Recently, prediction methods have been developed from
HLA-II elution data (10–15). The results suggest that the
inclusion of elution data has a positive impact on the predictive
power of in-silico methods in particular for the prediction of
HLA antigen presentation (10–15). Algorithms can be trained
on either in-vitro or in-vivo data (8, 11, 14, 16), but a benefit
from training on the two data types combined has been reported
(10, 12, 13, 15, 17). However, currently even the best methods
for prediction of HLA-II binding and antigen presentation suffer
from an excessive number of false positive predictions.

MATERIALS AND METHODS

Microarray
Peptide microarrays were produced by Schafer-N (Copenhagen,
Denmark). Briefly, a Nexterion E microscope slide (Schott, Jena,
Germany) were amino functionalized with a 1% w/v linear
copolymer (1T0C) of N,N-dimethylacrylamide (Sigma-Aldrich)
and aminoethyl methacrylate (Sigma-Aldrich) and used as
substrate for solid-phase peptide synthesis. The peptide synthesis
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was initiated with the coupling of one unit of epsilon-amino-
capronic acid (EACA) followed by the peptide sequences. The
1T0C and EACA unit served as a spacer between the array surface
and the peptides allowing the HLA class II molecules to interact
and peptides to protrude out of the HLA in both ends. For
each experiment the same array-design was chosen. The peptide
chips were subdivided into 12 sectors with a marker peptide
“PVSKMRMATPLLMQA” of the HLA-II antigen gamma chain
(CD74; UniProt: P04233-1: 103-117) placed multiple times in
all the sectors corners. 69,815 different random natural 13-mer
peptides were placed on the chip in triplicates. The chip does
not contain peptides containing more than four poly residues
(e.g., RRRR) as poly residues are difficult to synthesize and have
a tendency toward unspecific binding.

Peptide microarrays were incubated with different HLA-
DR molecules as previously described (31). Briefly, HLA-DR
molecules were diluted from a stock (8M Urea, 25mM Tris,
pH8) to achieve a final concentration of 500 nMHLA-DR in PBS,
0.05% Lutrol F68, 20% Glycerol pH 7.4 and added (overlaid) to
the peptide array surface and allowed to fold for 24 h at 18◦C
before washing and staining with monoclonal mouse anti-HLA-
DR (L243) and goat anti-mouse-Cy3. The peptide arrays were
scanned with a laser-scanner (InnoScan, Innopsys, France) at a
resolution of 1µm and the amounts of bound HLA-DR were
quantified to intensities between 0 and 254 by a proprietary
software (Peparray, Schafer-N, Denmark). Larger spots with high
values were excluded as noise.

The data was normalized by taking the median intensity of
each repeated measurement x̃i for each peptide and transformed

to fall in the range 0–1 by
log(x̃i+1)

log(max(x̃)+1)
. The data was split into

one test dataset comprising 10% of the data and a 10-fold cross-
validation dataset of the remaining data. To ensure limited data
redundancy between subsets, therefore similar peptides [e.g., a
9-mer overlap (underlined amino acids in the following are the
same), for example AALITRGLTEMGR and ARTALITRGLTEM,
or at least 11 of the 13 amino acids in the same order, for example
ADLGSGAGAAGLA and ALGSGAAGAAFGL] were placed into
the same subset. For the performance evaluation, the data was
back-transformed to the intensity scale.

Consistency Metrics
We evaluated the consistency of the triplicates using the
coefficient of variation (CoV) and the Pearson Correlation
Coefficient (PCC) between three replicates. The CoV for each
repeated peptide measurement was calculated as the standard
deviation of intensity divided bymean intensity+1 and themean
CoV over the 69,815 peptides for all four alleles was given.

The PCC between the three replicates was calculated
combining the pairwise PCCs R12, R13, and R23 as

R123=
√

R12
2 + R13

2 + R23
2 − 2∗(R∗12R

∗
13R23) (32).

Epitope and Eluted Ligand Test Datasets
T cell epitopes and HLA ligands obtained from mass
spectrometry were downloaded from IEDB and used as
independent test data (www.iedb.org, June 18th 2019) (7). Only
positive linear peptides with a length between 13 and 19 amino

acids were used. Data with an overlapping sequence of at least
9 amino acids with the peptide microarray data or an unknown
amino acid were excluded. This resulted in 502 epitopes and 719
ligands for the four alleles (Supplementary Table 1).

Negative data (peptides thought not to bind the respective
alleles) were added by downloading the sequence of the
epitope/ligand source protein as linked by IEDB from NCBI
(www.ncbi.nlm.nih.gov), and in-silico digesting by a sliding
window of the length of the ligand/epitope into overlapping
peptides. Peptides with an overlap of 9 amino acids with the
peptides used in training or the positive peptides were excluded.

For predicting the binding affinity for a peptide, prediction
on all 13-mer subsequences was made and the highest prediction
value reported.

Finally, the performance for each epitope/ligand was reported
as the Frank value. The Frank value of a binding peptide is the
ratio of the number of peptides with a higher predicted binding
score in the source protein divided by the overall number of
peptides within the protein (8).

NNAlign
NNAlign-2.1 was used on the peptide microarray data (22).
NNAlign generates artificial neural network models of receptor-
ligand interactions. The program takes as input a set of ligand
sequences with target values; it returns a sequence alignment, a
binding motif of the interaction, and a model that can be used to
scan for the motif in other sequences. Further details of the used
parameters can be found in the Supplementary Methods. The
motifs generation by Seq2Logo (33) is automatically performed
by NNAlign.

Deep Learning Model PIA
PIA is a gated recurrent neural network (GRU) based model
(34) implemented using Keras (https://keras.io) deep learning
framework with TensorFlow (www.tensorflow.org). Further
details on the model architecture can be found in the
Supplementary Methods.

For generating the logos, 500,000 13-mers were randomly
selected from the human reference proteome and screened using
PIA. The top 1% of peptides were submitted to GibbsCluster-2.0
(29) for motif identification.

RESULTS

High-density peptide microarrays were used to identify large,
unbiased peptidome datasets for four HLA-DR molecules.
We describe the raw peptide chip readout to quantify data
consistency and make comparisons to earlier in-vitro binding
experimental results. Further, we describe the results of applying
two machine-learning frameworks to mine and extract the rules
for peptide-HLA binding from the chip data, and we assess
the quality of the chip data by comparing the power of the
constructed models to that of NetMHCIIpan-3.2 for prediction
of HLA ligands and epitopes.

Frontiers in Immunology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 1705

www.iedb.org
www.ncbi.nlm.nih.gov
https://keras.io
www.tensorflow.org
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wendorff et al. High-Throughput Microarray for HLA-Peptide Prediction

FIGURE 1 | Performance of the models on peptide microarray data and resulting motifs. (A) The Pearson correlation coefficient (PCC) and (B) the Spearman

correlation coefficient (SCC) on the independent test dataset of the peptide microarray are shown. The pairwise p-values were calculated using a non-parametric

bootstrap hypothesis test with 1,000,000 bootstrap iterations. *0.01 < p ≤ 0.05, **0.001 < p ≤ 0.01, ***0.0001 < p ≤ 0.001, and ****p ≤ 0.0001. Motif plots of (C)

DRB1*01:03, (D) DRB1*03:01, (E) DRB1*15:01, and (F) DRB1*15:02 based on the top 1% (from a pool of 100,000 random natural peptide) binding peptides

generated with the deep learning model (PIA), NNAlign model and NetMHCIIpan-3.2 (8). (G) Pearson correlation coefficient (PCC) of the position specific scoring

matrices (PSSM) between the different models.
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FIGURE 2 | Comparisons of prediction quality on (A) MS ligand and (B) epitope data. The center line inside the box indicates the median Frank and the triangle

shows the mean Frank. The data points available in IEDB are represented using a jitter plot. The colored box covers the interquartile range. The whiskers represent

1.5-fold of the interquartile range. Pairwise p-values were calculated using a Wilcoxon signed-rank test (applying Pratt’s zero method). *0.01 < p ≤ 0.05,

**0.001 < p ≤ 0.01, ***0.0001 < p ≤ 0.001, and ****p ≤ 0.0001.

Microarray Experiments
The peptide microarray contained 69,815 random 13-mer
peptides. An example of the raw readout of the array is shown
in Supplementary Figure 1, confirming overall clear signals
corresponding to discrete peptides. To assess the accuracy and
consistency of the array readout, two metrics were used: the CoV
and correlation coefficient between the three repeated peptide
measurements (for details see Materials and Methods). Overall,
this analysis demonstrated highly consistent values with a mean
CoV over the 69,815 peptides for all four alleles of 0.135 and
a correlation coefficient over 0.988 for the single microarrays
(Supplementary Figure 2).

For further validation of the microarray readout, the amino
acid composition of the top 2% peptides with highest signal was
compared to the amino acid composition of peptide binders as
obtained from the IEDB for the HLA molecules where available.
The results of this analysis are shown in Supplementary Figure 3

and confirmed an overall high consistency between the two
with correlation coefficients for HLA-DRB1∗03:01 and HLA-
DRB1∗15:01 above 0.910.

For further analysis, the median of the triplicate was used.

Prediction of Microarray Data
For building the prediction models, the microarray data was log-
transformed to reduce the skew and to optimize the range of the
data. We trained the NNAlign and the GRU based PIA models
using 10-fold CV for each allele. In all cases, PIA outperformed
NNAlign. Figures 1A,B show the PCC and the Spearman
correlation coefficient (SCC) performance values of the two
models on the test dataset. Here, PIA outperforms NNAlign

in all cases. Figure 1B also includes the SCC performance of
NetMHCIIpan-3.2, which is trained on in vitro IC50 binding
values demonstrating at least a SCC of above 0.53 for the different
alleles for predicting the chip test data.

To quantify the consistencies between different data types and
prediction models, binding motifs were estimated for each HLA
molecule and prediction model (Figures 1C–F). The binding
motifs identified by the peptide microarray based models are
close to identical and in most cases similar to those generated
with NetMHCIIpan-3.2 using Seq2Logo (8, 33). To compare
the motifs obtained by the two microarray-based models, we
performed a correlation analysis of the 9 × 20 position specific
scoring matrix produced by Seq2Logo defining the predicted
binding motif. In all four cases, we obtained PCC values
above 0.90 (Figure 1G). When comparing the NNAlign and
NetMHCIIpan motifs, the correlation values were still very high
with 0.59–0.75.

Predict Ligands Measured by Mass
Spectrometry
To further assess the predictive power of the developed methods,
we performed a benchmark on a set of HLA eluted ligands as
obtained from the IEDB (7). Here, the Frank value was used as
performance measure (8). In short, Frank is the proportion of
peptides within a source protein with a prediction value greater
than the given ligand. The Frank is 0 if the ligand is the peptide
with the highest binding score and 0.5 for random predictions.
To limit the effect of noise and falsely positive assigned data
points, only ligands that obtained a Frank value of 0.15 or less
for at least one of the included prediction models were included
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in the benchmark. As the IEDB currently does not contain
any ligands for DRB1∗15:02 the molecule was excluded from
our analysis (Supplementary Table 1). The results (Figure 2A)
demonstrate an overall comparable performance of the three
methods. The microarray-based methods and NetMHCIIpan-
3.2 each outperform the other for one dataset (NetMHCIIpan-
3.2 performs better for DRB1∗01:03, and PIA and NNAlign
for DRB1∗15:01). No consistent performance difference was
observed between the NNAlign and PIA models.

Predict CD4+ Epitopes
The same analysis performed on the HLA eluted ligand data was
done on a set of CD4+ T cell epitopes available from the IEDB
(Supplementary Table 1). The results (Figure 2B) show that
the microarray-data based models in most cases performed on
par with NetMHCIIpan-3.2. For DRB1∗15:01, NetMHCIIpan-
3.2 significantly outperformed both peptide microarray-based
methods. For DRB1∗01:03, the microarray-based models showed
an increased performance compared to NetMHCIIpan-3.2. This
latter difference was, however, not statistically significant due
to the limited number of epitopes available in the benchmark.
Moreover, the results indicate a slightly improved performance
of NNAlign over PIA.

DISCUSSION

Genetic variants in the HLA gene region have been associated
with a multitude of diseases, not only autoimmune conditions.
Earlier work suggests this to be caused by an intrinsic property of
particular HLA variants [for instance different HLA-DQ alleles
influencing IL-17 production in T-cells irrespective of the peptide
ligand (35)]. However, beyond this and for most HLA’s and
diseases, the detailed underlying mechanisms and candidate
antigens remain unknown. Experimentally testing all possible
peptide-HLA combinations to identify the relevant antigens
for a given disease is a major undertaking, and with current
technologies in most cases not feasible.

To deal with this limitation, we here present a new type of
HLA-II antigen interaction assay based on high-density peptide
microarrays. This technique allows the assessment of more than
200,000 independent peptide-HLA interaction tests within one
single experiment.

We demonstrate how this high-density peptide array serves
as a novel, valuable source for high-throughput and high-
volume data to accurately characterize the peptidome of HLA-
II molecules and its binding specificity. We demonstrated
this by quantifying the consistency between internal replica
(peptides analyzed multiple times on a given microarray),
and by comparing the amino acid composition of the
peptidomes as obtained from the peptide microarray to
that obtained using conventional in-vitro binding assays
with solid phase synthesized peptides. We furthered the
validation by applying machine learning methods to mine
and extract the HLA binding signal from the microarray
data and compared the derived binding motif and power of
the associated prediction model to state-of-the-art methods
trained on conventional in-vitro binding data. All comparisons

confirmed a high consistency of the microarray data with
conventional methods.

In our study, two different machine learning algorithms
were applied to mine the large-scale microarray datasets. The
first is NNAlign, which is the basis for NetMHCIIpan-3.2 and
NetMHCII 2.3 (8, 22) accepted to be among the best available
for prediction of peptide binding to HLA-II (30). The second,
PIA is based on GRU, a deep learning architecture developed for
sequence learning. Both algorithms are able to capture the signal
within the peptide microarray data and predict the microarray
test dataset with very high performance.

Moreover, the two prediction models trained on the
microarray data were benchmarked against NetMHCIIpan-3.2
on independent data of HLA eluted ligand and CD4+ epitope
data obtained from the IEDB. Here, all models were found
to perform at par, suggesting that the measurements obtained
from the microarray are accurately capturing signals of peptide-
HLA binding.

The microarray experiments performed here were conducted
in the absence of HLA II peptide- loading chaperones such as
HLA-DM and HLA-DO earlier demonstrated to play a role in
editing the repertoire of HLA class II binding peptides (36, 37).
Future work will tell if similar results are obtained in the context
of the peptide-microarray technology.

Overall, our results suggest that the described microarray
technology for large-scale evaluations of peptide-HLA-II
interaction is accurate, precise and highly scalable. We believe
this result opens a venue of novel applications addressing
challenges and biological problems that can only to a limited
extent be addressed using conventional immunoassays. Such
applications include mapping the impact of peptide-specific
post-translational modifications (such as phosphorylation,
deamination, or citrullination, all of these modifications
can be added in the peptide synthesis step, i.e., in the array
design process) on HLA-II binding and unbiased large-scale
screening for HLA-II binding of pathogen proteomes. The
herein presented in-silico technology data is in our opinion a
good addition to immunopeptidome data for the next generation
of prediction tools.
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